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In this lecture we introduce the large deviation pronciple (LDP), first
by considering empirical means of Bernoulli sequences and then dis-
cussing the general definition. The main focus of the lecture and the
first problem set is the classical Cramér Theorem on R and its appli-
cations. Mastering the Legendre-Fenchel transform is also one of the
goals. This transform and related convex analysis notions play an im-
portant role in other areas of mathematics (Hamiltonian mechanics,
statistical physics, optimal control, etc.).

First Examples and the Large Deviation Principle
Notation: B(R) denotes the Borel σ-
algegra on R.Let (Xi)i∈N be an i.i.d. sequence of random variables on a probability

space (Ω,F , P) with a common distribution µ. Denote by µn be the
distribution of empirical means, Xn = 1

n ∑n
i=1 Xi, that is for every Borel

set B in R

µn(B) = P(Xn ∈ B). (1)

The following limit theorems for empirical means of i.i.d. random
variables are familiar from a standard probability course. Probably,
the very first one that you learn about is the strong law of large num-
bers.

Theorem 1 (Strong law of large numbers). Assume that E|Xi| < ∞ and
denote E[Xi] by x. Then

P
(

ω : lim
n→∞

Xn(ω) = x
)
= 1.

Equivalently, we shall also say that Xn → x almost surely (a.s.) or with
probability 1.

We shall be mostly using the weak law of large numbers.
The proof of the weak law of large
numbers is a simple application of
Chebyshev inequality if we assume that
E[X2

i ] < ∞. Below this will always
be the case. The proofs of the weak
and strong laws of large numbers
under the stated assumptions can be
found, for example, in R. Durrett’s
book Probability: Theory and Examples,
Theorems 2.2.9 and 2.4.1 respectively.

Theorem 2 (Weak law of large numbers). Assume that E|Xi| < ∞
and denote E[Xi] by x. Then the sequence (Xn)n∈N converges to x in
probability, i.e. for every ε > 0

lim
n→∞

P(|Xn − x| ≥ ε) = 0.
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Informally, both the weak and the strong laws of large numbers
assert that as n → ∞ the empirical means Xn approach the mean
x. The central limit theorem tells us that typically the deviations of
Xn from x are of order 1/

√
n. For example, there is less than 1/2%

chance that these deviations exceed 3σ/
√

n where σ is the standard
deviation of Xi.

Theorem 3 (Central limit theorem). Assume that E[X2
i ] < ∞. Denote

E[Xi] by x and Var(Xi) by σ2 and suppose that σ 6= 0. Then for all a, b ∈
R, a < b,

P

(
aσ√

n
< Xn − x ≤ bσ√

n

)
→ 1√

2π

∫ b

a
e−x2/2 dx as n→ ∞.

Note that the weak law of large numbers and the central limit
theorem can be equivalently written in terms of the measures µn,
n ∈N.

The weak law of large numbers: for every ε > 0

lim
n→∞

µn((x− ε, x + ε)) = 1.

Denoting by δx a Dirac measure at x, we can easily show that the

Definition: Let µn, n ∈ N, and µ be
probability measures on (R,B(R)).
We say that the sequence (µn)n∈N

converges weakly to µ and write
µn ⇒ µ if∫

R
f dµn →

∫
R

f dµ as n→ ∞

for every continuous bounded function
f : R→ R.
Exercise. Show that a sequence (Yn)n∈N

of random variables converges to a
constant c ∈ R in probability iff the
sequence (µn)n∈N of distributions of Yn,
n ∈N, converges weakly to δc.

In our case, Yn = Xn, n ∈ N, and
c = x.

weak law of large numbers is equivalent to the following statement:
the sequence of measures (µn)n∈N converges weakly to δx as n → ∞,
i.e. µn ⇒ δx as n→ ∞.

The central limit theorem: for all a, b ∈ R, a < b,

lim
n→∞

µn((x + aσ/
√

n, x + bσ/
√

n]) = χ((a, b]) :=
1√
2π

∫ b

a
e−x2/2 dx.

