548 - Spring 2018 - HW4

February 9, 2018

1. Given a chain complex $X \in Ch_{\geq 0}(A)$, construct a very good cylinder object for X.

2. Prove that if X is fibrant, $f \stackrel{\ell}{\sim} g: A \to X$ are two left homotopic morphisms, and $h: A' \to A$ is any morphism, then $f \circ h \stackrel{\ell}{\sim} g \circ h$.

3. Prove that if X is fibrant, the assignment $([f], [g]) \mapsto [g \circ f]$ is well-defined for $f : A' \to A$ and $g : A \to X$, giving a composition function

$$\pi^{\ell}(A',A) \times \pi^{\ell}(A,X) \to \pi^{\ell}(A',X).$$

4. Let \mathcal{C} be a model category. Prove that $f: X \to Y$ maps to an isomorphism in Ho(\mathcal{C}) if and only if $f \in W$.

5. Prove using only what we've done with model categories that if $f: M \to N$ is a morphism of two left *A*-modules and if $P_* \to M$ and $Q_* \to N$ are projective resolutions, then there exists a morphism $\tilde{f}: P_* \to Q_*$ making

commute.

6. Let A be an associative ring and let M and N be two left A-modules. View M and N as chain complexes concentrated in degree 0. Compute $\operatorname{Hom}_{\operatorname{Ho}(\operatorname{Ch}_{\geq 0}(A))}(M, N)$.

7. Let M and N be left A-modules. Denote, for $n \ge 0$, by N[n] the chain complex with N in degree n and zeros elsewhere. Compute $\operatorname{Hom}_{\operatorname{Ch}_{\ge 0}(A)}(M, N[n])$.

8. In the situation of Problem 7, compute $\operatorname{Hom}_{\operatorname{Ho}(\operatorname{Ch}_{\geq 0}(A))}(M, N[n])$.