MATH 215 - Final

We will assume the existence of a set \mathbb{Z} , whose elements are called integers, along with a well-defined binary operation + on \mathbb{Z} (called addition), a second well-defined binary operation \cdot on \mathbb{Z} (called multiplication), and a relation < on \mathbb{Z} (called less than), and that the following fourteen statements involving \mathbb{Z} , +, \cdot , and < are true:

A1. For all a, b, c in \mathbb{Z} , (a + b) + c = a + (b + c).

A2. There exists a unique integer 0 in \mathbb{Z} such that a + 0 = 0 + a = a for every integer a. A3. For every a in \mathbb{Z} , there exists a unique integer -a in \mathbb{Z} such that a + (-a) = (-a) + a = 0.

A4. For all a, b in $\mathbb{Z}, a + b = b + a$.

M1. For all a, b, c in \mathbb{Z} , $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.

M2. There exists a unique integer 1 in \mathbb{Z} such that $a \cdot 1 = 1 \cdot a = a$ for all a in \mathbb{Z} .

M4. For all a, b in \mathbb{Z} , $a \cdot b = b \cdot a$.

D1. For all a, b, c in \mathbb{Z} , $a \cdot (b + c) = a \cdot b + a \cdot c$.

NT1. $1 \neq 0$.

O1. For all a in \mathbb{Z} , exactly one of the following statements is true: 0 < a, a = 0, 0 < -a.

O2. For all a, b in \mathbb{Z} , if 0 < a and 0 < b, then 0 < a + b.

O3. For all a, b in \mathbb{Z} , if 0 < a and 0 < b, then $0 < a \cdot b$.

O4. For all a, b in \mathbb{Z} , a < b if and only if 0 < b + (-a).

WOP. If S is a non-empty set of non-negative integers, then S has a least element.

Remark 1 The above axiom is referred to as the Well-Ordering Principle (WOP). We will assume it is true without proof.

- **Proposition 2 (20 points)** (a) Let a be an integer and n a natural number. State the division algorithm for a and n.
 - (b) Let a and b be integers. Define what it means for a to divide b.
 - (c) Let a, b be integers and let n be a natural number. Define $a \equiv b \mod n$.
 - (d) Let S be a set of integers. Define what it means for $\ell \in S$ to be a least element.

Definitions. (a) The division algorithm for a and n produces unique integers q and r such that a = qn + r and $0 \le r < n$. (b) We say that a divides b if there exists an integer k such that ak = b. (c) We write that $a \equiv b \mod n$ (and say that a is congruent to $b \mod n$) if n divides a - b. (d) An element $\ell \in S$ is a least element if for every $s \in S$ we have $\ell \le s$.

Prove or disprove the following conjecture.

Conjecture 3 (10 points) Let a, b, c be integers. If a|bc, then a|b and a|c.

Disproof. The conjecture is false. For example, let a = 2, b = 2, and c = 1. Then, $2|2 \cdot 1 = 2$, but 2 does not divide 1. QED.

Problem 4 (10 points) Find the greatest common divisor of 139 and 93. Then, find integers m and n such that gcd(139, 93) = 139m + 93n.

Solution. Let us run the division algorithm a couple of times. We find that $139 = 1 \cdot 93 + 46$, that $93 = 2 \cdot 46 + 1$, and then that $46 = 46 \cdot 1 + 0$. It follows that gcd(139, 93) = gcd(93, 46) = gcd(46, 1) = 1. Running the equations backwards, we find that $1 = 139 \cdot (-2) + 93 \cdot 3$.

Theorem 5 (10 points) Let P(k) denote a statement for every integer k = 0, 1, 2, ...If the following are true:

- 1. P(0) is true; and
- 2. The truth of $P(\ell 1)$ implies the truth of $P(\ell)$ for every integer $\ell = 1, 2, 3, \ldots$,

then P(k) is true for all integers $k = 0, 1, 2, 3 \dots$

Proof. Let $F = \{n \in \mathbb{Z} : n \ge 0 \text{ and } P(n) \text{ is false}\}$. We want to show that F is empty. Suppose that it is not. In that case, F is non-empty and by definition it contains only nonnegative integers. Therefore, by the well-ordering principle, F contains a least element, say ℓ . Note that $0 \notin F$ by assumption (1). Therefore, $\ell \ge 1$. This means that $\ell - 1 \ge 0$, so that $P(\ell - 1)$ is defined. Since $\ell - 1 < \ell$, the natural number $\ell - 1$ is not in F since ℓ is the least element. Therefore, $P(\ell - 1)$ is true. By assumption (2), this means that $P(\ell)$ is true, which contradicts the assumption that ℓ is in F. QED. **Proposition 6 (10 points)** Let a be an integer and n a natural number. Show that there exists an integer r such that $a \equiv r \mod n$ and $0 \leq r < n$. Note: you do not need to prove uniqueness.

Proof. Let $S = \{a - kn : k \in \mathbb{Z} \text{ and } a - kn \ge 0\}$. I claim that S is non-empty. If $a \ge 0$, then $a = a - 0 \cdot n$ shows that $a \in S$. If a < 0, then $a - a \cdot n = a(1 - n)$ is in the set because a < 0 and $(1 - n) \le 0$. Therefore, S is non-empty. By construction, S contains only non-negative integers. Therefore, S has a least element, say r = a - kn for some integer k. Then, a - r = kn so $a \equiv r \mod n$. Moreover, $r \ge 0$ since it is in S. So, it only remains to show that r < n. Suppose $r \ge n$. Then, $r - n \ge n - n = 0$. But, r - n = a - (k + 1)n, so it follows that $r - n \in S$. But, r - n < r, which contradicts the assumption that r is a least element. Hence, r < n. QED.

Proposition 7 (10 points) *Prove that for all* $k \ge 1$ *,*

$$1 + 3 + \dots + 2k - 1 = k^2$$
.

Proof. We prove this by induction. The base case, when k = 1, is simply the statement that $1 = 1^2$, which is true. Now, suppose that for some $k \ge 1$ the equality $1 + 3 + \cdots + 2k - 1 = k^2$ holds. Adding 2(k + 1) - 1 = 2k + 1 to both sides, we obtain $1 + 3 + \cdots + 2k - 1 + 2(k + 1) - 1 = k^2 + 2k + 1 = (k + 1)^2$, so the inductive step holds. By induction, $1 + 3 + \cdots + 1 + 2k - 1 = k^2$ for all $k \ge 1$. QED.

Proposition 8 (10 points) Prove that $n^3 + 2n$ is divisible by 3 for all natural numbers n.

Proof. We prove this by induction. In the base case, when n = 1, the formula $n^3 + 2n$ reduces to $1^3 + 2 \cdot 1 = 3$, which is divisible by 3. Now, assume that 3 divides $n^3 + 2n$ for some natural number n. We have that

$$(n+1)^3 + 2(n+1) = n^3 + 3n^2 + 3n + 1 + 2n + 2$$

= $(n^3 + 2n) + 3(n^2 + n + 3).$

As 3 divides $n^3 + 2n$ by hypothesis and also divides $3(n^2 + n + 3)$, it follows that 3 divides $(n + 1)^3 + 2(n + 1)$. Therefore, by induction, $3|n^3 + 2n$ for all natural numbers n. QED.