Equivalently, the distributions of Xn−x
σ/
√

n converge weakly to χ.
Deviations of order 1 as opposed to “normal” deviations of order

1/
√

n are said to be large. We shall see below that for many families
of distributions the probabilities of large deviations of empirical
means from the mean decay exponentially fast with n. The goal is to
find appropriate conditions and quantify the rate of decay.

Bernoulli Sequences

Exercise: work out the asymmetric case,
P(Xi = 1) = 1− P(Xi = 0) = p 6= 1/2.

Suppose that P(Xi = 1) = P(Xi = 0) = 1/2. Then µn is supported on
An = {i/n, i = 0, 1, . . . , n} ⊂ [0, 1] and assigns a binomial weight to
every i/n ∈ An:

µn

({
i
n

})
= P

(
Xn =

i
n

)
=

1
2n

(
n
i

)
, i ∈ {0, 1, . . . , n}.
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We would like to compute for every a ∈ (1/2, 1] Question: If a ∈ [0, 1/2], then what is the
value of this limit?
Answer: 0.lim

n→∞

1
n

ln µn ([a, ∞)) = lim
n→∞

1
n

ln µn ([a, 1]) .

Denoting by in the smallest integer in [an, n], noticing that

max
i∈[an,n]

(
n
i

)
=

(
n
in

)
,

and using Lemma 4 and Stirling’s formula1

The easiest way to check this is to show
that (n

i )/(
n

i+1) ≥ 1 for all i ≥ n/2.

1 It often suffices to know only that
ln(n!) = n ln n− n + O(ln n) as n→ ∞.

n! = cn
√

n
(n

e

)n
, where cn →

√
2π as n→ ∞,

we calculate

Lemma 4 (Swapping ln ∑ for ln max).
Let a(n)i , 1 ≤ i ≤ Nn, be arrays of positive

numbers and mn = max
1≤i≤Nn

a(n)i .

If lim
n→∞

1
n ln Nn = 0 then

lim
n→∞

1
n

ln

(
1

mn

Nn

∑
i=1

a(n)i

)
= 0.

Proof. The statement immediately
follows from the inequalities

1 ≤ 1
mn

Nn

∑
i=1

a(n)i ≤ Nn.

lim
n→∞

1
n

ln µn([a, 1]) = − ln 2 + lim
n→∞

1
n

ln
n

∑
i=in

(
n
i

)
= − ln 2 + lim

n→∞

1
n

ln max
in≤i≤n

(
n
i

)
= − ln 2 + lim

n→∞

1
n

ln
(

n
in

)
= − ln 2− lim

n→∞

[
in
n

ln
in

n
+

(
1− in

n

)
ln
(

1− in

n

)]
.

By the definition of in, in/n→ a as n→ ∞, and we conclude that

lim
n→∞

1
n

ln µn([a, 1]) = − (ln 2 + a ln a + (1− a) ln(1− a)) .

A symmetric computation shows that for a ∈ [0, 1/2)

lim
n→∞

1
n

ln µn([0, a]) = − (ln 2 + a ln a + (1− a) ln(1− a)) .

If we put

0.5 1

0.5

ln 2

x

y

Figure 1: Graph of I(x).

I(x) =

ln 2 + x ln x + (1− x) ln(1− x), if x ∈ (0, 1);

∞, if x 6∈ (0, 1),

then upon a moment’s reflection we shall agree that, in fact, for any
interval I ⊂ R of positive length

The infimum over the empty set is
conveniently defined to be ∞.

lim
n→∞

1
n

ln µn(I) = − inf
x∈I
I(x). (2)

Can we replace I with an arbitrary Borel set B? To see that the limit,
in general, need not exist take I = [1/2, 1/2]. Then µn(I) = 0 for

The point 1/2 = E[Xi ] is special
but consider also replacing I with
B = {1/4, 1/3, 1/

√
5}.

odd n, µn(I) = ( n
n/2)

1
2n for even n, and

−∞ = lim inf
n→∞

1
n

ln µn(I) < lim sup
n→∞

1
n

ln µn(I) = 0 = −I
(

1
2

)
.

What is the right statement then?
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Large deviation principle

The statement we are looking for is called the large deviation princi-
ple (LDP).

