
Rational Homotopy Theory - Lecture 4

BENJAMIN ANTIEAU

1. Coconnected commutative differential graded algebras

Let k be a field of characteristic 0. We will be interested in cohomological commutative
dg k-algebras A with An = 0 for n < 0. These are the commutative algebra objects in Ch≥0

k ,
the category of non-negatively graded cochain complexes of k-modules. Verbosely, I will call
these strictly coconnective k-cdgas. A k-cdga A is called coconnective if Hn(A) = 0 for
n < 0.

If moreover the unit map k → H0(A) is an isomorphism, then we say that A is cocon-

nected, and if An = 0 for n < 0 and k
'→ A0, then A is strictly coconnected.

Question 1.1. Is every coconnective cdga A quasi-isomorphic to a strictly coconnective
cdga B? Is every coconnected cdga A quasi-isomorphic to a strictly coconnected cdga B?

I don’t know the answer to this question at the moment. But, some care is definitely
needed. Consider the good trunaction τ≥0A which has

(τ≥0A)n =


0 if n < 0,

A0/im(A−1 → A0) if n = 0, and

An if n > 0.

The good truncation has the property that the natural map Hn(A) → Hn(τ≥0A) is an
isomorphisms for n ≥ 0, while Hn(τ≥0A) = 0 for n < 0. However, and this is the key point,
it is not in general possible to put an algebra structure on τ≥0A when A is a cdga such that
A→ τ≥0A is an algebra map.

Example 1.2. Consider A = k[u, u−1] where |u| = 2 with zero differential. The map
H∗(A)→ H∗(τ≥0A) would have to kill a unit, so the target would have to be the zero cdga.

This issue won’t be important for us, as we’ll always be able model our homotopy types
by strictly coconnective cdgas.

Example 1.3. If M is a differentiable manifold, then A•dR(M) is coconnected if and only if
M is connected. The de Rham complex is strictly coconnected (as an R-cdga) if and only if
M is a point.

We will in fact only need to use strictly coconnective Q-cdgas in the rational homotopy
theory we develop.

Example 1.4. Let Λn(x1, . . . , xr) be the graded polynomial algebra over k on classes
x1, . . . , xr of degree n if n is even, and let it be the exterior algebra on classes xi of degree n
if n is odd.

Convention 1.5. If I write Λn(x1, . . . , xr) without specifying a differential, then implicitely I
mean that d = 0. Other times, I will say for example let A be Λ1(x, y, z) with d(x) = d(y) = 0
and d(z) = xy (the Heisenberg cdga).

As above, let k be a field of characteristic zero. We will abuse notation and write Chk for
the category of cochain complexes over k. The forgetful functor Chk ← CDGAk : U has a
left adjoint, which we will write as Symk(M) when M is a chain complex. The existence of
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Symk : Chk → CDGAk follows formally from category theory, specifically from the adjoint
functor theorem.

The category Chk of cochain complexes has an invertible endofunctor Σ : Chk → Chk

called suspension. The cochain complex ΣM is given by (ΣM)n = Mn+1, while the
differential dΣM = −dM . More generally, (ΣtM)n = Mn−t and dΣtM = (−1)tdM .

Exercise 1.6. Let V be a k-module with basis {x1, . . . , xr} show that Λn(y1, . . . , ys) ∼=
Symk(Σ−nV ) for n ∈ Z.

We will also write Λn(V ) for Symk(Σ−nV ).

2. The canonical filtration

Let A be a strictly coconnective k-cdga. Let A(m) denote the sub-cdga generated by
x and d(x) for x ∈ Ai where 0 ≤ i ≤ m. Let A(−1) = k ⊆ A0. Clearly, the filtration
A(−1) ⊆ A(0) ⊆ A(1) ⊆ · · · is exhaustive in that every x ∈ A in A(m) for some m.

Exercise 2.1. Check that the inclusion A(m)→ A is indeed a map of cdgas.

Lemma 2.2. The natural map A(m)→ A induces an isomorphism Hi(A(m))→ Hi(A) for
0 ≤ i ≤ m and an injection Hm+1(A(m))→ Hm+1(A).

Proof. Since A(m)i = Ai for 0 ≤ i ≤ m, the first claim holds for 0 ≤ i < m. In degree m, we
just have to observe that if x ∈ A(m)m = Am, then d(x) = 0 in A(m) if and only if d(x) = 0
in Am by the construction of A(m). We also see that the groups Bm+1(A(m)) and Bm+1(A)
of boundaries in degree m = 1 are naturally isomorphic. Moreover, Zm+1(A(m)) ⊆ Zm+1(A)
since A(m)→ A is a map of cdgas. �

Let A(m, q) for m ≥ 0 and q ≥ 0 be defined inductively by A(m, 0) = A(m− 1) and by
letting A(m, q) be the subalgebra of A generated by A(m, q − 1) and

{x ∈ Am : d(x) ∈ A(m, q − 1)}
for q ≥ 1. Note that A(m, q) is a sub-cdga of A.

