Rational Homotopy Theory - Lecture 16

BENJAMIN ANTIEAU

Basically, we discusses the same material in lecture on 10 March 2016 as well.

1. THE PL DE RHAM THEOREM

We are going to take a slightly different approach, based on the presentation in Félix-
Halperin-Thomas [3], with some category-theoretical improvements to make our lives easier.
Recall that we have the simplicial cdga V(e *), and the rational PL de Rham complex of
a simplicial set X is
A*(X) = Homggets (X, V(e, %)).
Now, given any simplicial dga R(e, *), we let
A% (X) = Homggets (X, R(e, *)).

So, as an example, we have A*(X) = AL (X). We call A} (X) the cochains on X with
coeflicients in R.

We will introduce a simplicial dga N such that AY is naturally isomorphic to N*(X), the
normalized cochain algebra of X. In fact, let

N(e,q) = NY(A®).
Lemma 1.1. For any simplicial set X, the natural map A} (X) — N*(X) is an isomorphism.

Proof. Let f € AL(X) = Homggets(X,N(e,¢q)). For a p-simplex 7 of X, let f; € N(p,q)
be the normalized ¢-cochain on AP. Given a g-simplex o € X, we can apply f to obtain
fo = f(o)eq € N(gq,q) = Q - g, where é, is dual to the fundamental simplex e, of A9. One
checks that o — f(o) defines an element of N?(X'), and that the assignment A% (X) — N*(X)
is a dga map. If f vanishes on all ¢g-simplices, then it must vanish on all simplices of X. To
see this, let 7 : AP — X be a p-simplex of X, and let o : A? — AP be some composition of
face and degeneracy maps. Since f is a simplicial map, fr(«) = froa(eq) = 0.

Now, suppose that F' € Hom(X,, Q) is a normalized cochain, so that F(o;(7)) = 0 for
any ¢ and 7 € X;_q. Let 7: AP — X, and define f(7) = NP(F) € N9(AP) = N(p, q). Hence,
A% (X) — N*(X) is surjective. O

Theorem 1.2. The natural maps
AN(X) = ARy (X) + Ag(X)
are quasi-isomorphisms of dgas for any simplicial set X .

We will need some more preliminaries before proving this. We call a simplicial dga R(e, )
degree-wise contractible if R(e,q) the simplicial abelian group is contractible for all g.
Note that in Félix-Halperin-Thomas this property is called ‘extendable’. But, we will just
call it what it is.

Proposition 1.3. Let G4 be a simplicial group. Then, G4 is fibrant as a simplicial set.

Proof. Recall that in order to be fibrant, dotted lifts must exist in any solid-arrow diagram
A} —— G
l =
A" — %,
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This is equivalent to the following condition: for any xg,...,Tk—1,Tk41,. .., Ty € Gp_1 such
that 0;x; = 0j_174, 1 < j and 4,5 # k, there exists y € G, such that 0;y = =; for i # k.
We construct a filling y inductively as follows. Let g1 = 1, the identity element of G,,.
Assume we have constructed g,_; such that 0;g9,_1 =x; for 0<i<r—1,i#£k. Ilf r =k,
set g, = gr_1. Otherwise, if 7 # k, define u = 2,710, (g,_1). If i <7,

av(u) = ai(z;l)aiargr—l
= (aixr)_larflgigrfl

= (0ix,) 1 Opr
=1

)

by hypothesis on the z;. Thus, if we set g, = g,_1(0,u) "1, we have 9;(g,) = z;(0,_10;(u)) ™ =

x; if i <7, and 9,(g,) = 0r(gr—1)u~! = x,. Thus, taking y = g,, works. O

Remark 1.4. Xing Gu asked in class why this proof does not work to show that G, satisfies
the lifting property with respect to all diagrams

ON" —— G

A" —— %,

In other words, why doesn’t the proof show moreover that G, is contractible. The basic
reason is as follows. If we took a sequence zo, ..., z, € G, such that 0;z; = 0;_1z; as in the
proof, then the proof would work to construct g, 1 such that 9;(gn,—1) = x; for 0 <i <n-—1.
What happens in degree n? We define u = x,,19,,(gn_1), and then we set g, = gn_1(ou) L.
All good, right? Wrong! The class u is an n — 1-simplex, so there is no nth degeneracy
map to apply to it! This is related to the fact that a connected simplicial set with an extra
degeneracy is contractible. If we had an extra degeneracy, the proof would work.

Here are a couple remarks related to this question. Recall that if G is a group, BG
is the simplicial set with BG,, = G™ (so that BGy = ). The face maps are given by

O—i(glvu'agn) = (gla"'7gi71agi+1a"'agn) and

(g2, -, 9n) if1 =0,
0i(g1s--->9n) = (G151 9iGit1: Git2s - -+ 9n) H 0 <i<mn,
(9155 9n-1) if i =n.

As mentioned before I think, BG is called the classifying space of G, and indeed we have
|BG| is a K(G, 1)-space.

Exercise 1.5. Show that BG is a simplicial group if and only if G is abelian.

Exercise 1.6. Let A be an abelian group. Prove that by hand that if every diagram
OA? *ﬁBA
A2y

has a lift, then A = 0.