Sometimes I satisfying (i) is called a
“good rate function”. A general rate
function is supposed to be lower-semi-
continuous, i.e. be such that all the
sub-level sets in (i) are closed. We shall
only work with good rate functions.

Since X is closed and µn(X) = 1, (ii)
implies that infx∈X I(x) = 0 and, in
particular, I 6≡ ∞.

Definition 1 (LDP). A sequence of probability measures on a Polish space
X equipped with the Borel σ-algebra X satisfies a LDP with a rate function
I : X→ [0, ∞] if

(i) I has compact sub-level sets {x ∈ X : I(x) ≤ `} for all ` ∈ [0, ∞);

(ii) for every closed set C ⊂ X

lim sup
n→∞

1
n

ln µn(C) ≤ − inf
x∈C
I(x); (3)

(iii) for every open set O ⊂ X

lim inf
n→∞

1
n

ln µn(O) ≥ − inf
x∈O
I(x). (4)

Putting this differently, if I satisfies (i) then a LDP holds iff for every
B ∈ X Notation: for a Borel set B we denote

by B the closure of B (intersection of
all closed sets containing B), by Bo

the interior of B (the union of all open
sets contained in B), and by ∂B the
boundary of A: ∂B = B \ Bo .

− inf
x∈Bo
I(x) ≤ lim inf

n→∞

1
n

ln µn(B) ≤ lim sup
n→∞

1
n

ln µn(B) ≤ − inf
x∈B
I(x).

Normal Random variables and other examples

Let (Xi)i∈N be an i.i.d. sequence of standard normal random vari-
ables. Then Xn is normal with mean 0 and variance 1/n, µn ⇒ δ0,
and for any interval I ⊂ R with endpoints a < b

Exercise: provide the details of this
computation.

lim
n→∞

1
n

ln µn(I) = lim
n→∞

1
n

ln

(
1√
2π

∫ b
√

n

a
√

n
e−

x2
2 dx

)
= − inf

x∈I

x2

2
.

This calculation gives us a candidate for the rate function: I(x) =

x2/2.

This is Exercise III.9 on p. 30 in
Frank den Hollander. Large deviations,

volume 14 of Fields Institute Mono-
graphs. American Mathematical Society,
Providence, RI, 2000

Exercise 1. For each sequence (µn)n∈N determine if it satisfies a LDP.

(a) (X,X ) = (R,B(R)) and µn is a uniform measure on [−n, n];

(b) (X,X ) = (R,B(R)) and µn is a uniform measure on [−n−1, n−1];

(c) (X,X ) = ([−1, 1],B([−1, 1])) and µn is a uniform measure on
[−1, 1].



introductory examples and definitions. cramér’s theorem 5

Exercise 2. Find a candidate for the LD rate function for µn if (Xi)i∈N

are i.i.d.

(a) exponential;

(b) Poisson

random variables with parameter λ > 0. Is there a relationship
between the two rate functions (associated to the same λ)? Hint: If
(Nt)t≥0 is a Poisson process with rate λ and τn is the time of the n-th
arrival then Nt = sup{n ≥ 0 : τn ≤ t}.
Answer:

(a) IExp(x) =

λx− ln(λx)− 1, if x > 0;

∞, if x ≤ 0;

(b) IPoi(x) =


x ln(x/λ)− (x− λ), if x > 0;

λ, if x = 0;

∞, if x < 0,

and IPoi(x) = |x|IExp

(
1
x

)
.

0.5 1 1.5 2

1

2

3

x

y

Figure 2: Graph of IExp(x) with λ = 2.
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Figure 3: Graph of IPoi(x) with λ = 2.

Cramér’s Theorem

Harald Cramér (1893 - 1985) was
a Swedish mathematician, actuary,
and statistician. His paper Sur un
nouveau théorème-limite de la théorie
des probabilités, Actualités scientfiques
et industrielles: 736, pp. 2-23, 1938,
is considered to be the first on the
subject. See https://arxiv.org/

abs/1802.05988 for the original text
alongside with English translation by
H. Touchette.

