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Random lozenge tilings: examples

1) Uniformly random tilings of a

�nite domain

Skip

Skip

2) Surface growth

(simulation of Patrik Ferrari)

3) Path�measures in Gelfand�Tsetlin graph of asymptotic

representation theory.
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Random lozenge tilings: questions

(Kenyon�Okounkov) (Petrov) (Borodin-Ferrari)

Skip

Asymptotics as mesh size → 0 or size of the system →∞?

Universality belief:

main features do not depend on exact speci�cations.

What are these features?
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Random lozenge tilings: hexagon

A

B
C

Representative example: uniformly random lozenge tiling of

A× B × C hexagon.

Equivalently: decomposition of irreducible representation of

U(B + C ) with signature (AB , 0C ).

Equivalently: �xed time distribution of a 2d-particle system.
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Random lozenge tilings: hexagon
Skip

Shu�ing algorithm (Borodin�Gorin)
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Random lozenge tilings: features

Law of Large Numbers

(Cohn�Larsen�Propp)

And for general domains

(Cohn�Kenyon�Propp)

(Kenyon�Okounkov)

(Bufetov�Gorin)

A = aL,B = bL, c = cL

L→∞

Theorem. Average proportions of three types of lozenges converge

in probability to explicit deterministic functions of a point inside

the hexagon. Equivalently, the rescaled height function 1
LH(Lx , Ly)

converges to a deterministic limit shape.



Random lozenge tilings: features

Central Limit Theorem

(Kenyon), (Borodin-Ferrari),

(Petrov), (Duits),

(Bufetov�Gorin)

Liquid region: all types of

lozenges are present

Frozen region: only one type

A = aL,B = bL, c = cL

L→∞

Theorem. The centered height function H(Lx , Ly)− EH(Lx , Ly)
converges in the liquid region to a generalized Gaussian �eld, which

can be identi�ed with a pullback of the 2d Gaussian Free Field.



Random lozenge tilings: features

Bulk local limit

(Okounkov�Reshetikhin),

(Baik-Kriecherbauer-

McLaughlin-Miller),

(Gorin), (Petrov)

A = aL,B = bL, c = cL

L→∞

Theorem. Near each point (xL, yL) the point process of lozenges

converges to a (unique) translation invariant ergodic Gibbs

measure on tilings of plane of the slope given by the limit shape.



Random lozenge tilings: features

Edge local limit at a generic

point

(Ferrari�Spohn),

(Baik-Kriecherbauer-

McLaughlin-Miller),

(Petrov)

Edge local limit at a

tangency point

(Johansson�Nordenstam),

(Okounkov�Reshetikhin),

(Gorin�Panova), (Novak)

A = aL,B = bL, c = cL, L→∞
Theorem. Near a generic (or tangency) point of the frozen

boundary its �uctuations are governed by the Airy line ensemble

(or GUE�corners process, respectfully)



Random lozenge tilings: features

Skip

1. Law of Large Numbers

2. Central Limit Theorem

3. Bulk local limits

4. Edge local limits at generic

and tangency points

A = aL,B = bL, c = cL,

L→∞

Universality predicts that the same features should be present in

generic random tilings models.

This is rigorously established only for the Law of Large Numbers.



Random lozenge tilings: what's new?

1. Law of Large Numbers

2. Central Limit Theorem

3. Bulk local limits

4. Edge local limits at generic

and tangency points

Conjecturally, should hold for

generic random tilings

Today:

• Partial universality result for bulk local limits

• Description of limit shapes (in LLN) via quantized Voiculescu

R�transform

• Universal Central Limit Theorem for �trapezoid domains�.



Trapezoids

N

C



Bulk local limits: universality

Theorem. (G.-16) Let Ω(L) be a regularly growing sequence of

domains. For any part of Ω(L) covered by a trapezoid, near any

point in the liquid region in this part, the uniformly random lozenge

tilings of Ω(L) converge locally as L→∞ to the ergodic

translation�invariant Gibbs measure of the slope given by the

limit shape.
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Many domains are completely covered by trapezoids and therefore

the conjectural bulk universality is now a theorem for them.
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Bulk local limits: universality
Theorem. (G.-16) Let Ω(L) be a regularly growing sequence of

domains. For any part of Ω(L) covered by a trapezoid, near any

point in the liquid region in this part, the uniformly random lozenge

tilings of Ω(L) converge locally as L→∞ to the ergodic

translation�invariant Gibbs measure of corresponding slope.

