548 - Spring 2018 - HW1

January 19, 2018

1. Prove that $X \vee Y$ is the coproduct in \mathcal{T}_{*}.
2. Suppose that $F: \mathcal{C} \rightleftarrows \mathcal{D}: G$ are adjoint functors (with F being the left adjoint). Show that F preserves any colimits that exist in \mathcal{C} and that G preserves any limits that exist in \mathcal{D}.
3. Use Exercise 2 to show that the product of two pointed spaces (X, x) and (Y, y) in \mathcal{T} is given by $(X \times Y,(x, y))$.
4. Prove that $X \wedge S^{0}$ and X are homeomorphic as pointed spaces.
5. Let (X, x) be a based space and let X_{+}denote $X \coprod\{+\}$ pointed by + . Show that there is a homotopy equivalence between $S^{1} \wedge X_{+}$and $\left(S^{1} \wedge(X, x)\right) \vee S^{1}$.
6. Prove that $\pi_{1} S^{1} \cong \mathbb{Z}$.
7. Prove that $\pi_{n} S^{1}=0$ for $n>1$ using a lifting property, as in Proposition 1.33 of Hatcher.
8. Prove that if $f: S^{m} \rightarrow S^{n}$ is nullhomotopic, then C_{f} is homotopy equivalent to $S^{n} \vee S^{m+1}$.