We have worked out several examples and could now really appreci-
ate a general theorem which would tell us when distributions µn of
Xn (empirical means of an i.i.d. sequence of random variables) satisfy
a LDP and how to compute the rate function.

Let M : R → (0, ∞] be the moment generating function (MGF)
associated to the distribution measure µ of a random variable X:

M(t) =
∫

R
etx dµ = E

[
etX
]

, t ∈ R.

Its logarithm, Λ(t) := ln M(t), is called the logarithmic moment gen-
erating function or cumulant generating function associated to µ. We
shall denote the domain of Λ, {t ∈ R : Λ(t) < ∞}, by DΛ. We
note that DΛ is always an interval and it contains 0. The next lemma
summarizes basic properties of Λ.

Lemma 5. Let Λ be a logarithmic moment generating function associated
to a non-degenerate probability measure µ. Then

https://arxiv.org/abs/1802.05988
https://arxiv.org/abs/1802.05988
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(a) Λ ∈ C∞(Do
Λ) (infinitely many times differentiable on the interior

of its domain) and if X is a random variable with distribution µ then
∀t ∈ Do

Λ

Λ′(t) =
M′(t)
M(t)

=
E
[
XetX]

E [etX ]
,

Λ′′(t) =
M′′(t)
M(t)

−
(

M′(t)
M(t)

)2

=
E
[
X2etX]

E [etX ]
−
(

E
[
XetX]

E [etX ]

)2

.

In particuar, if 0 ∈ Do
Λ then Λ′(0) = E[X] and Λ′′(0) = Var(X).

(b) Λ(t) is strictly convex.

Proof. (a) Since M > 0 and DM = DΛ, it is enough to prove that
M ∈ C∞(Do

M). Let t ∈ Do
Λ. Then there is a δ > 0 such that (t− 2δ, t +

2δ) ⊂ Do
M. We look at the difference quotients

M(t + h)−M(t)
h

=
∫

R
etx ehx − 1

h
dµ

and note that

lim
h→0

etx ehx − 1
h

= xetx.

Moreover, for all h such that 0 < |h| ≤ δ∣∣∣∣∣etx ehx − 1
h

∣∣∣∣∣ ≤ etx eδ|x| − 1
δ

≤ 1
δ

(
e(t−δ)x + e(t+δ)x

)
.

The right hand side of the last inequality is integrable with respect
to µ by our choice of δ. By the dominated convergence theorem we
conclude that

lim
h→0

M(t + h)−M(t)
h

= lim
h→0

∫
R

etx ehx − 1
h

dµ =
∫

R
xetx dµ = E

[
XetX

]
.

The proof for the second and higher derivatives is very similar. The
formulas for Λ′ and Λ′′ follow simply by the chain and quotient
rules.

(b) Let t ∈ Do
Λ. For this t define a new probability measure νt by

Another proof of (b) can be given using
Hölder inequality. Take α ∈ (0, 1) and
t1, t2 ∈ DΛ. Then Hölder inequality
with f (x) = eαt1x , g(x) = e(1−α)t2x ,
p = 1/α, q = 1/(1− α) gives

M(αt1 + (1− α)t2)) =
∫

R
eαt1x+(1−α)t2x dµ

=
∫

R

(
et1x)α (et2x)1−α dµ

≤
(∫

R
et1x dµ

)α (∫
R

et2x dµ

)1−α

= (M(t1))
α(M(t2))

1−α.

Taking the logarithm of both sides we
get the convexity of Λ. To show that for
t1 6= t2 and α ∈ (0, 1) the inequality is
strict we recall that for given p, q > 1,
p−1 + q−1 = 1

‖ f g‖L1 = ‖ f ‖1/p
Lp ‖g‖1/q

Lq

if and only if

| f |p

‖ f ‖p
Lp

=
|g|q

‖g‖q
Lq

µ-a.s..

If for for some t1 6= t2, α ∈ (0, 1) we
had an equality then we would have
that et1x/M(t1) = et2x/M(t2) µ-a.s..
Since we assumed that t1 6= t2, µ has
to be degenerate. This contradicts our
assumption.

νt(B) =
1

M(t)

∫
B

etx dµ ∀B ∈ B(R).

