308F - Quiz 1

11 April 2014

Name:

Student ID #:

This is a closed-book, closed-notes exam. Calculators are not allowed.

1. (1 point). Is the matrix

in Reduced Echelon Form?

No, it must be in echelon form to be in reduced echelon form.

2. (1 point). Is the matrix B in Echelon Form?

No, the trivial rows are not consolidated at the bottom. This is the only issue.

3. (2 points). If the matrix is the augmented matrix of a system of linear equations, how many equations and how many unknowns are there? The matrix B has size $x \times y$ for what x and y?

There are x equations and y-1 unknowns. Looking at the size of the matrix, it is a 6 x 6 matrix (6 rows and 6 columns) thus x=y=6 and we have 6 equations and 5 unknowns. Note that trivial equations like: $0x_1+0x_2+\ldots+0x_n=0$ are still equations. Also note that sizes of matrices are often indexed by the variables m x n

4. (1 point). Does the matrix B represent a consistent system?

No, we can see that row 5 has the form 0 = 1 Which cannot be satisfied, thus the system is inconsistent. (See p. 19)

5. (5 points). Find the Reduced Echelon Form of the augmented matrix corresponding to the system of linear equations

$$x_1 + x_2 = 1$$
$$x_1 - x_2 = 3$$
$$2x_1 + x_2 = 2.$$

Show all work.

This system corresponds to the augmented matrix:

$$B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 3 \\ 2 & 1 & 2 \end{pmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 3 \\ 2 & 1 & 2 \end{bmatrix} \xrightarrow{R_2 - R_1} \begin{bmatrix} 1 & 2 & 1 \\ 0 & -2 & 2 \\ 2 & 1 & 2 \end{bmatrix} \xrightarrow{R_3 - 2R_1} \begin{bmatrix} 1 & 2 & 1 \\ 0 & -2 & 2 \\ 0 & -1 & 0 \end{bmatrix} \xrightarrow{R_3 \leftrightarrow R_2} \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & 0 \\ 0 & -2 & 2 \end{bmatrix} \xrightarrow{(-1)*R_2} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & -2 & 2 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & -2 & 2 \end{bmatrix} \xrightarrow{R_3 + 2R_2} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{R_3 / 2} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Note that this is not yet in R.E.F. the leading 1's are not the only non-zero entries in the columns.

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 - 2R_2 - R_3} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$