548 - Spring 2020 - HW3

Due 19 February 2020

1. Let \mathcal{C} be a model category. Prove that cofibrations are closed under cobase change. In other words, prove that if $X \xrightarrow{i} Y$ is a cofibration and $X \xrightarrow{f} Z$ is any map, then the pushout $Z \xrightarrow{j} Z \cup_X Y$ is a cofibration.

2. Based on the work in class with $Ch_{\geq 0}(A)$, propose a model category structure on $Ch^{\geq 0}$, the category of non-negatively graded *cochain* complexes of left *A*-modules.

3. Prove that if \mathcal{C} is a model category (with respect to W, C, F), then for any object X of \mathcal{C} , $\mathcal{C}_{X/}$ admits a model category structure where a map

in $\mathcal{C}_{X/}$ is a weak equivalence, cofibration, or cofibration if and only if f is a weak equivalence, cofibration, or fibration in \mathcal{C} .

4. Let \mathcal{C} be a model category. Prove that $f: X \to Y$ maps to an isomorphism in Ho(\mathcal{C}) if and only if $f \in W$.

5. Prove using only what we've done with model categories that if $f: M \to N$ is a morphism of two left *A*-modules and if $P_* \to M$ and $Q_* \to N$ are projective resolutions, then there exists a morphism $\tilde{f}: P_* \to Q_*$ making

commute.

6. Let A be an associative ring and let M and N be two left A-modules. View M and N as chain complexes concentrated in degree 0. Compute $\operatorname{Hom}_{\operatorname{Ho}(\operatorname{Ch}_{\geq 0}(A))}(M, N)$.

7. Let M and N be left A-modules. Denote, for $n \ge 0$, by N[n] the chain complex with N in degree n and zeros elsewhere. Compute $\operatorname{Hom}_{\operatorname{Ch}_{\ge 0}(A)}(M, N[n])$.

8. In the situation of Problem 7, compute $\operatorname{Hom}_{\operatorname{Ho}(\operatorname{Ch}_{\geq 0}(A))}(M, N[n])$.