MATH 215 – Number Theory I (NTI)

We will assume the existence of a set $\mathbb{Z} = \{0, 1, -1, 2, -2, ...\}$ of integers satisfying the axioms on sheet AI. We will also assume the existence of the set $\mathbb{N} = \{1, 2, 3, ...\}$ of natural numbers. The set \mathbb{N} is naturally a subset of \mathbb{Z} and we will assume that if a, b are natural numbers, then a + b and ab are natural numbers.

Definition 1 Let a, b be integers. We say that a **divides** b if there exists an integer k such that ak = b. If a divides b, we write a|b.

Remark 2 If a divides b, we can also say that a is a **divisor** of b, or that b is a **multiple** of a.

Proposition 3 Let a, b, c be integers. If a|b and a|c, then a|(b+c).

Proposition 4 Let a, b, c be integers. If a|b and a|c, then a|(b-c).

Conjecture 5 Let a, b, c be integers. If a|(b+c), then a|b and a|c.

Proposition 6 Let a, b, c be integers. If a|b and a|c, then a|bc.

Proposition 7 Let a, b, c be integers. If a|b, then a|bc. [Can we put this statement into words to better understand what it is saying?]

Proposition 8 Let a, b, c be integers. If a|b and b|c, then a|c.

Proposition 9 If n is an integer, then n|0.

Corollary 10 If n and a are integers, then n|(a - a).

Proposition 11 Let n, a, b be integers. If n|(a - b), then n|(b - a).

Proposition 12 Let n, a, b, c be integers. If n|(a - b) and n|(b - c), then n|(a - c).

Definition 13 Let a, b be integers and n a natural number. If n|(a - b), then we say that a is congruent to b modulo n and write

 $a \equiv b \mod n.$

Remark 14 Consider two statements P and Q. We write P if and only if Q to mean the combination of the statements "If P, then Q" AND "If Q, then P".

Proposition 15 Let a be an integer and n a natural number. n|a| if and only if $a \equiv 0 \mod n$.

Note: In the above proposition, the statement P is n|a and the statement Q is $a \equiv 0 \mod n$.

Proposition 16 Let a be an integer and n a natural number. Then $a \equiv a \mod n$.

Proposition 17 Let a, b be integers and n a natural number. If $a \equiv b \mod n$, then $b \equiv a \mod n$.

Proposition 18 Let a, b, c be integers and n a natural number. If $a \equiv b \mod n$ and $b \equiv c \mod n$, then $a \equiv c \mod n$.

Proposition 19 Let a, b, c, d be integers and n a natural number. If $a \equiv b \mod n$ and $c \equiv d \mod n$, then $a + c \equiv b + d \mod n$.

Proposition 20 Let a, b, c, d be integers and n a natural number. If $a \equiv b \mod n$ and $c \equiv d \mod n$, then $a - c \equiv b - d \mod n$.

Proposition 21 Let a, b, c, d be integers and n a natural number. If $a \equiv b \mod n$ and $c \equiv d \mod n$, then $ac \equiv bd \mod n$.

Notation 22 If a does not divide b, we notate this by $a \nmid b$.

Proposition 23 $2 \nmid 1$.

Proposition 24 Let a, b be natural numbers. If a > b, then $a \nmid b$.

Definition 25 Let S be a set of integers and let l be an element of S. We say that l is a **least element** of S if $l \leq s$ for every s in S.

Proposition 26 Let S be a set of integers and assume that l is a least element of S. If l' is some other least element of S, then l = l'.

Note: Proposition 26 says that the least element of a set (if it exists) is unique.

Conjecture 27 Every non-empty set of integers has a least element.

Axiom 28 If S is a non-empty set of non-negative integers, then S has a least element.

Remark 29 The above axiom is referred to as the Well-Ordering Principle (WOP). We will assume it is true without proof.

Challenge 30 Let a be an integer and n a natural number. Show that there exists a unique integer r such that $a \equiv r \mod n$ and $0 \leq r < n$.

Hints: Consider the set $S = \{a - kn : k \text{ is an integer and } a - kn \ge 0\}$. Show that S only contains non-negative integers and is non-empty. Use the Well-Ordering Principle to find the smallest element of S and call it r. Show that $a \equiv r \mod n$ and explain why $0 \le r < n$.

Question 31 Why have we labeled the unique integer in Challenge 30 with the letter r? What does this number represent?

Remark 32 Let a be an integer and n a natural number. Let r be the unique integer as in Challenge 30. Define the (unique) integer q by the formula a = nq + r. (Why have we chosen to use the letter q?) Given the integer a and the natural number n, finding the unique integers q, r such that a = nq + r where $0 \le r < n$ is called the **division algorithm**.

Proposition 33 Let a, b be integers and n a natural number. If $a \equiv b \mod n$, then $a^2 \equiv b^2 \mod n$.

Proposition 34 Let a, b be integers and n a natural number. If $a \equiv b \mod n$, then $a^3 \equiv b^3 \mod n$.

Proposition 35 Let a, b be integers and n a natural number. If $a \equiv b \mod n$, then $a^k \equiv b^k \mod n$ for every natural number k.

Problem 36 For the following pairs of integers a and n, find q and r in the division algorithm.

- a = 5, n = 2
- a = 72, n = 5
- a = 94, n = 100
- a = 7814, n = 1124

Definition 37 Let a and b be positive integers and d an integer such that d|a and d|b. Then we say that d is a **common divisor** of a and b.

Definition 38 Let a and b be integers such that not both of a and b are zero. We say an integer d is a **greatest common divisor** of a and b if the following two statements are true:

- 1. d|a and d|b; and
- 2. if c is any integer such that c|a and c|b, then $c \leq d$.

Proposition 39 Let a and b be integers such that not both are zero. Let

 $D = \{am + bn : m \text{ and } n \text{ are integers, and } am + bn > 0\}.$

Then the following statements are true:

1. D is a non-empty set of positive integers.

- 2. D has a least element. Call that least element d.
- 3. There exists integers x and y such that d = ax + by.
- 4. d|a and d|b. [Hint: Use the division algorithm.]
- 5. If c is any integer such that c|a and c|b, then c|d.
- 6. If c is any integer such that c|a and c|b, then $c \leq d$.
- 7. d is a greatest common divisor of a and b.
- 8. The greatest common divisor is unique.

Notation 40 The greatest common divisor of a and b is denoted gcd(a, b).

Lemma 41 Let a, b be natural numbers, and let q, r be the unique integers as defined by a = bq + r where $0 \le r < b$. If d is a natural number, then d|a and d|b if and only if d|b and d|r.

Proposition 42 Let a, b be natural numbers, and let q, r be the unique integers as defined by a = bq + r where $0 \le r < b$. Then gcd(a, b) = gcd(b, r).

Proposition 43 Let a be a natural number. Then gcd(a, 0) = a.

Problem 44 Using the previous two propositions, find the greatest common divisor of the following pairs of natural numbers.

- gcd(7,2)
- gcd(52, 16)
- gcd(1492, 2014)
- gcd(528740, 615846)

Remark 45 The process of finding the greatest common divisor of two natural numbers using the previous two propositions is referred to as the Euclidean Algorithm.

Problem 46 For each part, find integers m, n such that gcd(a, b) = am + bn.

- gcd(7,2)
- gcd(52, 16)
- gcd(1492, 2014)
- gcd(528740, 615846)