Let Yt be a random variable with distribution νt. Since t ∈ Do
Λ = Do

M,
the MGF of Yt, MYt , is finite in some neighborhood of the origin:
there is a δ > 0 such that for all |s| < δ

E
[
esYt
]
=
∫

R
esy dνt =

1
M(t)

∫
R

e(t+s)y dµ =
M(t + s)

M(t)
< ∞.



introductory examples and definitions. cramér’s theorem 7

By part (a) we conclude that the logarithmic MGF of Yt, ΛYt , is
smooth near the origin and Λ′′Yt

(0) = Var(Yt) > 0 (µ and, hence,
ν are non-degenerate). But note that

Λ′′(t) = Λ′′Yt
(s)
∣∣∣
s=0

= Var(Yt).

Thus, we have shown that for every t ∈ Do
Λ the second derivative of

Λ at t is strictly positive. This proves strict convexity of Λ.

Exercise. Show that under the condi-
tions of Cramér’s theorem

(a) E[|Xi |] < ∞;
(b) I(x) = 0.

Theorem 6 (Cramér’s Theorem). Suppose that 0 ∈ Do
Λ. Then measures

µn satisfy a LDP with the rate function

I(x) = sup
t∈R

(xt−Λ(t)), x ∈ R. (5)

First of all, let’s see why under the conditions of the theorem

I(x) = sup
t∈R

(xt−Λ(t))

satisfies the conditions of Definition 1. Note that

I(x) ≥ xt−Λ(t), ∀t ∈ R. (6)

• Setting t = 0 in (6) we see that I(x) ≥ 0.

• If I(xk) ≤ c for all k ∈N and xk → x then for all t ∈ R

c ≥ lim inf
k→∞

I(xk) ≥ lim inf
k→∞

(xkt−Λ(t)) = xt−Λ(t).

Taking the supremum of the right hand side over t ∈ R we con-
clude that I(x) ≤ c. This shows that the sub-level sets of I are
closed, i.e. I is lower semi-continuous.

• Finally we note that by (6) for every t ∈ R and x 6= 0

I(x)
|x| ≥ t sign x− Λ(t)

|x| .

Since Λ(t) < ∞ for all |t| < δ, we can choose t = 1
2 δ sign x and get

that

lim inf
|x|→∞

I(x)
|x| ≥ δ > 0.

Thus, I(x) → ∞ as |x| → ∞. This implies that sub-level sets of
I are bounded. Since every closed and bounded subset of R is
compact, part (i) of the Definition 1 is also satisfied, and I is a rate
function.



introductory examples and definitions. cramér’s theorem 8

A proof of Cramér’s theorem under slightly varying assumptions
can be found in virtually every book on large deviations. We shall
concentrate on two main ideas of the proof. These ideas are very
useful in their own right.

Idea I: Chernoff bound, a.k.a. exponential Chebyshev inequality A combination of exponentiation and
Markov inequality is widely known as
“Chernoff bound” as well as “exponen-
tial Chebyshev inequality”. According
to Herman Chernoff, the bound was
suggested to him by Herman Rubin
(see p. 340 of J. Bather. A Conversa-
tion with Herman Chernoff at http:
//www.jstor.org/stable/2246029).
Wouldn’t it be appropriate then to
rename it to “Herman bound”? :-)

The upper bound is about closed sets. Since 0 ∈ Do
Λ, there is a δ > 0

such that M(t) < ∞ for all t with |t| < δ. This implies, in particular,
that all moments of Xi are finite.

Let us consider again an interval [x, ∞) for some x > x := E[Xi],
and try to estimate µn([x, ∞)). For for all t > 0

µn([x, ∞)) = P(Xn ≥ x) = P
(

etnXn ≥ etnx
)

.

Applying Markov inequality and using independence we get

µn([x, ∞)) ≤ e−tnxE
[
etnXn

]
= e−tnx (M(t))n = e−n(xt−Λ(t)).