Lemma 1.7. Suppose that R(e, ) is degree-wise contractible and that X C'Y is an inclusion
of simplicial sets. Then, AR(Y) = A% (X) is surjective.

Proof. Since R(e,q) is a Kan complex for all ¢, contractibility implies that R(e,q) — * is an
acyclic fibration. But, X — Y is a cofibration. It follows that there is always a lift in the
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diagram
—— R(e,q)
.

|

— %,

for any ¢. This proves the lemma. O
Example 1.8. We saw that V(e, *) is degree-wise contractible in Lecture 14.

Lemma 1.9. The simplicial dga N is degree-wise contractible.

p

top> Which is a contractible

By construction, H*(N(p, *)) is the cellular Q-cohomology of A
space, so it vanishes in positive degrees and is Q in degree 0.

Proof. Consider N(e, ). As in the argument for the contractibility of V (e, ¢), it is enough to
consider the ¢ = 0 case, since it is enough to show that the homology of N(e, ¢) vanishes, and
this is a graded module over the graded ring N(e,0). Now, consider N(1,0) = N(0,0). Note
that N(p,0) = Hom(A}, Z) = QP™!. With the natural basis, N(1,0) = N(0,0) is Q* = Q.
The chain complex associated to N(e, 0) has lowest differential 9y — 9; : Q? — Q, which we
can write in matrix form as (—1 1). Evidently this is surjective, so that there is no degree
zero homology. Since H.N(e,0) has a ring structure via the Alexander-Whitney map, and
since 1 = 0 in this ring, we have that the ring is zero, as desired. (Il

Given a pair Y C X and a degree-wise contractible simplicial dga R, we define A} (X,Y) to
be the kernel of A% (X) — A% (Y). These are the cochains of the pair with coefficients
in R.

Proposition 1.10. If R — S is a map of degree-wise contractible simplicial dgas such that
R(p,*) — S(p,*) is a quasi-isomorphism for all p > 0, then ARL(X,Y) = AY(X,Y) is a
quasi-isomorphism for all pairs Y C X.

Proof. 1t is enough to prove the proposition for Y = (), so that we just have to prove that
AR (X) — A%(X) is a quasi-isomorphism for all simplicial sets X. Note that Aj(AP) =
R(p,*) and A5(AP) = S(p,*), by representability. Let sk, X be the n-skeleton of X. Note
that skgX is the disjoint union of the 0-simplices of X. Since this is a coproduct,
IT &%

AO—X
it follows from our hypothesis that A} (skoX) — A%(skoX) is a quasi-isomorphism. We
prove by induction that if the claim is true for all p — 1-dimensional simplicial sets, then it is
true for all n-dimensional simplicial sets. So, assume that p—1 > 0 and that A} (sk,—1X) —
A% (sk,—1X) is a quasi-isomorphism for all simplicial sets X. Note that this includes the
boundary OAP. Since we know that we get a quasi-isomorphism for AP, this implies that all
three vertical maps are quasi-isomorphisms in

0 —— A5 (AP, 0AP) —— A5 (AP) —— AR (OAP) —— 0

| L]

0 —— A%L(AP,OAP) —— A%(AP) —— A%(DAP) —— 0.

Suppose that Y is p — 1-dimensional, and that X is obtained from Y by adding a single
non-degenerate p-simplex o. Note that in this case, the boundary of ¢ is contained in Y. In
this case, AR(X,Y) = AL (AP, 0AP), and similarly for S. Indeed, both sides are completely
determined by where they send the unique p-simplex not in Y or 0AP, respectively. It follows
that AJ,(sk,X) — A%(sk,X) is a (possibly transfinite) filtered limit of quasi-isomorphisms,
and hence it is a quasi-isomorphism by the lemma below when I is sufficiently small. Since
X = colim, sk, X, we again have A% (X) = lim, A% (sk,X), the next lemma works for X
since IN is N;-small. In the general case for going from sk, 1 X to sk, X, it is better to argue
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that A}, (skp, X, sky,_1X) = @ AR (AP, 0AP) where the direct sum is over all non-degenerate
p-simplices of X. O

Lemma 1.11. Suppose that I is an N,,-small filtered category, and let F, G : I°° — Ch=" be
functors from I°P to non-negatively graded cochain complexes with a natural transformation
F — G. If F(i) = G(i) is a quasi-isomorphism for all i € I, then limjop F'(1) — limjor G(7)
1S a quasi-isomorphism.

Proof. Since I is small and filtered, the derived functors R? lim vanish for p >> 0 by work
of Jensen (1970). It follows that the spectral sequence

ES? = RPlim HY(F (7)) = HP™9(lim F (i)
K3 K3
converges, from which the lemma follows from the functoriality of spectral sequences. [

Question 1.12. Can we prove the lemma in full generality for small filtered I using homotopy
limits and model categories?

Proof of Theorem 1.2. We can apply Proposition 1.10 to the two morphisms N - N®V <+ V.
We only have to observe that N ® V is degree-wise contractible. In degree ¢, we have

(N@V)(e.q)= P N(o,a) ® V(e,0).
a+b=q
The homology of each summand on the right side vanishes by Kiinneth. O

What’s very nice about this approach is that we get multiplicativity without further work,
and this answers Thom’s question completely.
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