
Rational Homotopy Theory - Lecture 14

BENJAMIN ANTIEAU

No lecture on Thursday 3 March 2016.

1. Kähler differentials

Let k be a commutative ring, and let R be a commutative k-algebra. The R-module of
Kähler differentials of R over k, denoted by ΩR/k or simply ΩR if the base is clear from
context, is the free R-module on symbols dx for every x ∈ R modulo the relations da = 0 for
a ∈ k and d(xy)− d(x)y − xd(y) for all pairs x, y ∈ R.

The module of Kähler differentials is functorial in R. This means that if R
f−→ S is a map

of commutative k-algebras, then there is a natural map ΩR/k → ΩS/k of R-modules, where

we view ΩS/k as an R-module by forgetting. In fact, if R
f−→ S is a map of commutative

k-algebras, there is an exact sequence

S ⊗R ΩR/k → ΩS/k → ΩS/R → 0.

Sometimes these facts are easier to prove using the following universal properties.
A k-derivation of R in an R-module M is a map φ : R → M such that φ(a) = 0 for

a ∈ k and φ(xy) = xφ(y) + φ(x). When the ground ring k is clear from context, we will call
such a map simply a derivation. The set of k-derivations of R in M forms an R-module
under addition, Derk(R,M). The map d : R → ΩR/k is a derivation, and it in fact is the
universal derivation in the following sense.

Lemma 1.1. The functor Derk(R,M) is representable by ΩR/k. That is, there is a natural

isomorphism of functors HomR(ΩR/k,M)
d∗

−→ Derk(R,M).

There is another universal property which I like even more, which gives less formulaic
definition of a derivation. Let (CAlgk)/R be the category of commutative k-algebras with a
fixed map to R, and let Homk/R denote the hom sets in this category. Given an R-module
M , let R⊕M denote the commutative k-algebra with multiplication map given by

(r,m) · (s, n) = (rs, rn+ sm).

This is called the trivial square-zero extension of R by M because (0,m) · (0, n) = 0
for all m,n ∈M .

Exercise 1.2. Show that Derk(R,M) is naturally isomorphic to Homk/R(R,R⊕M).

It follows, that there is a natural isomorphism HomR(ΩR/k,M) ∼= Homk/R(R,R ⊕
M) for R-modules M . Many properties of the Kähler differentials follow from universal
considerations.

Example 1.3. Show that if K/k is a finite separable extension of fields, then ΩK/k = 0.

Example 1.4. On the other hand, show that ΩC/R is an uncountably-generated C-module.

Example 1.5. Let R = k[x1, . . . , xn]. Then, ΩR/k is a free R-module with basis dxi for
1 ≤ i ≤ n.
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2. The algebraic de Rham complex

Let R be a commutative k-algebra. Then, Ω∗R/k, the exterior algebra on Ω1
R/k = ΩR/k is

called the algebraic de Rham complex of R over k. It is a graded-commutative R-algebra.
The de Rham cohomology of X = SpecR over k is defined as

H∗dR(X/k) = H∗(Ω∗R/k).

Note that this is functorial in maps of schemes, varieties, or rings. Only rings will concern
us below.

We come to an absolutely crucial distinction between characteristic p and characteristic 0.

Lemma 2.1. Let k be a field of characteristic 0. Let R = k[x1, . . . , xn], with X = SpecR =
An

k . Then, H∗dR(An/k) = k.

Proof. I claim that
Ω∗k[x1,...,xn−1]

⊗k Ω∗k[xn]
∼= Ω∗k[x1,...,xn]

.

Note that Ωj
k[x1,...,xn−1]

has rank
(
n−1
j

)
, from which the result follows from a rank count and

the fact that (
n− 1

j

)
+

(
n− 1

j − 1

)
=

(
n

j

)
.

Hence, it suffices by the Künneth formula to show that H∗dR(A1/k) = 0. This is the
cohomology of the complex

k[x]
d−→ Ωk[x]/k.

By the fundamental theorem of calculus, this map is surjective. For example,

d

(
xn+1

n+ 1

)
= xn.

We see here why we need characteristic zero. On the other hand, if d(f(x)) = 0, then it
follows that f(x) is constant, as desired. �

Remark 2.2. Bousfield and Guggenhiem call this the algebraic Poincaré lemma for obvious
reasons.

Remark 2.3. What happens when the characteristic of k is p? Then, d(xpm) = 0 for all
m ≥ 1. It follows that

H0(A1/k) = k[xp],

while H1(A1/k) is a free k[xp]-module on xp−1dx.

3. The polynomial differential forms on the standard simplices

Fix a commutative ring k. Let ∆•alg be the cosimplicial k-scheme given by the algebraic
simplices, so that

∆n
alg = Spec k[x0, . . . , xn]/(x0 + · · ·+ xn − 1).

Note that ∆• is the affine scheme associated to a simplicial commutative k-algebra,

n 7→ k[x0, . . . , xn]/(x0 + · · ·+ xn − 1).

One can take the algebraic de Rham complex to obtain the simplicial cdga Ω∗
A•/k. This is

the simplicial cdga denoted by ∇(•, ∗) in Bousfield and Guggenheim, where

∇(p, ∗) = Ω∗Ap/k.

So, it is a cdga in the second variable, and a simplicial object in the first variable.
We saw above that ∇(p, ∗) is acyclic for each p ≥ 0. Specifically, the natural map

η : k → ∇(p, ∗) is a quasi-isomorphism for each p. In fact, this map is a chain equivalence.
As in the proof of Lemma 2.1, it suffices to prove this for p = 1. Recall that to construct a
chain equivalence, besides η we must specify ε : ∇(1, ∗)→ k such that ε ◦ η = idk and a chain
homotopy h : ∇(1, ∗)→ ∇(1, ∗) such that dh+ hd = id∇(1,0)−η ◦ ε. We let η(f) = f(0) for
f ∈ ∇(1, 0) and η(ω) = 0 for ω ∈ ∇(1, 1). Clearly, ε ◦ η = idk. Similarly, we set h(f) = 0
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and if ω = (
∑n

i=0 aix
i)dx then h(ω) =

∑n
i=0

ai

i+1x
i+1. It is easy to verify that h is a chain

homotopy from η ◦ ε to id∇(1,0).
It turns out that ∇(•, q) is also simplicially contractible for each q ≥ 0. There are a

couple of ways to prove this. One is to give an explicit contracting homotopy, which is
what Bousfield and Guggenheim do. We take a different approach. Note that ∇(•, q) is a
simplicial abelian group (or simplicial k-module), and as such it is a Kan complex. Moreover,

π∗|∇(•, q)| ∼= H∗(N∇(•, q)),
where N∇(•, q) is the chain complex associated to the simplicial k-module ∇(•, q). Hence,
to show that ∇(•, q) is simplicially contractible, it suffices to show that H∗(N∇(•, q)) = 0
for all q ≥ 0. Note that ∇(•, 0) is a simpicial k-algebra and that ∇(•, q) is a simplicial
module over ∇(•, 0) in the obvious sense. In particular, these facts mean that H∗(N∇(•, 0))
is a graded-commutative k-algebra and that H∗(N∇(•, q)) is a graded module over this ring
for q ≥ 0. Hence, it suffices to show that H∗(N∇(•, 0)) = 0. But, it is easy to see that
H0(N∇(•, 0)) = 0, so the graded ring has 1 = 0, so it is zero, as desired.
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