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BENJAMIN ANTIEAU

1. A little complex Hodge theory

Before proving the DGMS theorem, we give a little more background on Hodge theory,
this time focusing on the complex case. Recall that a complex manifold is a smooth manifold
M with an integrable almost complex structure on its real tangent bundle TM . An almost
complex structure is an endomorphism J of TM such that J2 = −1. This induces a splitting
of the complex tangent bundle TCM into ±i-eigenspaces: TCM = T ′(M) ⊕ T ′′(M), and
T ′(M) ∼= TM canonically.

Dualizing, one obtains a decomposition of the exterior powers of the cotangent bundle

ΛrT ∗CM =
⊕

p+q=r

ΛpT ′(M)∗ ⊗ ΛqT ′′(M)∗.

Writing d = ∂ + ∂, the almost complex structure is integrable (and hence M is a complex

manifold) if ∂
2

= 0 on the de Rham complex.
The Hodge theory developed for C∞-forms works similarly for complex forms. Let’s

explain this very briefly.
Let A p,q be the sheaf of differential p+ q-forms of type p, q. The ∂-Poincaré lemma says

that for each p, the sequence

0→ Ωp → A p,0 ∂−→ A p,1 → · · · → A p,n−p → 0

is a resolution of the sheaf of holomorphic p-forms Ωp by acyclic sheaves. Hence, Hq(X,Ωp) ∼=
Hp,q

∂
(M), where

Hp,q

∂
(M)

is the qth cohomology of

0→ Ap,0(M)
∂−→ Ap,1(M)→ · · · → Ap,n−p(M)→ 0.

Now, the differential d on is the total differential of the double complex involving the Ap,q(X),
with a sign on the vertical differentials ∂. It follows that there is a spectral sequence

Ep,q
1 = Hp,q

∂
(M),

with differential d1 induced by ∂ : Hp,q

∂
(M)→ Hp+1,q

∂
(M). Moreover, each of the cohomology

classes in Hp,q

∂
(M) is represented by a ∆∂-harmonic form, just as in the real Hodge theorem.

For a general compact complex manifold, there is no reason for this spectral sequence
to degenerate, and indeed there are counterexamples. For a Kähler manifold however, the
spectral sequence degenerates at E1, and the Hodge decomposition then says that

Hn
dR(M,C) ∼=

⊕
p+q=n

Hq(X,Ωp).

The Kähler condition is somewhat technical, and even more mysterious. Any complex
manifold M admits Hermitian metric on TM . These are bilinear pairings with 〈α, β〉 = 〈β, α〉.
Decomposing into real and complex parts, the real part is symmetric and the imaginary part
is alternating. Hence, the imaginary part is represented by a (1, 1)-form ω, and the Káhler
condition is that dω = 0.
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We set dc = i(∂ − ∂). Then, dc = J−1dJ , so that dc is real, and (dc)2 = 0. This means
that dc respects A∗dR(M,R) ⊆ A∗dR(M,C). Additionaly, ddc = 2i∂∂ = −dcd. Moreover, the
equation dc = J−1dJ implies that A∗dR(M,R) is a cdga with differential dc as well.

Lemma 1.1 (The ddc Lemma). Let M be a compact Kähler manifold. If ψ is a differential
form which is d-closed, dc-closed, and a either a d-boundary or a dc-boundary, then ψ = ddcβ
for some β.

2. The first DGMS proof

DGMS give two proofs of their theorem, but we will only cover the first of those proofs.
Consider the following diagram of real cdgas

(1) A∗dR(M,R)← Z∗dc(M,R)→ H∗dc(M,R)

where the left term is the de Rham complex, the middle term is the complex of dc-closed
forms with the de Rham differential d, and the right term is the cohomology of dc-de Rham
complex, but viewed still as a cdga with differential the induced differential d.

