We will assume the existence of a set $\mathbb{R}=\{0,1,-1,2,-2, \cdots\}$, whose elements are called real numbers, along with a well-defined binary operation + on \mathbb{R} (called addition), a second well-defined binary operation \cdot on \mathbb{R} (called multiplication), and a relation $<$ on \mathbb{R} (called less than), and we will assume that the following statements involving $\mathbb{R},+, \cdot$, and $<$ are true:
A1. For all a, b, c in $\mathbb{R},(a+b)+c=a+(b+c)$.
A2. There exists an integer 0 in \mathbb{R} such that $a+0=0+a=a$ for every integer a.
A3. For every a in \mathbb{R}, there exists a unique integer $-a$ in \mathbb{R} such that $a+(-a)=$ $(-a)+a=0$.
A4. For all a, b in $\mathbb{R}, a+b=b+a$.
M1. For all a, b, c in $\mathbb{R},(a \cdot b) \cdot c=a \cdot(b \cdot c)$.
M2. There exists an integer 1 in \mathbb{R} such that $a \cdot 1=1 \cdot a=a$ for all a in \mathbb{R}.
M3. For all non-zero a in \mathbb{R}, there exists a unique real number a^{-1} in \mathbb{R} such that $a \cdot a^{-1}=a^{-1} \cdot a=1$.
M4. For all a, b in $\mathbb{R}, a \cdot b=b \cdot a$.
D1. For all a, b, c in $\mathbb{R}, a \cdot(b+c)=a \cdot b+a \cdot c$.
NT1. $1 \neq 0$.
O1. For all a in \mathbb{R}, exactly one of the following statements is true: $0<a, a=0,0<-a$.
O2. For all a, b in \mathbb{R}, if $0<a$ and $0<b$, then $0<a+b$.
O3. For all a, b in \mathbb{R}, if $0<a$ and $0<b$, then $0<a \cdot b$.
O4. For all a, b in $\mathbb{R}, a<b$ if and only if $0<b+(-a)$.
Notation 1 We will use the common notation ab to denote $a \cdot b$.
Notation 2 We will also use the notation $a>b$ (greater than) to denote $b<a$ (less than).
We also assume the existence of sets of natural numbers $\mathbb{N}=\{1,2,3, \ldots\}$ and of integers $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ with $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{R}$. We assume the following basic properties: (i) if a, b are integers, then $a+b, a-b$, and $a b$ are integers; (ii) if a, b are natural numbers, then $a+b$ and $a b$ are natural numbers.

Definition $3 A$ rational number is a real number x such that there exists a natural number q such that $q \cdot x$ is an integer. A real number is irrational if it is not rational.

Proposition 4 Prove that if x is irrational and y is rational and non-zero, then $x \cdot y$ is irrational.

Proposition 5 If x is an irrational number, then x^{-1} is irrational.
Proposition 6 Let x, y, z be real numbers. If $x \cdot y=x \cdot z$ and $x \neq 0$, then $y=z$.
Problem 7 State the Well-Ordering Principle.
Problem 8 Give an example to show that the Well-Ordering Principle is false with rational numbers in place of integers.

