We will assume the existence of a set \mathbb{Z}, whose elements are called integers, along with a well-defined binary operation + on \mathbb{Z} (called addition), a second well-defined binary operation \cdot on \mathbb{Z} (called multiplication), and a relation $<$ on \mathbb{Z} (called less than), and that the following fourteen statements involving $\mathbb{Z},+, \cdot$, and $<$ are true:
A1. For all a, b, c in $\mathbb{Z},(a+b)+c=a+(b+c)$.
A2. There exists a unique integer 0 in \mathbb{Z} such that $a+0=0+a=a$ for every integer a.
A3. For every a in \mathbb{Z}, there exists a unique integer $-a$ in \mathbb{Z} such that $a+(-a)=$ $(-a)+a=0$.
A4. For all a, b in $\mathbb{Z}, a+b=b+a$.
M1. For all a, b, c in $\mathbb{Z},(a \cdot b) \cdot c=a \cdot(b \cdot c)$.
M2. There exists a unique integer 1 in \mathbb{Z} such that $a \cdot 1=1 \cdot a=a$ for all a in \mathbb{Z}.
M4. For all a, b in $\mathbb{Z}, a \cdot b=b \cdot a$.
D1. For all a, b, c in $\mathbb{Z}, a \cdot(b+c)=a \cdot b+a \cdot c$.
NT1. $1 \neq 0$.
O1. For all a in \mathbb{Z}, exactly one of the following statements is true: $0<a, a=0,0<-a$.
O2. For all a, b in \mathbb{Z}, if $0<a$ and $0<b$, then $0<a+b$.
O3. For all a, b in \mathbb{Z}, if $0<a$ and $0<b$, then $0<a \cdot b$.
O4. For all a, b in $\mathbb{Z}, a<b$ if and only if $0<b+(-a)$.
Notation 1. We will use the common notation ab to denote $a \cdot b$.
Notation 2. We will also use the notation $a>b$ (greater than) to denote $b<a$ (less than).

We will also assume Propositions 3 through 9. You do not need to prove these!
Proposition 3. For every a in $\mathbb{Z}, a \cdot 0=0$.
Proposition 4. Let a, b be integers. If $a b=0$, then $a=0$ or $b=0$.
Proposition 5. 0 has no multiplicative inverse. In other words, there is no integer a such that $a \cdot 0=1$.

Proposition 6. For all a, b, c in \mathbb{Z}, if $a+b=a+c$, then $b=c$.
Proposition 7. For every a in $\mathbb{Z},-(-a)=a$.
Proposition 8. For all integers a and $b,(-a) b=-(a b)$.
Proposition 9. For all integer a and $b,(-a)(-b)=a b$.
The exam is to prove Propositions 10, 11, and 12 on the following pages. You MAY use Propositions 1 through 9 in your proofs.

Proposition 10. For all a, b in $\mathbb{Z},(-a)+(-b)=-(a+b)$.
Proof. By A3, $(a+(-a))+(b+(-b))=0=(a+b)+(-(a+b))$. Thus, $(a+b)+$ $(-(a+b))=(a+b)+((-a)+(-b))$ using A1 and A4. By Proposition 6, it follows that $-(a+b)=(-a)+(-b)$, as desired.

Proposition 11. For all a in $\mathbb{Z}, 0<a$ if and only if $-a<0$.
Proof. By O4, $-a<0$ if and only $0<0+(-(-a))=-(-a)=a$, where the first equality is by $\mathbf{A 2}$ and the second is by Proposition 7 .

Proposition 12. For all a, b, c in \mathbb{Z}, if $a<b$, then $a+c<b+c$.
Proof. If $a<b$, then, by O4, $0<b+(-a)=b+(-a)+0=(b+(-a))+(c+(-c))=$ $(b+c)+((-a)+(-c))=(b+c)+(-(a+c))$, where the first equality follows from $\mathbf{A} \mathbf{2}$, the second follows from A3, the third follows from A1 and A4, and the fourth follows from Proposition 10. Therefore, $a+c<b+c$, again by $\mathbf{O} 4$.

Proposition 13. For all a, b, c in \mathbb{Z}, if $a<b$ and $0<c$, then $a c<b c$.
Proof. If $a<b$, then $0<b+(-a)$ by $\mathbf{O} 4$. Hence, since $0<c$, $\mathbf{O} 3$ says that $0<(b+(-a)) c$. But, $(b+(-a)) c=b c+(-a) c=b c+(-(a c))$, where the first equality is by $\mathbf{D} 1$ and the second is by Proposition 8. So, $0<b c+(-(a c))$, and hence $a c<b c$ by $\mathbf{O} 4$.

