We will assume the existence of a set \mathbb{Z}, whose elements are called integers, along with a well-defined binary operation + on \mathbb{Z} (called addition), a second well-defined binary operation \cdot on \mathbb{Z} (called multiplication), and a relation $<$ on \mathbb{Z} (called less than), and that the following fourteen statements involving $\mathbb{Z},+, \cdot$, and $<$ are true:
A1. For all a, b, c in $\mathbb{Z},(a+b)+c=a+(b+c)$.
A2. There exists a unique integer 0 in \mathbb{Z} such that $a+0=0+a=a$ for every integer a.
A3. For every a in \mathbb{Z}, there exists a unique integer $-a$ in \mathbb{Z} such that $a+(-a)=$ $(-a)+a=0$.
A4. For all a, b in $\mathbb{Z}, a+b=b+a$.
M1. For all a, b, c in $\mathbb{Z},(a \cdot b) \cdot c=a \cdot(b \cdot c)$.
M2. There exists a unique integer 1 in \mathbb{Z} such that $a \cdot 1=1 \cdot a=a$ for all a in \mathbb{Z}.
M4. For all a, b in $\mathbb{Z}, a \cdot b=b \cdot a$.
D1. For all a, b, c in $\mathbb{Z}, a \cdot(b+c)=a \cdot b+a \cdot c$.
NT1. $1 \neq 0$.
O1. For all a in \mathbb{Z}, exactly one of the following statements is true: $0<a, a=0,0<-a$.
O2. For all a, b in \mathbb{Z}, if $0<a$ and $0<b$, then $0<a+b$.
O3. For all a, b in \mathbb{Z}, if $0<a$ and $0<b$, then $0<a \cdot b$.
O4. For all a, b in $\mathbb{Z}, a<b$ if and only if $0<b+(-a)$.
WOP. If S is a non-empty set of non-negative integers, then S has a least element.
Remark 1 The above axiom is referred to as the Well-Ordering Principle (WOP). We will assume it is true without proof.

Proposition 2 (20 points) (a) Let a be an integer and n a natural number. State the division algorithm for a and n.
(b) Let a and b be integers. Define what it means for a to divide b.
(c) Let a, b be integers and let n be a natural number. Define $a \equiv b \bmod n$.
(d) Let S be a set of integers. Define what it means for $\ell \in S$ to be a least element.

Definitions. (a) The division algorithm for a and n produces unique integers q and r such that $a=q n+r$ and $0 \leq r<n$. (b) We say that a divides b if there exists an integer k such that $a k=b$. (c) We write that $a \equiv b \bmod n$ (and say that a is congruent to b modulo n) if n divides $a-b$. (d) An element $\ell \in S$ is a least element if for every $s \in S$ we have $\ell \leq s$.

Prove or disprove the following conjecture.
Conjecture 3 (10 points) Let a, b, c be integers. If $a \mid b c$, then $a \mid b$ and $a \mid c$.

Disproof. The conjecture is false. For example, let $a=2, b=2$, and $c=1$. Then, $2 \mid 2 \cdot 1=2$, but 2 does not divide 1 . QED.

Problem 4 (10 points) Find the greatest common divisor of 139 and 93. Then, find integers m and n such that $\operatorname{gcd}(139,93)=139 m+93 n$.

Solution. Let us run the division algorithm a couple of times. We find that $139=$ $1 \cdot 93+46$, that $93=2 \cdot 46+1$, and then that $46=46 \cdot 1+0$. It follows that $\operatorname{gcd}(139,93)=$ $\operatorname{gcd}(93,46)=\operatorname{gcd}(46,1)=1$. Running the equations backwards, we find that $1=$ $139 \cdot(-2)+93 \cdot 3$.

Theorem 5 (10 points) Let $P(k)$ denote a statement for every integer $k=0,1,2, \ldots$. If the following are true:

1. $P(0)$ is true; and
2. The truth of $P(\ell-1)$ implies the truth of $P(\ell)$ for every integer $\ell=1,2,3, \ldots$, then $P(k)$ is true for all integers $k=0,1,2,3 \ldots$

Proof. Let $F=\{n \in \mathbb{Z}: n \geq 0$ and $P(n)$ is false $\}$. We want to show that F is empty. Suppose that it is not. In that case, F is non-empty and by definition it contains only nonnegative integers. Therefore, by the well-ordering principle, F contains a least element, say ℓ. Note that $0 \notin F$ by assumption (1). Therefore, $\ell \geq 1$. This means that $\ell-1 \geq 0$, so that $P(\ell-1)$ is defined. Since $\ell-1<\ell$, the natural number $\ell-1$ is not in F since ℓ is the least element. Therefore, $P(\ell-1)$ is true. By assumption (2), this means that $P(\ell)$ is true, which contradicts the assumption that ℓ is in F. QED.

Proposition 6 (10 points) Let a be an integer and n a natural number. Show that there exists an integer r such that $a \equiv r \bmod n$ and $0 \leq r<n$. Note: you do not need to prove uniqueness.

Proof. Let $S=\{a-k n: k \in \mathbb{Z}$ and $a-k n \geq 0\}$. I claim that S is non-empty. If $a \geq 0$, then $a=a-0 \cdot n$ shows that $a \in S$. If $a<0$, then $a-a \cdot n=a(1-n)$ is in the set because $a<0$ and $(1-n) \leq 0$. Therefore, S is non-empty. By construction, S contains only non-negative integers. Therefore, S has a least element, say $r=a-k n$ for some integer k. Then, $a-r=k n$ so $a \equiv r \bmod n$. Moreover, $r \geq 0$ since it is in S. So, it only remains to show that $r<n$. Suppose $r \geq n$. Then, $r-n \geq n-n=0$. But, $r-n=a-(k+1) n$, so it follows that $r-n \in S$. But, $r-n<r$, which contradicts the assumption that r is a least element. Hence, $r<n$. QED.

Proposition 7 (10 points) Prove that for all $k \geq 1$,

$$
1+3+\cdots+2 k-1=k^{2} .
$$

Proof. We prove this by induction. The base case, when $k=1$, is simply the statement that $1=1^{2}$, which is true. Now, suppose that for some $k \geq 1$ the equality $1+3+$ $\cdots+2 k-1=k^{2}$ holds. Adding $2(k+1)-1=2 k+1$ to both sides, we obtain $1+3+\cdots+2 k-1+2(k+1)-1=k^{2}+2 k+1=(k+1)^{2}$, so the inductive step holds. By induction, $1+3+\cdots+1+2 k-1=k^{2}$ for all $k \geq 1$. QED.

Proposition 8 (10 points) Prove that $n^{3}+2 n$ is divisible by 3 for all natural numbers n.

Proof. We prove this by induction. In the base case, when $n=1$, the formula $n^{3}+2 n$ reduces to $1^{3}+2 \cdot 1=3$, which is divisible by 3 . Now, assume that 3 divides $n^{3}+2 n$ for some natural number n. We have that

$$
\begin{aligned}
(n+1)^{3}+2(n+1) & =n^{3}+3 n^{2}+3 n+1+2 n+2 \\
& =\left(n^{3}+2 n\right)+3\left(n^{2}+n+3\right)
\end{aligned}
$$

As 3 divides $n^{3}+2 n$ by hypothesis and also divides $3\left(n^{2}+n+3\right)$, it follows that 3 divides $(n+1)^{3}+2(n+1)$. Therefore, by induction, $3 \mid n^{3}+2 n$ for all natural numbers n. QED.

