548 - Spring 2018 - HW2

January 26, 2018

1. Let \mathcal{C} be a category with finite products, meaning that for any finite set $\{X_i\}_{i \in I}$ of objects X_i of \mathcal{C} , the product $\prod_{i \in I} X_i$ exists. Prove that \mathcal{C} has a final object.

2. Prove that ΣX is an *H*-cogroup in \mathfrak{T}_* for any $X \in \mathfrak{T}_*$.

3. Prove that ΩX is an *H*-group for any $X \in \mathcal{T}_*$.

4. Prove that if G is a group object in a category \mathcal{C} , then $\operatorname{Hom}_{\mathcal{C}}(X,G)$ is naturally a group for every X in \mathcal{C} .

5. Prove that if C is a cogroup object in a category \mathcal{C} , then $\operatorname{Hom}_{\mathcal{C}}(C, X)$ is naturally a group for every X in \mathcal{C} .

6. Let Δ^1 denote the category with two objects 0 and 1 and a unique non-identity morphism $f: 0 \to 1$. Let \mathcal{C} be another category. Describe the functor category Fun (Δ^1, \mathcal{C}) .

7. Using the universal property discussed in class, identify $\operatorname{Fun}(\Delta^1[W^{-1}], \mathcal{C})$ where $W = \{f\}$.

8. Prove that the localization $\Delta^1 \to \Delta^1[W^{-1}]$ exists by exhibiting an explicit category \mathcal{C} with a functor $\Delta^1 \to \mathcal{C}$ which has the correct universal property.