
Rational Homotopy Theory - Lecture 8

BENJAMIN ANTIEAU

1. Finishing the proof

Proposition 1.1. The class of morphisms W,C,F described in the previous example give a
model category structure on Ch≥0A .

End of proof. We discussed in more detail the fact that S(n) is cofibrant, which we mentioned
in passing last time. Consider the standard test diagram

0

i

��

// E

p

��

S(n)
idX //

<<

B,

where p is an acyclic fibration. Giving S(n)→ B amounts to choosing a cycle z ∈ Zn(B).
Since p is a fibration, we can lift z to an element w ∈ En. Unfortunately, there is no
reason we must have d(w) = 0. However, there is anoether class w′ ∈ Zn(B) such that
p∗(w′) = z in Hn(B) since p is a quasi-isomorphism. In particular, p(w′)− z = d(b) for some
b ∈ Bn−1. Lift b to c ∈ En−1, and let w = w′ − d(c). Then, d(z) = 0, and we also have that
p(w) = p(w′) − p(d(c)) = p(w′) − d(b) = z, as desired. This proves that S(n) is cofibrant.
The complexes D(n) are also cofibrant. This is left as an exercise. It is an easy corollary of
what we have just said and the fact that S(n)→ D(n) is cofibrant.

For the second part of M4, let

Lf (1) = X ⊕ (
⊕
z∈Z

D(|z|+ 1))⊕
⊕

z∈Z∗(Z)

S(|z|).

There is a natural factorization X → Lf (1) → Z, the first map is a cofibration, and the
second map is a fibration. We iterate this inductively to kill the kernel of H∗(Lf (1))→ H∗(Y )
to get what we want. For example, to construct Lf (2), take the coproduct⊕

z S(|z|) //

��

Lf (1)

��⊕
z D(|z|) // Lf (2),

where we set D(0) = 0. Inductively construct the Lf (n) in this way. The colimit has the
desired properties. Note we see why it’s nice to have all colimits. In any case, there is a map
from Lf (2) to Z. Induct, and let Lf = colimn Lf (n).

Having constructed the factorizations, consider M3. The only thing left to prove is that
acyclic cofibrations i : Z → X have the LLP with respect to all fibrations. Suppose that i
is a cofibration and a weak equivalence, and consider the factorization : Z → Yi → X, wth
Z → Yi an acyclic cofibration and Yi → X a fibration. However, by M1, Yi → X is acyclic.
The map Z → Yi is again an acyclic cofibration, and Yi → X is a fibration. But, it is easy
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to see that we have a diagram

Z

i

��

// Yi

��

X
idX //

>>

X

which has a dotted filling. Hence, i is a retract of Z → Yi, and hence satisfies the LLP for
all fibrations because Z → Yi does (by the same argument we used before to prove that
cofibrations are closed under retracts). This completes the proof. �

Definition 1.2. A model category M has an initial object ∅ and a final object ∗, since it
is closed under colimits and limits. An object X of M is fibrant if X → ∗ is a fibration,
and X is cofibrant if ∅ → X is a cofibration. Given an object X of M , an acyclic fibration
QX → X such that QX is cofibrant is called a cofibrant replacement. Similarly, if
X → RX is an acyclic fibration with RX fibrant, then RX is called a fibrant replacement
of X. These replacements always exist, by applying M4 to ∅ → X or X → ∗.

Example 1.3. Consider the degree-wise surjective model category structure of the propo-
sition. Let M be an arbitrary (right) A-module, viewed as a chain complex in degree 0.
Let us ask if M is cofibrant. So, given any map M → H0(B), we need to find a lift to
M → H0(E) making the usual diagram commute. However, since there are no degree 0
boundaries, H0(E) ∼= Z0(E) ∼= Z0(B) ∼= H0(B). So, M is cofibrant!

Question 1.4. When is M(n), the module M placed in degree n ≥ 1 cofibrant?

Remark 1.5. In the degree-wise surjective model category structure on Ch≥0A , every object is
fibrant.

Exercise 1.6. Show that if a complex X is cofibrant in Ch≥0A , then Xn is projective for
n ≥ 1.

Example 1.7. In Ch≥0(A), let M be a right A-module (viewed as a chain complex con-
centrated in degree zero). A projective resolution P• → M is an example of a cofibrant
replacement. Indeed, such a resolution is cearly an acyclic fibration. Moreover, the map
0→ P• is a cofibration, since the cokernel is projective in each degree. This time, an object
M placed in degree 0 is cofibrant if and only if it is projective.

Exercise 1.8. Think about fibrant and cofibrant replacements in all of the model categories
we’ve discussed.

Definition 1.9. A model category M is pointed if the natural map ∅ → ∗ is an isomorphism.
Examples of pointed model categories include Ch≥0A , which is pointed by the 0 object, and
sSets∗, the category of pointed simplicial sets.
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