Previous results:

(Petrov-12)

Local bulk limits for

polygons covered by

single trapezoid.

(Kenyon�04)

Local bulk limits for

a class of domains

with no straight

boundaries.

(Borodin�Kuan�07)

Local bulk limits for

Gibbs measures

arising from

characters of U(∞)

(Okounkov�

Reshetikhin�01)

Local bulk limits for

Schur processes



Ergodic translation�invariant Gibbs measures
Theorem. ... near any point in the liquid region as L→∞ we

observe an ergodic translation�invariant Gibbs measure.

Theorem. (She�eld). For each

slope, i.e. average proportions of

lozenges (p , p , p ) there is a

unique e.t.-i.G. measure.

Description. (Cohn�Kenyon�Propp,

Okounkov�Reshetikhin) Red lozenges

in e.t.-i.G. measure form a

determinantal point process

ρk((x1, n1), . . . , (xk , nk)) =
n

det
i ,j=1

[
1

2πi

∫ ξ

ξ̄
w xj−xi−1(1− w)nj−nidw

]
contour intersects (0, 1) when nj ≥ ni and (−∞, 0) otherwise.
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Local vs global meanings of slope (p , p , p )

<(ξ)

=(ξ)

0 1

ξ

Meaning 1: It describes the

e.t.-i.G. measure in the bulk

1

2πi

∫ ξ

ξ̄
w xj−xi−1(1− w)nj−nidw

Meaning 2: Law of Large Numbers. Normalized lozenge counts

inside a subdomain D converge to deterministic vector(∫
D
p (x,η)dxdη,

∫
D
p (x,η)dxdη,

∫
D
p (x,η)dxdη

)
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How to �nd slope (p , p , p )?

(Kenyon�Okounkov) (Petrov) (Borodin-Ferrari)

Skip

Both local bulk limits and global law of large numbers are

parameterized by the same position�dependent slope which one

needs to �nd.



How to �nd slope (p , p , p )?

Method 1. (Cohn�Kenyon�Propp)

Solve variational problem for

tilings of a generic domain Ω.

∫
Ω
σ
(
p (x,η), p (x,η), p (x,η)

)
dxdη −→ max

σ(·, ·, ·) is an explicitly known entropy (or surface tension)



How to �nd slope (p , p , p )?

Method 1. (Cohn�Kenyon�Propp)

Solve variational problem for

tilings of a generic domain.

Method 2. (Kenyon�Okounkov)

For simply�connected

polygons the solution is found

through an algebraic procedure.

<(ξ)

=(ξ)

0 1

ξ
Q(ξ, 1− ξ) = xξ + η(1− ξ)

Q is a polynomial uniquely

de�ned by a set of algebraic

conditions such as degree and

tangency to polygon's sides.



How to �nd slope (p , p , p )?

Method 1. (Cohn�Kenyon�Propp)

Solve variational problem for

tilings of a generic domain.

Method 2. (Kenyon�Okounkov)

For simply�connected

polygons the solution is found

through an algebraic procedure.

Method 3. (Bufetov�Gorin-13)

For trapezoids the solution is

found through a quantization of

the Voiculescu R�transform
from free probability.



Slope (p , p , p ) for trapezoids.

Various origins for the measure

on tilings of trapezoid, e.g.:

Setup. We know the asymptotic

pro�le of p along the right

boundary of a trapezoid. The

distribution of tilings of

trapezoid is conditionally

uniform given the right boundary

(which might be random).

Question. How to �nd

(p , p , p ) inside the

trapezoid?



Slope (p , p , p ) for trapezoids.

x

η

η = 1

µ[η], 0 < η ≤ 1 is a probability

measure on R with density at a

point x equal to p (ηx− η,η)

Eµ(z) = exp

(∫
R

1

z − x
µ(dx)

)
.

