MATH 215 – Practice Final

We will assume the existence of a set \mathbb{Z} , whose elements are called integers, along with a well-defined binary operation + on \mathbb{Z} (called addition), a second well-defined binary operation \cdot on \mathbb{Z} (called multiplication), and a relation < on \mathbb{Z} (called less than), and that the following fourteen statements involving \mathbb{Z} , +, \cdot , and < are true: **A1.** For all a, b, c in \mathbb{Z} , (a + b) + c = a + (b + c). A2. There exists a unique integer 0 in \mathbb{Z} such that a + 0 = 0 + a = a for every integer a. A3. For every a in \mathbb{Z} , there exists a unique integer -a in \mathbb{Z} such that a + (-a) =(-a) + a = 0.A4. For all a, b in \mathbb{Z} , a + b = b + a. **M1.** For all a, b, c in \mathbb{Z} , $(a \cdot b) \cdot c = a \cdot (b \cdot c)$. **M2.** There exists a unique integer 1 in \mathbb{Z} such that $a \cdot 1 = 1 \cdot a = a$ for all a in \mathbb{Z} . **M4.** For all a, b in $\mathbb{Z}, a \cdot b = b \cdot a$. **D1.** For all a, b, c in \mathbb{Z} , $a \cdot (b + c) = a \cdot b + a \cdot c$. **NT1.** $1 \neq 0$. **O1.** For all a in \mathbb{Z} , exactly one of the following statements is true: 0 < a, a = 0, 0 < -a. **O2.** For all a, b in \mathbb{Z} , if 0 < a and 0 < b, then 0 < a + b. **O3.** For all a, b in \mathbb{Z} , if 0 < a and 0 < b, then $0 < a \cdot b$. **O4.** For all a, b in \mathbb{Z} , a < b if and only if 0 < b + (-a). **WOP.** If S is a non-empty set of non-negative integers, then S has a least element.

Remark 1 The above axiom is referred to as the Well-Ordering Principle (WOP). We will assume it is true without proof.

- **Proposition 2 (20 points)** (a) Let a be an integer and n a natural number. State the division algorithm for a and n.
 - (b) Let a and b be integers. Define what it means for a to divide b.
 - (c) Let a, b be integers and let n be a natural numbers. Define $a \equiv b \mod n$.
 - (d) Let S be a set of integers. Define what it means for $\ell \in S$ to be a least element.

Proposition 3 (10 points) Let a, b, c be integers, and let n be a natural number. Prove that if $a \equiv b \mod n$, then $ac \equiv bc \mod n$.

Theorem 4 (10 points) Let P(k) denote a statement for every integer k = 0, 1, 2, ...If the following are true:

- 1. P(0) is true; and
- 2. The truth of $P(\ell-1)$ implies the truth of $P(\ell)$ for every integer $\ell = 1, 2, 3, \ldots$

then P(k) is true for all integers $k = 0, 1, 2, 3 \dots$

Problem 5 (10 points) Find the greatest common divisor of 270 and 192. Then, find integers m and n such that gcd(270, 192) = 270m + 192n.

Proposition 6 (10 points) Let a be an integer and n a natural number. Show that there exists an integer r such that $a \equiv r \mod n$ and $0 \leq r < n$. Note: you do not need to prove uniqueness.

Proposition 7 (10 points) *Prove that for all* $n \ge 0$ *,*

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

Proposition 8 (10 points) Prove that $a^2 - 1$ is divisible by 8 for all odd integers a.

Proposition 9 (10 points) *Prove that for all* $1 \le k \le n$ *one has*

$$\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}.$$