MATH 215 – Practice Final

Definition 1 Let X be a set. Let I be an index set and let $\{X_i\}_{i \in I}$ be a collection of subsets of X. We say that the subsets in the collection are **mutually disjoint** if for all $i, j \in I$ where $i \neq j$, we have $X_i \cap X_j = \emptyset$. A **disjoint union** is the union of subsets in a collection that are mutually disjoint, denoted by

$$\coprod_{i\in I} X_i.$$

Definition 2 Let X be a set, let I be an index set, and let $\{X_i\}_{i \in I}$ be a collection of mutually disjoint subsets of X. We say the collection is a **partition** of X if

$$\prod_{i\in I} X_i = X.$$

Definition 3 Let X and Y be sets. The **Cartesian product** of X and Y, denoted $X \times Y$, is the set of all ordered pairs (x, y) such that $x \in X$ and $y \in Y$. In set notation,

$$X \times Y = \{(x, y) : x \in X, y \in Y\}.$$

Example 4 Let $X = Y = \mathbb{R}$. Then

$$\mathbb{R} \times \mathbb{R} = \{(x, y) : x, y \in \mathbb{R}\} = \mathbb{R}^2$$

Definition 5 Let X and Y be sets. A relation between X and Y is a subset of $X \times Y$. If we denote a relation between X and Y by R(X,Y), then we have

$$R(X,Y) \subseteq X \times Y.$$

Example 6 Let n be a natural number. Define a relation $R(\mathbb{Z},\mathbb{Z}) = \{(x,y) : x \equiv y \mod n\}.$

A relation R(X, X) between X and itself is called a **relation on** X, and sometimes we denote the relation by $x \sim_R y$ (or simply $x \sim y$). In this example, we have that $x \sim_R y$ if and only if $x \equiv y \mod n$.

Definition 7 Let X be a set and \sim a relation on X.

- The relation \sim is called **reflexive** if $x \sim x$ for all $x \in X$.
- The relation \sim is called symmetric if $x \sim y$ implies $y \sim x$ for all $x, y \in X$.
- The relation \sim is called transitive if $x \sim y$ and $y \sim z$ implies $x \sim z$ for all $x, y, z \in X$.

If a relation is reflexive, symmetric, and transitive, it is called an equivalence relation.

Problem 8 For each of the following determine whether the relation is reflexive, symmetric, and transitive.

- 1. Let $X = Y = \mathbb{R}$ and $R(X, Y) = \{(x, y) \in X \times Y : y = x^2\}.$
- 2. Let $X = \mathbb{Z} \{0\}$ and $Y = \mathbb{N}$. Let $R(X, Y) = \{(x, y) \in X \times Y : y = x^2\}$.
- 3. Let P denote the set of points in the Euclidean plane. Let \sim be the relation on P defined by $p \sim q$ if and only if p and q are a pair of points in the plane that are the same distance from the origin.
- 4. Let P be as in the previous example, and let $X = P \{(0,0)\}$. Let \sim be the relation on X defined by $p \sim q$ if and only if p and q lie on the same line through the origin.
- 5. Let $X = \mathbb{Z} \times (\mathbb{Z} \{0\})$. Define a relation \sim on X by $(a, b) \sim (c, d)$ if and only if ad bc = 0.
- 6. $X = Y = \mathbb{R}$. Define $x \sim y$ if and only if x < y.

Proposition 9 The relation $R(\mathbb{Z},\mathbb{Z}) = \{(x,y) : x \equiv y \mod n\}$ from Example 6 is an equivalence relation on \mathbb{Z} .

Definition 10 Let X be a set and let \sim be an equivalence relation on X. For each $x \in X$, the equivalence class of x, denoted [x], is the subset of X defined by

$$[x] = \{ y \in X : x \sim y \}.$$

If [x] is an equivalence class in X and $z \in [x]$, we say that z is a **representative** of [x]. Note that an equivalence class can have more than one representative.

Problem 11 Determine the equivalence classes of the equivalence relations in Example 6. How many equivalence classes are there?

Theorem 12 Let X be a set.

- 1. If \sim is an equivalence relation on X, then the set of distinct equivalence classes defined by \sim form a partition of X.
- 2. Conversely, if $\{X_i\}_{i \in I}$ is a partition of X into non-empty, mutually disjoint subsets of X, then the relation on X defined by $x \sim y$ if and only if $x, y \in X_i$ for some i is an equivalence relation.