547 - Fall 2019 - HW7

Due Monday 4 November 2019

1. Prove the simplicial identities as shown at https://ncatlab.org/nlab/show/simplicial+identities.

2. Recall that if M is a compact metric space and $\mathscr{U} = \{U_i\}_{i \in I}$ is a cover, then a **Lebesgue number** is an $\epsilon > 0$ such that if $D \subseteq M$ is a subset with diameter less than ϵ , then $D \subseteq U_i$ for some i. Prove that Lebesgue numbers exist. (Note: this one is harder than usual.)

3. Compute the homology of \mathbb{CP}^n with a single point removed.

4. Recall that \mathbb{RP}^n is covered by n+1 standard open sets $U_i, 0 \leq i \leq n$, each of which is isomorphic to \mathbb{R}^n . We have that U_i consists of lines through the origin containing points (x_0, \ldots, x_n) where $x_i \neq 0$. Compute the cohomology of the union of U_0 and U_1 inside \mathbb{RP}^3 .

- 4. Hatcher, Exercise 2.2.2.
- 5. Hatcher, Exercise 2.2.3.
- 6. Hatcher, Exercise 2.2.4.
- 7. Hatcher, Exercise 2.2.12.
- 8. Hatcher, Exercise 2.2.23.