Example 2.3. Let A = Λ1(x, y), where d(y) = xy. Then, A(1) = A, but A(1, q) = Λ1(x)
for all q ≥ 1. This shows that the filtration A(m, q) need not be exhaustive.

In the previous example, we see that the natural map A′ = Λ1(x) → A is a quasi-
isomorphism and the canonical filtrations on A′ are exhaustive. It turns out that this
exhaustivity property is extremely important for coconnective cdgas.

Definition 2.4. a strictly connective k-cdga A is minimal if

(1) k is strictly connected,
(2) the underlying graded-commutative algebra A is free (i.e., a graded-polynomial ring),

and
(3) ∪q≥0A(n, q) = A(n) (the filtrations are exhaustive).

Thus, we see that Example 2.3 is not minimal: it satisfies (1) and (2) but not (3). Of
course, the quasi-isomorphism Λ1(x)→ A in that example is exactly expressing the fact that
we have not chosen a minimal set of generators needed to produce the cohomology of A.

Example 2.5. The Heisenberg cdga A = Λ1(x, y, z) with d(x) = d(y) = 0 and d(z) = xy is
minimal. We see that A(1) = A, so we have only to check condition (3) for n = 1. However,
A(1, 1) = Λ1(x, y), and d(z) ∈ A(1, 1), so A(1, 2) = A.

Example 2.6. If A is strictly connected and dA = 0, then A is minimal if and only if it is
(graded) free.

The minimal k-cdgas play a central role in what is to come.

Exercise 2.7. Determine whether or not the following algebras are minimal:

(i) Λ1(x)⊗k P2(y, z) where d(x) = 0, d(z) = 0, and d(y) = xz;
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(ii) Λ1(x)⊗k P2(y, z) where d(x) = 0, d(z) = 0, and d(y) = xy;
(iii) Λ1(x)⊗k P2(y, z) where d(x) = z, d(z) = 0, and d(y) = xz;
(iv) Λ3(x)⊗k P2(y, z) where d(x) = z2, d(z) = 0, and d(y) = x;
(v) Λ3(x)⊗k P2(y, z) where d(x) = z2, d(z) = 0, and d(y) = 0.

As these exercises show, minimal algebras are cdgas that can be built up step by step by
adding new generators in increasing order by degree.

Exercise 2.8. Find minimal Q-cdgas with the following cohomology algebras:

(i) H∗(Sn,Q);
(ii) H∗(CPn,Q);
(iii) H∗(Tn,Q), where Tn = (S1)×n is the n-torus;
(iv) H∗(CPm × CPn,Q).

Definition 2.9. Let A ↪→ B be an inclusion of striclty connective cdgas. We say that B is
an elementary extension of A if as graded-commutative algebras, B = A⊗k Λn(V ) for
some k-module V and d(V ) ⊆ A.

Elementary extensions are completely controlled by the connecting map d : V → An+1,
and we write A⊗d Λ(V ) for B in this case.

Example 2.10. The Heisenberg cdga is Λ1(x, y)⊗d Λ1(z) with d(z) = xy.

Lemma 2.11. Any minimal cdga is obtained from k by a (possibly transfinite) sequence of
elementary extensions.

Proof. Each A(n, q) is an elementary extension of A(n, q − 1) for q ≥ 1. Hence, the result
follows from the exhaustivity of the filtrations and the fact that the graded-commutative
algebra underlying a minimal algebra is free. �

Exercise 2.12. Show that if A and B are minimal k-cdgas, then A ⊗k B is a minimal
k-cdga.

3. Indecomposables

Let A be a strictly coconnected k-cdga. There is a canonical augmentation ε : A→ k of
k-cdgas. Write A+ for the kernel of the augmentation, and let

QA = A+/(A+ ·A+)

be the indecomposables in A. Since d(A+ ·A+) ⊆ A+ by the Leibniz rule, the differential
on A induces a differential on QA.

Definition 3.1. If A is a strictly coconnected k-cdga, the homotopy group πnA is defined
to be Hn(QA). Evidently, πnA = 0 for n ≤ 0.

This definition will be amply justified later.

Example 3.2. If A = Λ1(x)⊗d Λ1(y) where d(y) = xy, then Q1A is a 2-dimensional vector
space with basis {x, y}, while QnA = 0 for n 6= 1. In particular, π1A = k⊕2, and all other
homotopy groups vanish. Recall that the inclusion Λ1(x)→ A is a quasi-isomorphism. But,
π1Λ1(x) is 1-dimensional.

The previous example shows that π∗A is not homotopy invariant. In other words, taking
homotopy groups does not take quasi-isomorphisms of strictly coconnected k-cdgas to
isomorphisms of abelian groups. However, we will see that π∗A is a homotopy invariant of
minimal k-cdgas.
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