MATH 215 - Practice Final

We will assume the existence of a set \mathbb{Z}, whose elements are called integers, along with a well-defined binary operation + on \mathbb{Z} (called addition), a second well-defined binary operation \cdot on \mathbb{Z} (called multiplication), and a relation $<$ on \mathbb{Z} (called less than), and that the following fourteen statements involving $\mathbb{Z},+, \cdot$, and $<$ are true:
A1. For all a, b, c in $\mathbb{Z},(a+b)+c=a+(b+c)$.
A2. There exists a unique integer 0 in \mathbb{Z} such that $a+0=0+a=a$ for every integer a.
A3. For every a in \mathbb{Z}, there exists a unique integer $-a$ in \mathbb{Z} such that $a+(-a)=$ $(-a)+a=0$.
A4. For all a, b in $\mathbb{Z}, a+b=b+a$.
M1. For all a, b, c in $\mathbb{Z},(a \cdot b) \cdot c=a \cdot(b \cdot c)$.
M2. There exists a unique integer 1 in \mathbb{Z} such that $a \cdot 1=1 \cdot a=a$ for all a in \mathbb{Z}.
M4. For all a, b in $\mathbb{Z}, a \cdot b=b \cdot a$.
D1. For all a, b, c in $\mathbb{Z}, a \cdot(b+c)=a \cdot b+a \cdot c$.
NT1. $1 \neq 0$.
O1. For all a in \mathbb{Z}, exactly one of the following statements is true: $0<a, a=0,0<-a$.
O2. For all a, b in \mathbb{Z}, if $0<a$ and $0<b$, then $0<a+b$.
O3. For all a, b in \mathbb{Z}, if $0<a$ and $0<b$, then $0<a \cdot b$.
O4. For all a, b in $\mathbb{Z}, a<b$ if and only if $0<b+(-a)$.
WOP. If S is a non-empty set of non-negative integers, then S has a least element.
Remark 1 The above axiom is referred to as the Well-Ordering Principle (WOP). We will assume it is true without proof.

Proposition 2 (20 points) (a) Let a be an integer and n a natural number. State the division algorithm for a and n.
(b) Let a and b be integers. Define what it means for a to divide b.
(c) Let a, b be integers and let n be a natural numbers. Define $a \equiv b \bmod n$.
(d) Let S be a set of integers. Define what it means for $\ell \in S$ to be a least element.

Proposition 3 (10 points) Let a, b, c be integers, and let n be a natural number. Prove that if $a \equiv b \bmod n$, then $a c \equiv b c \bmod n$.

Theorem 4 (10 points) Let $P(k)$ denote a statement for every integer $k=0,1,2, \ldots$. If the following are true:

1. $P(0)$ is true; and
2. The truth of $P(\ell-1)$ implies the truth of $P(\ell)$ for every integer $\ell=1,2,3, \ldots$, then $P(k)$ is true for all integers $k=0,1,2,3 \ldots$

Problem 5 (10 points) Find the greatest common divisor of 270 and 192. Then, find integers m and n such that $\operatorname{gcd}(270,192)=270 m+192 n$.

Proposition 6 (10 points) Let a be an integer and n a natural number. Show that there exists an integer r such that $a \equiv r \bmod n$ and $0 \leq r<n$. Note: you do not need to prove uniqueness.

Proposition 7 (10 points) Prove that for all $n \geq 0$,

$$
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Proposition 8 (10 points) Prove that $a^{2}-1$ is divisible by 8 for all odd integers a.
Proposition 9 (10 points) Prove that for all $1 \leq k \leq n$ one has

$$
\binom{n}{k-1}+\binom{n}{k}=\binom{n+1}{k}
$$