For some t the right hand side can be infinite. But we know that for
t ∈ (0, δ) it is finite. Minimizing the right hand side over t ≥ 0 (for
t = 0 the inequality holds trivially) we see that for all n ∈N

1
n

ln µn([x, ∞)) ≤ inf
t≥0

(−xt + Λ(t)) = − sup
t≥0

(xt−Λ(t)).

In fact, for x > x

sup
t≥0

(xt−Λ(t)) = sup
x∈R

(xt−Λ(t)) = I(x). (7)

Indeed,

• by the concavity of the logarithm, for t < 0 and x > x we have

xt− ln E
[
etXi
]
< xt− tE[Xi] = 0,

and, thus, supt<0(xt−Λ(t)) ≤ 0;

• on the other hand,

sup
t≥0

(xt−Λ(t)) ≥ xt−Λ(t)
∣∣∣
t=0

= 0.

We conclude that
1
n

ln µn([x, ∞)) ≤ −I(x).

A similar argument shows that for x < x

1
n

ln µn((−∞, x]) ≤ −I(x).

http://www.jstor.org/stable/2246029
http://www.jstor.org/stable/2246029
http://www.jstor.org/stable/2246029
http://www.jstor.org/stable/2246029
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Now let C be an arbitrary closed set in R. If infx∈C I(x) = 0 then the
LD upper bound trivially holds. Therefore, it is enough to consider
the case when infx∈C I(x) > 0. Since I(x) = 0, we conclude that
x ∈ Cc, which is an open set. Take the union of all open intervals in Every open set in R is a countable

disjoint union of open intervals.Cc which contain x. It is an interval (x`, xr) ⊂ Cc so that C ⊂ (x`, xr)c.
Observe also that at least one of the endpoints of (x`, xr) is finite as C
is non-empty.

If x` > −∞ then x` ∈ C and I(x`) ≥ infx∈C I(x). In the same way,
if xr < ∞ then I(xr) ≥ infx∈C I(x). Applying upper bounds obtained
earlier for (−∞, x`] and [xr, ∞) we get

µn(C) ≤ µn((−∞, x`]) + µn([xr, ∞)) ≤ 2e−n infx∈C I(x).

This proves the required LD upper bound.

Idea II: change of measure, a.k.a. exponential “tilting”

Lower bound is about open sets. We shall not give all details here but
restrict ourselves to a typical case in which the idea of the proof is
most transparent.

Let O be an open set. If x ∈ O then there is a δ > 0 such that
(x− δ, x + δ) ⊂ O. By the weak law of large numbers,

µn((x− δ, x + δ)) = P(|Xn − x| < δ)→ 1 as n→ ∞,

and, thus,

lim inf
n→∞

1
n

ln µn(O) ≥ lim inf
n→∞

1
n

ln µn((x− δ, x + δ)) = 0 = − inf
x∈O
I(x).

This is the simplest case, and it gives us two ideas. First, we note that
it is enough to show that for each x0 ∈ O and all δ > 0

lim inf
n→∞

1
n

ln µn((x0 − δ, x0 + δ)) ≥ −I(x0). (8)

The second idea is, for a given x0 6= x, to introduce a new “tilted”
measure µ̃ with the mean equal to x0, and perform a change of mea-
sure from µ to µ̃, and, thus, from µn to µ̃n. Then the event

{|Xn − x0| < δ}

will be a typical event for the new measure, i.e.

µ̃n((x0 − δ, x0 + δ))→ 1, as n→ ∞,

and a lower bound will be obtained simply by estimating “the cost”
of this change of measure.

Here are the details. Assume that I(x0) < ∞.2 In addition, sup- 2 If I(x0) = ∞ then (8) holds trivially.

pose that the supremum in (5) is attained at some t0 ∈ R so that3 3 Our assumptions imply, in particular,
that t0 ∈ Do

Λ, i.e. Λ(t0) < ∞.
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I(x0) = x0t0 −Λ(t0),

where

x0 = Λ′(t) =
M′(t0)

M(t0)
=

1
M(t0)

∫
R

xext0 dµ =:
∫

R
x dµ̃,

and we defined for every A ∈ B

µ̃(A) :=
1

M(t0)

∫
A

ext0 dµ (in short, dµ =
ext0

M(t0)
dµ̃).

