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In this lecture we turn to the non-i.i.d. case and discuss Gärtner-Ellis
theorem. As an application, we study Curie-Weiss model with random
external magnetic fields.

We have discussed Cramér’s theorem for empirical means of i.i.d.
random variables which take values in R. This theorem under exactly
the same condition1 can be shown to hold for empirical means of 1 The condition is 0 ∈ Do

Λ, where Λ is
the logarithmic MGF of the common
distribution µ on Rd.

i.i.d. random vectors with values in Rd (see 2Corollary 6.1.6). The
2 Amir Dembo and Ofer Zeitouni. Large
deviations techniques and applications,
volume 38 of Applications of Mathematics.
Springer-Verlag, New York, second
edition, 1998

result we consider in this note is much more general: measures µn

are not required to be distributions of empirical means, they can be
arbitrary distributions on (Rd,B(Rd)) as long as the limit

Λ(t) := lim
n→∞

1
n

ln Λn(nt) := lim
n→∞

1
n

ln
∫

Rd
e〈nt,x〉dµn ∈ [−∞, ∞] (1)

exists for all t ∈ Rd.

A typical situation which arises in applications is the following:
we have a sequence of random vectors (Yn)n∈N on possibly different
probability spaces (Ωn,Gn, Pn), Yn : Ωn → Rd, and We can always think of these random

variables as defined on a common prob-
ability space so that their distributions
are exactly those that we want (e.g.
construct them on an infinite product
space) but it is not necessary.

µn(A) := Pn(Yn ∈ A) for every A ∈ B(Rd).

In the special case when µn is the distribution of empirical means
of i.i.d. random vectors (Xi)i∈N with a common distribution µ we
have

Λ(t) =
1
n

ln Λn(nt) =
1
n

ln
[
E
(

e〈t,Xi〉
)]n

= ln
∫

Rd
e〈t,x〉dµ

- just the familiar logarithmic MGF of µ.

Gärtner-Ellis Theorem

Let (µn)n∈N be a sequence of probability measures on (Rd,B(Rd)).
Assume that for all t ∈ Rd a possibly infinite limit Λ(t) in (1) exists.
The convexity of

Λn(t) := ln
∫

Rd
e〈t,x〉dµn

for each n ∈N and the limit definition of Λ immediately imply that

Λ is convex.

Similarly to the assumption in Cramér’s theorem, we shall assume
throughout this note that 0 ∈ Do

Λ. This will ensure, in particular, that
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Λ > −∞.

Indeed, note that as Λn(0) = 0 for all n, so Λ(0) = 0. If for some t we
had Λ(t) = −∞ then by convexity we would have for all α ∈ (0, 1]

Λ(αt) = Λ(αt + (1− α)0) ≤ αΛ(t) + (1− α)Λ(0) = −∞.

But then

0 = Λ(0) = Λ
(

1
2
(αt) +

1
2
(−αt)

)
≤ 1

2
Λ(αt) +

1
2

Λ(−αt),

and we would also have Λ(−αt) = ