Proposition 1 Let a, b be integers and n a natural number. If $a \equiv b \bmod n$, then $a^{k} \equiv$ $b^{k} \bmod n$ for every natural number k.

Notation 2 Let $P(k)$ be a statement that depends on the integer k.
Example 3 Let a, b be integers and n a natural number. Consider the statement $a^{k} \equiv$ $b^{k} \bmod n$. We can denote this statement by $P(k)$ where

$$
P(k): a^{k} \equiv b^{k} \bmod n
$$

If we write $P(5)$, then this means the statement

$$
a^{5} \equiv b^{5} \bmod n
$$

Theorem 4 Let $P(k)$ denote a statement for every integer $k=0,1,2, \ldots$. If the following are true:

1. $P(0)$ is true; and
2. The truth of $P(\ell-1)$ implies the truth of $P(\ell)$ for every integer $\ell=1,2,3, \ldots$,
then $P(k)$ is true for all integers $k=0,1,2,3 \ldots$
Remark 5 Proving a statement $P(k)$ is true for all integer $k=0,1,2,3, \ldots$ using Theorem 4 is called a proof by induction. Verifying the step $P(0)$ is true is called the base case and verifying the step that $P(\ell-1)$ implies $P(\ell)$ is called the inductive hypothesis.

Theorem 6 Let n be a non-negative integer and let $P(k)$ denote a statement for every integer $k=n, n+1, n+2, \ldots$. If the following are true:

1. $P(n)$ is true; and
2. The truth of $P(\ell-1)$ implies the truth of $P(\ell)$ for every integer $\ell=n+1, n+$ $2, n+3, \ldots$,
then $P(k)$ is true for all integers $k=n, n+1, n+2, \ldots$
Theorem 7 Let n be a non-negative integer and let $P(k)$ denote a statement for every integer $k=n, n+1, n+2, \ldots$. If the following are true:
3. $P(n)$ is true; and
4. For all integers $\ell>n$, the truth of $P(n), P(n+1), P(n+2), \ldots$, and $P(\ell-1)$ imply the truth of $P(\ell)$,
then $P(k)$ is true for all integers $k=n, n+1, n+2, \ldots$

Remark 8 Using Theorem 7 to prove a result is a proof using strong induction. Using either Theorems 4 or 6 to prove a result is a proof using weak induction.

Proposition 9 Let a, b be integers and n a natural number. Using induction, prove that if $a \equiv b \bmod n$, then

$$
a^{k} \equiv b^{k} \bmod n
$$

for every natural number k.
Challenge 10 Let k be a natural number. Consider a $2^{k} \times 2^{k}$ checkerboard with any single 1×1 square removed. Prove that the checkerboard could be covered using only L-shaped blocks that are made of three 1×1 squares. [Make sure you understand what shaped tiles I mean before starting this problem.]

Problem 11 Find the following sums.

- $1+3+5=$
- $1+3+5+7+9=$
- $1+3+5+7+9+11+13+15=$

Using your sums above, develop (which means guess and prove) a formula for the sum of the first k odd integers:

$$
1+3+5+7+\cdots+2 k-1=
$$

Proposition 12 Prove that $2304 \mid\left(7^{2 n}-48 n-1\right)$ for every natural number n.
Question 13 For what natural numbers n (if any) is $4 n<2^{n}$? Prove it.
Problem 14 Consider the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ defined recursively by $x_{1}=1$ and $x_{n+1}=$ $\frac{1}{2} x_{n}+1$ for $n \geq 1$.

1. Show that $x_{n} \leq 2$ for all $n \geq 1$.
2. Show that $x_{n} \leq x_{n+1}$ for all $n \geq 1$.
3. What do the two steps above imply about the sequence?

Notation 15 Let n, k be non-negative integers. The binomial coefficient $\binom{n}{k}$ is defined by

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

Theorem 16 (Binomial Theorem) Let n be a non-negative integer. Then

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} .
$$

Theorem 17 (De Moivre's Theorem) For any positive integer n,

$$
(\cos t+i \sin t)^{n}=\cos (n t)+i \sin (n t)
$$