Rµ(z) = E (−1)
µ (z)− z

z − 1
,
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Deformation (quantization) of

the Voiculescu R transform

from the free probability theory



Slope (p , p , p ) for trapezoids.

x

η

η = 1

µ[η], 0 < η ≤ 1 is a probability

measure on R with density at a

point x equal to p (ηx− η,η)

Eµ(z) = exp

(∫
R

1

z − x
µ(dx)

)
.

Rµ(z) = E (−1)
µ (z)− z

z − 1
,

Theorem. (Bufetov�Gorin-13) If (p , p , p ) describes the Law of

Large Numbers for Gibbs measures on tilings of trapezoids, then

Rµ[η](z) =
1

η
Rµ[1](z).
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x

η

η = 1

<(ξ)

=(ξ)

0 1

ξ

µ[η], 0 < η ≤ 1 is a probability

measure on R with density at a

point x equal to p (ηx− η,η)

Eµ(z) = exp

(∫
R

1

z − x
µ(dx)

)
.

Corollary. (Bufetov�Gorin-13)

For tilings of trapezoids also

ξ(ηx− η,η) = Eµ[η] (x− 0i)

Angle of red lozenge is clear.

Others are very mysterious.
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Complex structure and CLT

<(ξ)

=(ξ)

0 1

ξ

The proportions (p , p , p )
de�ne a complex structure

ξ(x,η) inside the liquid region.

Which arises in the Central Limit Theorem for �uctuations of the

height function.



Height function

0

1
1

2
2

3

3

4 4

5 5

0

Tiling de�nes stepped surface, parameterized by height function.

LLN: rescaled height function converges to a limit shape.

CLT: what are the �uctuations?
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Conjecture. (Kenyon�Okounkov) For any regularly growing

simply-connected domains Ω(L), the centered height functions of

uniformly random tilings HL(Lx, Lη)−EHL(Lx, Lη) converge in the

liquid region to the Gaussian Free Field with respect to the

complex structure ξ and with Dirichlet boundary conditions.

• (Kenyon�04) proved for domains with no frozen regions
• (Petrov�12) proved for polygons covered by a single trapezoid
• (Bufetov�Gorin-16) extend by a di�erent method to arbitrary

trapezoids with deterministic boundary conditions.
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Conjecture. HL(Lx, Lη)− EHL(Lx, Lη) converge in the liquid

region to the Gaussian Free Field with respect to the complex

structure ξ and with Dirichlet boundary conditions.

• (Kenyon�04) proved for domains with no frozen regions
• (Petrov�12) proved for polygons covered by a single trapezoid
• (Bufetov�Gorin-16) extend by a di�erent method to arbitrary

trapezoids with deterministic boundary conditions.



Gaussian Free Field

De�nition. The Gaussian Free Field (with Dirichlet boundary

conditions) in the upper halfplane U � is a generalized centered

Gaussian random �eld F on U with covariance

E(F(z)F(w)) = − 1

2π
ln

∣∣∣∣z − w

z − w

∣∣∣∣ , z ,w ∈ U

Equivalently, for any smooth compactly supported g1, g2 on U,

E
[(∫

U
g1(u)F(u)du

)
·
(∫

U
g2(u)F(u)du

)]
=

∫
U
g1(u)∆−1g2(u)du.

GFF is a conformally invariant 2d�analogue of Brownian motion.



Uniformization of the complex structure

<(ξ)

=(ξ)

0 1

ξ

ξ(x,η) turns the liquid region

into a simply connected complex

Riemann surface.

(x,η)→ z(x,η) is a conformal

uniformization map to the

upper half�plane H.
(unique up to 3 parameters, but GFF is invariant)

De�nition. The Gaussian Free

Field in the liquid region with

Dirichlet boundary conditions is

the pullback of GFF in H with

respect to the map

(x,η)→ z(x,η).



CLT for trapezoids

0
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Theorem. (Bufetov-Gorin-16) Take a sequence of trapezoids with

�xed deterministic right boundaries and such that the rescaled

height functions along the boundary approach a limit pro�le. The

centered height functions HL(Lx, Lη)− EHL(Lx, Lη) converge to

the Gaussian Free Field in the liquid region with respect to the

complex structure ξ.

The uniformization map is explicit.
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z(x,η) =
1− η

1− ξ(x,η)
+x+η−1

Theorem. (Bufetov-Gorin-16) Take a sequence of trapezoids with

�xed deterministic right boundaries and such that the rescaled

height functions along the boundary approach a limit pro�le. The

centered height functions HL(Lx, Lη)− EHL(Lx, Lη) converge to

the Gaussian Free Field in the liquid region with respect to the

complex structure ξ. The uniformization map is explicit.



Ingredients of proofs
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L

x

n

• Partial universality result for bulk local limits

• Description of limit shapes (in LLN) via quantized Voiculescu

R�transform

• Universal Central Limit Theorem for �trapezoid domains�.

We use two key approaches to random tilings of trapezoids.
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For L�tuple (t1 > t2 > . . . tL),
let {x ji }, 1 ≤ i ≤ j ≤ L be

horizontal lozenges of uniformly

random lozenge tiling with

positions t on the right boundary

Theorem. (Petrov-2012) For

any collection of distinct pairs

(x(1), n(1)), . . . , (x(k), n(k))

P
[
x(i) ∈ {xn(i)

1 , x
n(i)
2 , . . . , x

n(i)
j }, i = 1, . . . , k

]
=

k

det
i,j=1

[K (x(i), n(i); x(j), n(j))]

K (x1, n1; x2, n2) = −1n2<n11x2≤x1

(x1 − x2 + 1)n1−n2−1

(n1 − n2 − 1)!
+

(L− n1)!

(L− n2 − 1)!

× 1

(2πi)2

∮
C(x2,...,t1−1)

dz

∮
C(∞)

dw
(z − x2 + 1)L−n2−1

(w − x1)L−n1+1

1

w − z

L∏
r=1

w − tr
z − tr

,

Observation. (G.-16) the bulk limit of K (·) depends only on the

asymptotic limit shape of t. This allows to pass from deterministic

to random t and prove bulk universality.
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For L�tuple (t1 > t2 > . . . tL),
let {x ji }, 1 ≤ i ≤ j ≤ L be

horizontal lozenges of uniformly

random lozenge tiling with

positions t on the right boundary

Schur generating function of

a vertical section k

∑
λ

P
[
(xk1 , x

k
2 , . . . , x

k
k ) = λ

]sλ(u1, . . . , uk)

sλ(1, . . . , 1)
=

st(u1, . . . , uk , 1
L−k)

st(1L)

sλ(u1, . . . , uk) =
detki ,j=1[u

λj
i ]∏

i<j(ui − uj)
, λ = (λ1, . . . , λk).



Ingredients of proofs

Schur generating function of a vertical section k

∑
λ

P
[
(xk1 , x

k
2 , . . . , x

k
k ) = λ

]sλ(u1, . . . , uk)

sλ(1, . . . , 1)
=

st(u1, . . . , uk , 1
L−k)

st(1L)

sλ(u1, . . . , uk) =
detki ,j=1[u

λj
i ]∏

i<j(ui − uj)
, λ = (λ1, . . . , λk).

Apply
∏
i<j

(ui − uj)
−1

(
k∑

i=1

(
ui

∂

∂ui

)m
)r ∏

i<j

(ui − uj)

and set u1 = · · · = uk = 1 to get

E
[(

(xk1 )m + (xk2 )m + · · ·+ (xkk )m
)r]

.

Asymptotics of Schur functions (Gorin-Panova-12) + combinatorial

analysis turns this observation into LLN and CLT for trapezoids.
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i<j(ui − uj)
, λ = (λ1, . . . , λk).

Apply
∏
i<j

(ui − uj)
−1

(
k∑

i=1

(
ui

∂

∂ui

)m
)r ∏

i<j

(ui − uj)

and set u1 = · · · = uk = 1 to get

E
[(

(xk1 )m + (xk2 )m + · · ·+ (xkk )m
)r]

.

Asymptotics of Schur functions (Gorin-Panova-12) + combinatorial

analysis turns this observation into LLN and CLT for trapezoids.



Summary

• Universal bulk local limits �near� straight boundaries
• Limit shapes (in LLN) via quantized Voiculescu R�transform
• Universal Central Limit Theorem for �trapezoid domains�

leading to 2d Gaussian Free Field via uniformization map.

Key tools: double contour integral expression for the correlation

kernel, asymptotic of Schur polynomials, di�erential operators

acting on Schur generating functions.

How do we extend universality further?
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