308G - Quiz 3

23 May 2014

Name: Solutions

Student ID \#:

This is a closed-book, closed-notes quiz. Calculators are not allowed.

1. (5 point). Use the Gram-Schmidt process to generate an orthogonal set from the given linearly independent vectors:

$$
\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
3 \\
6 \\
2
\end{array}\right],\left[\begin{array}{c}
10 \\
-5 \\
5
\end{array}\right] .
$$

Solution:

Let $S=w_{1}, w_{2}, w_{3}$ given above. Next Let $B=u_{1}, u_{2}, \ldots, u_{p}$ be a set of vectors in R^{n}. Each pair of distinct vectors of S must be orthogonal for the set S to be orthogonal. a.k.a. $\left(u_{i}\right)^{T} u_{j}=0$ for all $i \neq j$.

Next define u_{1}, u_{2}, u_{3} as follows:

$$
\begin{gathered}
u_{1}=w_{1} \\
u_{2}=w_{2}+a u_{1} \\
u_{3}=w_{3}+b u_{1}+c u_{2}
\end{gathered}
$$

So we have

$$
u_{1}=w_{1}=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]
$$

Now we proceed as follows:
Multiply u_{2} by $\left(u_{1}\right)^{T}$ to get

$$
\begin{gathered}
u_{1}^{T} u_{2}=u_{1}^{T}\left(w_{2}+a u_{1}\right) \\
u_{1}^{T} u_{2}=[0,1,2]\left[\begin{array}{l}
3 \\
6 \\
2
\end{array}\right]+a[0,1,2]\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right] \\
u_{1}^{T} u_{2}=(0 * 3+1 * 6+2 * 2)+a(0 * 0+1 * 1+2 * 2) \\
u_{1}^{T} u_{2}=10+5 a
\end{gathered}
$$

Setting this equal to zero we get:

$$
\begin{gathered}
u_{1}^{T} u_{2}=10+5 a=0 \\
a=-2
\end{gathered}
$$

Thus

$$
u_{2}=\left[\begin{array}{l}
3 \\
6 \\
2
\end{array}\right]+(-2)\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
3 \\
4 \\
-2
\end{array}\right]
$$

Now we solve for u_{3} by first multiplying by $\left(u_{1}\right)^{T}$ to get:

$$
\begin{gathered}
u_{1}^{T} u_{3}=u_{1}^{T}\left(w_{3}+b u_{1}+c u_{2}\right) \\
u_{1}^{T} u_{3}=[0,1,2]\left[\begin{array}{c}
10 \\
-5 \\
-5
\end{array}\right]+b[0,1,2]\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right] \\
u_{1}^{T} u_{3}=(0 * 10+1 *(-5)+2 * 5)+b(0 * 0+1 * 1+2 * 2)=5+5 b=0 \rightarrow b=-1
\end{gathered}
$$

Now we continue to solve for u_{3} by multiplying by $\left(u_{2}\right)^{T}$ to get:

$$
\begin{gathered}
u_{2}^{T} u_{3}=u_{2}^{T}\left(w_{3}+b u_{1}+c u_{2}\right) \\
u_{2}^{T} u_{3}=[3,4,-2]\left[\begin{array}{c}
10 \\
-5 \\
-5
\end{array}\right]+c[3,4,-2]\left[\begin{array}{c}
3 \\
4 \\
-2
\end{array}\right] \\
u_{2}^{T} u_{3}=(3 * 10+4 *(-5)+(-2) * 5)+c(3 * 3+4 * 4+(-2) *(-2))=29 c=0 \rightarrow c=0
\end{gathered}
$$

Putting all this together we get:

$$
u_{3}=\left[\begin{array}{l}
10 \\
-5 \\
-5
\end{array}\right]+(-1)\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
10 \\
-6 \\
3
\end{array}\right]
$$

and the set

$$
S=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
3 \\
4 \\
-2
\end{array}\right],\left[\begin{array}{c}
10 \\
-6 \\
3
\end{array}\right]
$$

2. (5 points). Find a least squares solution to the inconsistent equation

$$
\left[\begin{array}{ccc}
1 & 2 & 4 \\
-2 & -3 & -7 \\
1 & 3 & 5
\end{array}\right] \mathbf{x}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]
$$

Solution:

To solve this using least squares we use the normal equation:

$$
\begin{gathered}
A^{T} A \mathbf{x}=A^{T} b \\
{\left[\begin{array}{lll}
1 & -2 & 1 \\
2 & -3 & 3 \\
4 & -7 & 5
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 4 \\
-2 & -3 & -7 \\
1 & 3 & 5
\end{array}\right] \mathbf{x}=\left[\begin{array}{lll}
1 & -2 & 1 \\
2 & -3 & 3 \\
4 & -7 & 5
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]} \\
{\left[\begin{array}{ccc}
6 & 11 & 23 \\
11 & 22 & 44 \\
23 & 44 & 90
\end{array}\right] \mathbf{x}=\left[\begin{array}{l}
1 \\
5 \\
7
\end{array}\right]}
\end{gathered}
$$

Upon solving this system of equations we get $x_{1}=-2 x_{3}-3$ and $x_{2}=-x_{3}+19 / 11$. Thus

$$
\mathbf{x}=\left[\begin{array}{c}
-2 x_{3}-3 \\
-x_{3}+19 / 11 \\
x_{3}
\end{array}\right]
$$