This is exactly the measure we are looking for: by the weak law of
large numbers for every ε > 0

µ̃n((x0 − ε, x0 + ε))→ 1 as n→ ∞.

Moreover, for every ε ∈ (0, δ)

µn((x0 − δ, x0 + δ)) ≥µn((x0 − ε, x0 + ε)) = P
(
|Xn − x0| < ε

)
=

∫
· · ·

∫
|∑n

i=1 xi−x0n|<εn

dµ(x1) . . . dµ(xn)

= (M(t0))
n

∫
· · ·

∫
|∑n

i=1 xi−x0n|<εn

e−t0 ∑n
i=1 xi dµ̃(x1) . . . dµ̃(xn)

= en(Λ(t0)−x0t0)
∫
· · ·

∫
|∑n

i=1 xi−x0n|<εn

e−t0(∑n
i=1 xi−nx0)dµ̃(x1) . . . dµ̃(xn)

≥ en(Λ(t0)−x0t0−ε|t0|)
∫
· · ·

∫
|∑n

i=1 xi−x0n|<εn

dµ̃(x1) . . . dµ̃(xn)

=en(Λ(t0)−x0t0−ε|t0|)µ̃n((x0 − ε, x0 + ε)).

Taking the logarithm, dividing by n, passing to the lim inf as n → ∞,
and finally letting ε ↓ 0 we get (8).

The assumption in Cramér’s theorem is weaker, it does not guar- Consider, for example, the case of
Poisson distribution and take x0 = 0.
For this x0 the supremum in (5) is
“attained” at t0 = −∞.

antee, in general, the existence of such t0 ∈ R for every x0 with
I(x0) < ∞. Thus, a more careful analysis is needed. For details and
an even more general version of Cramér’s theorem on R we refer the
reader to 4Theorem 2.2.3. 4 Amir Dembo and Ofer Zeitouni. Large

deviations techniques and applications,
volume 38 of Applications of Mathematics.
Springer-Verlag, New York, second
edition, 1998

Properties of the Legendre-Fenchel transform

We discuss the transformation defined by the right hand side of (5)
in more detail. Recall from Lemma 5 that a logarithmic MGF Λ is
always C∞ and strictly convex in Do

Λ. Note that if DΛ 6= {0} then Do
Λ

is a non-empty interval which either contains the origin or has it as
one of its end points. The strict convexity of Λ on Do

Λ implies that

Exercise. Show that if DΛ 6= {0} then
Do

Λ is a non-empty open interval which
either contains the origin or has it as
one of its end points.
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Λ′(t) is increasing on Do
Λ. If we now define

x− = inf
t∈Do

Λ

Λ′(t) and x+ = sup
t∈Do

Λ

Λ′(t), (9)

then Λ′ is a bijection from Do
Λ onto (x−, x+). Thus, for each x ∈

(x−, x+) the equation

x = Λ′(t) has a unique solution tx ∈ Do
Λ. (10)

Lemma 7. Let Λ be a logarithmic MGF of a distribution µ of a random
variable X and define

Λ∗(x) = sup
t∈R

(tx−Λ(t)) = sup
t∈DΛ

(tx−Λ(t)). (11)

Λ∗ has the following properties.

(a) Λ∗ is a convex function on R.

(b) If DΛ = {0} then Λ∗ ≡ 0. If DΛ 6= {0} then (x−, x+) defined in (9)
is non-empty, Λ∗ ∈ C∞((x−, x+)), and for every x ∈ (x−, x+) and tx

as in (10)
Λ∗(x) = xtx −Λ(tx).

(c) infx∈R Λ∗(x) = 0. If E|X| < ∞ then Λ∗(E[X]) = 0, i.e. the infimum
is attained at E[X]. Parts of the proof of this lemma follow

the proof of Lemma 2.2.5 in .

