We will assume the existence of a set $\mathbb{R} = \{0, 1, -1, 2, -2, \cdots\}$, whose elements are called **real numbers**, along with a well-defined binary operation + on \mathbb{R} (called addition), a second well-defined binary operation \cdot on \mathbb{R} (called multiplication), and a relation < on \mathbb{R} (called less than), and we will assume that the following statements involving \mathbb{R} , +, \cdot , and < are true:

- **A1.** For all a, b, c in \mathbb{R} , (a + b) + c = a + (b + c).
- **A2.** There exists an integer 0 in \mathbb{R} such that a+0=0+a=a for every integer a.
- **A3.** For every a in \mathbb{R} , there exists a unique integer -a in \mathbb{R} such that a + (-a) = (-a) + a = 0.
- **A4.** For all a, b in \mathbb{R} , a + b = b + a.
- **M1.** For all a, b, c in \mathbb{R} , $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- **M2.** There exists an integer 1 in \mathbb{R} such that $a \cdot 1 = 1 \cdot a = a$ for all a in \mathbb{R} .
- **M3.** For all non-zero a in \mathbb{R} , there exists a unique real number a^{-1} in \mathbb{R} such that $a \cdot a^{-1} = a^{-1} \cdot a = 1$.
- **M4.** For all a, b in \mathbb{R} , $a \cdot b = b \cdot a$.
- **D1.** For all a, b, c in \mathbb{R} , $a \cdot (b+c) = a \cdot b + a \cdot c$.
- **NT1.** $1 \neq 0$.
- **O1.** For all a in \mathbb{R} , exactly one of the following statements is true: 0 < a, a = 0, 0 < -a.
- **O2.** For all a, b in \mathbb{R} , if 0 < a and 0 < b, then 0 < a + b.
- **O3.** For all a, b in \mathbb{R} , if 0 < a and 0 < b, then $0 < a \cdot b$.
- **O4.** For all a, b in \mathbb{R} , a < b if and only if 0 < b + (-a).

Notation 1 We will use the common notation ab to denote $a \cdot b$.

Notation 2 We will also use the notation a > b (greater than) to denote b < a (less than).

We also assume the existence of sets of **natural numbers** $\mathbb{N} = \{1, 2, 3, \ldots\}$ and of **integers** $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ with $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{R}$. We assume the following basic properties: (i) if a, b are integers, then a + b, a - b, and ab are integers; (ii) if a, b are natural numbers, then a + b and ab are natural numbers.

Definition 3 A rational number is a real number x such that there exists a natural number q such that $q \cdot x$ is an integer. A real number is irrational if it is not rational.

Proposition 4 Prove that if x is irrational and y is rational and non-zero, then $x \cdot y$ is irrational.

Proposition 5 If x is an irrational number, then x^{-1} is irrational.

Proposition 6 Let x, y, z be real numbers. If $x \cdot y = x \cdot z$ and $x \neq 0$, then y = z.

Problem 7 State the Well-Ordering Principle.

Problem 8 Give an example to show that the Well-Ordering Principle is false with rational numbers in place of integers.