There are three things to do to check that this is well-defined. First, we need to know that
d takes dc-closed forms to dc-closed forms, which follows from ddc = −dcd. Second, we need
to know that d induces a differential on H∗dc(M,R). In other words, we need to know that
d(ψ+ dcγ) = d(ψ) modulo dc-boundaries. But, d(ψ+ dcγ) = d(ψ) + ddc(γ) = d(ψ)− dcd(γ),
as desired. Third, we need to know that Z∗dc(M,R)→ H∗dc(M,R) is a morphism of cdgas,
which is also clear. Another way of putting this is that the dc-exact forms are a d-differential
ideal in Z∗dc(M,R). But, it’s clear that the dc-exact forms are closed under d-differentiation,
and if ψ is dc-closed, then ψdcγ = dc(ψγ).

Now, we claim that H∗dc(M,R) is formal. Suppose that ψ is a dc-closed q-form, and
consider dψ, a dc-closed q + 1-form. We must show that dψ = dcλ. But, dψ is dc-closed,
d-closed, and a d-boundary. Hence, dψ = ddcβ = −dcdβ, as desired.

If we prove that the maps above are quasi-isomorphisms, we will be done, having shown
that A∗dR(M,R) is quasi-isomorphic to the formal cdga H∗dc(M,R). Let ψ represent a
cohomology class in H∗dc(M,R), so that dcψ = 0 and dψ = dcλ for some λ. Now, dψ is d
and dc-closed and is obvsiouly a d-boundary. Hence, dψ = ddcβ for some β. Thus, ψ − dcβ
is d-closed, and is also dc-closed by inspection. It follows that Z∗dR(M,R)→ H∗dc(M,R) is
surjective on cohomology.

Suppose that ψ is dc-closed and d-closed, so that it represents a cohomology class of
Z∗dc(M,R). If [ψ] maps to zero in H∗dc(M,R), then ψ = dcγ for some γ. By the ddc-lemma,
ψ = ddcβ, so that [ψ] = 0.

Now we show that the left arrow is a quasi-isomorphism. Let ψ be a d-closed differential
q-form. Then, dcψ satisfies the ddc-lemma, so dcψ = ddcβ. Hence, ψ+dβ is a dc-closed form
in the same cohomology class as ψ. That is, the left arrow is a surjection in cohomology.

Finally, suppose that ψ is a d-closed and dc-closed q-form, so that [ψ] ∈ Hq(A∗dc(M,R)) is
a cohomology class. Assume that ψ = dγ where γ is a differential q − 1-form. We have no
reason to think that γ is dc-closed. But, ψ satisfies the ddc-lemma, so that γ = ddcβ. But,
dc(dcβ) = 0, so ψ is exact in Z∗dc(M,R).

Because the algebras maps in (1) are functorial in the complex structure, it follows that
maps between compact Kähler manifolds are formal.

3. Remarks

To what extent does the previous result use the theory that we have developed? On the
one hand, the proof of the formality theorem itself uses none of the homotopy theory of
cdgas. It relies instead on the identification of a particular quasi-isomorphic sub-cdga of
A∗dR(M,R) which has an obvious quasi-isomorphism to a formal cdga. However, none of
these cdgas is minimal. So, the fact that this is enough to conclude in some kind of natural
way that the minimal model for A∗dR(M,R) is DGMS-formal does use the general theory. In
other words, while the proof does not use the general theory, the implications do.
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The most interesting consequence of the DGMS theorem is the following result. If M is a
simply connected compact Kähler manifold, then the homotopy groups π∗(M)⊗R can be
deduced entirely from a minimal model for H∗dR(M,R).

Another consequence is the following: every Massey product in C∗(M,Q) vanishes. Indeed,
vanishing of a Massey product can be detected after a field extension of the coefficient field.
Since they vanish over R, they vanish over Q. This does not mean that C∗(M,Q) is formal.
As discussed last time, the map exhibiting C∗(M,R) as formal might only be defined over R,
or over a finitely generated extension K of Q. The lack of functoriality for formality means
that one cannot “descend” the result from R to Q.
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