Amir Dembo and Ofer Zeitouni. Large
deviations techniques and applications,
volume 38 of Applications of Mathematics.
Springer-Verlag, New York, second
edition, 1998

Proof. Statement (a) follows from the definition of Λ∗: for all x, y ∈ R

and α ∈ [0, 1]

Λ∗(αx + (1− α)y) = sup
t∈R

(t(αx + (1− α)y)−Λ(t)) = sup
t∈R

(α(tx−Λ(t)) + (1− α)(ty−Λ(t)))

≤ sup
t∈R

(α(tx−Λ(t)) + sup
t∈R

((1− α)(ty−Λ(t)) = αΛ∗(x) + (1− α)Λ∗(y).

The first statement in (b) is trivial. Assume now that DΛ 6= {0}.
As we pointed out at the beginning of this subsection, this means
that Do

Λ is a non-empty open interval. Hence, (x−, x+) 6= ∅ and
for every x ∈ (x−, x+) there is a unique solution tx of x = Λ′(t)
(see (9) and (10)). Since the function t 7→ tx − Λ(t) is concave, its
supremum is attained at tx, and we have Λ∗(x) = xtx − Λ(tx).
What is left to show is that Λ∗ ∈ C∞((x−, x+)). By Lemma 5, Λ′ ∈
C∞(Do

Λ) and is increasing on Do
Λ. The implicit function theorem

implies that the function x 7→ tx defined on (x−, x+) is C∞((x−, x+)).
Recalling that Λ∗(x) = xtx − Λ(tx) on (x−, x+) we conclude that
Λ∗ ∈ C∞((x−, x+)) as claimed.
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(c) If DΛ = {0} then the statement is obvious from (b). Hence,
assume that DΛ 6= {0}. As before, Do

Λ is then a non-empty interval.
If it contains the origin then for x = Λ′(0) = E[X] (see Lemma 5)
by part (b) we have that Λ∗(x) = 0, and we are done, since Λ∗ is
non-negative by the definition (put t = 0 in the formula for Λ∗).

Suppose now that 0 is the left endpoint of Do
λ. This implies that

−∞ ≤ x < ∞. Indeed, take any t ∈ Do
Λ. Then t > 0 and

x =
∫

R
x dµ ≤

∫ ∞

0
x dµ ≤ 1

t

∫ ∞

0
tx + 1 dµ ≤ 1

t

∫ ∞

0
etx dµ < ∞.

By Jensen inequality,

Λ(t) = ln E
[
etX
]
≥ E

[
ln etX

]
= tx.

If x ∈ R then

0 ≤ Λ∗(x) = sup
t∈R

(tx−Λ(t)) ≤ sup
t∈R

(tx− tx) = 0.

If x = −∞ then Λ(t) = ∞ for all t < 0 and Λ∗(x) = supt≥0(tx −
Λ(t)). But this implies that Λ∗ is non-decreasing on R and infx∈R Λ∗(x) =
limx→−∞ Λ∗(x). Moreover, by Chernoff bound,

ln µ([x, ∞)) ≤ inf
t≥0

ln E
[
et(X−x)

]
= inf

t≥0
(−tx + Λ(t)) = −Λ∗(x).

Therefore,

0 ≤ inf
x∈R

Λ∗(x) = lim
x→−∞

Λ∗(x) ≤ − lim
x→−∞

ln µ([x, ∞)) = 0.

The case when 0 is the right endpoint of Do
Λ can be reduced to the

already considered case by considering the logarithmic MGF of −X.

The transformation Λ 7→ Λ∗ is called a Legendre-Fenchel trans-
form of Λ. In fact, Legendre-Fenchel transform can be defined for an
arbitrary function f : R→ [−∞, ∞],

f ∗(x) = sup
t∈R

(tx− f (t)).

The function f ∗ is convex and is called a convex conjugate of f . In
this very general setting we always have that f ≤ ( f ∗)∗. An impor-
tant result is Fenchel-Moreau Theorem.5 5 see, for example, p. 53 of

Firas Rassoul-Agha and Timo Sep-
päläinen. A course on large deviations
with an introduction to Gibbs measures,
volume 162 of Graduate Studies in Mathe-
matics. American Mathematical Society,
Providence, RI, 2015

Theorem 8. Assume that f : R → (−∞, ∞] and f 6≡ ∞. Then f = ( f ∗)∗

if and only if f is convex and lower semi-continuous.
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