MATH 215 – Axioms for the Integers (AI)

We will assume the existence of a set \mathbb{Z} , whose elements are called integers, along with a well-defined binary operation + on \mathbb{Z} (called addition), a second well-defined binary operation \cdot on \mathbb{Z} (called multiplication), and a relation < on \mathbb{Z} (called less than), and that the following fourteen statements involving \mathbb{Z} , +, \cdot , and < are true: **A1.** For all a, b, c in \mathbb{Z} , (a + b) + c = a + (b + c). A2. There exists a unique integer 0 in \mathbb{Z} such that a + 0 = 0 + a = a for every integer a. A3. For every a in \mathbb{Z} , there exists a unique integer -a in \mathbb{Z} such that a + (-a) =(-a) + a = 0.A4. For all a, b in \mathbb{Z} , a + b = b + a. **M1.** For all a, b, c in \mathbb{Z} , $(a \cdot b) \cdot c = a \cdot (b \cdot c)$. **M2.** There exists a unique integer 1 in \mathbb{Z} such that $a \cdot 1 = 1 \cdot a = a$ for all a in \mathbb{Z} . **M4.** For all a, b in $\mathbb{Z}, a \cdot b = b \cdot a$. **D1.** For all a, b, c in \mathbb{Z} , $a \cdot (b + c) = a \cdot b + a \cdot c$. **NT1.** $1 \neq 0$. **O1.** For all a in \mathbb{Z} , exactly one of the following statements is true: 0 < a, a = 0, 0 < -a. **O2.** For all a, b in \mathbb{Z} , if 0 < a and 0 < b, then 0 < a + b. **O3.** For all a, b in \mathbb{Z} , if 0 < a and 0 < b, then $0 < a \cdot b$.

Notation 1 We will use the common notation ab to denote $a \cdot b$.

Notation 2 We will also use the notation a > b (greater than) to denote b < a (less than).

Proposition 3 For every a in \mathbb{Z} , $a \cdot 0 = 0$.

Proposition 4 Let a, b be integers. If ab = 0, then a = 0 or b = 0.

Proposition 5 0 has no multiplicative inverse. In other words, there is no integer a such that $a \cdot 0 = 1$.

Proposition 6 For all a, b, c in \mathbb{Z} , if a + b = a + c, then b = c.

Proposition 7 For every a in \mathbb{Z} , -(-a) = a.

Proposition 8 For all integers a and b, (-a)b = -(ab).

Proposition 9 For all integer a and b, (-a)(-b) = ab.

Proposition 10 (-1)(-1) = (1)(1) = 1.

Proposition 11 0 < 1.