We will assume the existence of a set $\mathbb{Z}$, whose elements are called integers, along with a well-defined binary operation + on $\mathbb{Z}$ (called addition), a second well-defined binary operation $\cdot$ on $\mathbb{Z}$ (called multiplication), and a relation $<$ on $\mathbb{Z}$ (called less than), and that the following fourteen statements involving $\mathbb{Z},+, \cdot$, and $<$ are true:
A1. For all $a, b, c$ in $\mathbb{Z},(a+b)+c=a+(b+c)$.
A2. There exists a unique integer 0 in $\mathbb{Z}$ such that $a+0=0+a=a$ for every integer $a$.
A3. For every $a$ in $\mathbb{Z}$, there exists a unique integer $-a$ in $\mathbb{Z}$ such that $a+(-a)=$ $(-a)+a=0$.
A4. For all $a, b$ in $\mathbb{Z}, a+b=b+a$.
M1. For all $a, b, c$ in $\mathbb{Z},(a \cdot b) \cdot c=a \cdot(b \cdot c)$.
M2. There exists a unique integer 1 in $\mathbb{Z}$ such that $a \cdot 1=1 \cdot a=a$ for all $a$ in $\mathbb{Z}$.
M4. For all $a, b$ in $\mathbb{Z}, a \cdot b=b \cdot a$.
D1. For all $a, b, c$ in $\mathbb{Z}, a \cdot(b+c)=a \cdot b+a \cdot c$.
NT1. $1 \neq 0$.
O1. For all $a$ in $\mathbb{Z}$, exactly one of the following statements is true: $0<a, a=0,0<-a$.
O2. For all $a, b$ in $\mathbb{Z}$, if $0<a$ and $0<b$, then $0<a+b$.
O3. For all $a, b$ in $\mathbb{Z}$, if $0<a$ and $0<b$, then $0<a \cdot b$.
Notation 1 We will use the common notation ab to denote $a \cdot b$.
Notation 2 We will also use the notation $a>b$ (greater than) to denote $b<a$ (less than).

Proposition 3 For every $a$ in $\mathbb{Z}, a \cdot 0=0$.
Proposition 4 Let $a, b$ be integers. If $a b=0$, then $a=0$ or $b=0$.
Proposition 50 has no multiplicative inverse. In other words, there is no integer a such that $a \cdot 0=1$.

Proposition 6 For all $a, b, c$ in $\mathbb{Z}$, if $a+b=a+c$, then $b=c$.
Proposition 7 For every $a$ in $\mathbb{Z},-(-a)=a$.
Proposition 8 For all integers $a$ and $b,(-a) b=-(a b)$.
Proposition 9 For all integer $a$ and $b,(-a)(-b)=a b$.
Proposition $10(-1)(-1)=(1)(1)=1$.
Proposition $110<1$.

