MATH 215 – Fall 2017 – Axioms for the Integers (AI)

We will assume the existence of a set $\mathbb{Z} = \{0, 1, -1, 2, -2, \cdots\}$, whose elements are called integers, along with a well-defined binary operation + on \mathbb{Z} (called addition), a second well-defined binary operation \cdot on \mathbb{Z} (called multiplication), and a relation < on \mathbb{Z} (called less than), and we will assume that the following statements involving \mathbb{Z} , +, \cdot , and < are true:

A1. For all a, b, c in \mathbb{Z} , (a + b) + c = a + (b + c).

A2. There exists an integer 0 in \mathbb{Z} such that a+0=0+a=a for every integer a.

A3. For every a in \mathbb{Z} , there exists a unique integer -a in \mathbb{Z} such that a + (-a) = (-a) + a = 0.

A4. For all a, b in \mathbb{Z} , a + b = b + a.

M1. For all a, b, c in \mathbb{Z} , $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.

M2. There exists an integer 1 in \mathbb{Z} such that $a \cdot 1 = 1 \cdot a = a$ for all a in \mathbb{Z} .

M4. For all a, b in \mathbb{Z} , $a \cdot b = b \cdot a$.

D1. For all a, b, c in \mathbb{Z} , $a \cdot (b + c) = a \cdot b + a \cdot c$.

NT1. $1 \neq 0$.

O1. For all a in \mathbb{Z} , exactly one of the following statements is true: 0 < a, a = 0, 0 < -a.

O2. For all a, b in \mathbb{Z} , if 0 < a and 0 < b, then 0 < a + b.

O3. For all a, b in \mathbb{Z} , if 0 < a and 0 < b, then $0 < a \cdot b$.

O4. For all a, b in \mathbb{Z} , a < b if and only if 0 < b + (-a).

WOP. A mystery axiom to be introduced later.

Notation 1 We will use the common notation ab to denote $a \cdot b$.

Notation 2 We will also use the notation a > b (greater than) to denote b < a (less than).

Proposition 3 The element 0 is unique. In other words, if 0' is another element such that a + 0' = 0' + a = a for all a in \mathbb{Z} , then 0' = 0.

Proposition 4 For every a in \mathbb{Z} , $a \cdot 0 = 0$.

Proposition 5 Let a, b be integers. If ab = 0, then a = 0 or b = 0.

Proposition 6 The element 0 in \mathbb{Z} has no multiplicative inverse. In other words, there is no integer a such that $a \cdot 0 = 1$.

Proposition 7 The element 1 is unique. In other words, if 1' is an integer such that $a \cdot 1' = 1' \cdot a = a$ for all a in \mathbb{Z} , then 1' = 1.

Proposition 8 For all a, b, c in \mathbb{Z} , if a + b = a + c, then b = c.

Proposition 9 For every a in \mathbb{Z} , -(-a) = a.

Proposition 10 For all integers a and b, (-a)b = -(ab).

Proposition 11 For all integers a and b, (-a)(-b) = ab.

Proposition 12 (-1)(-1) = (1)(1) = 1.

Proposition 13 0 < 1.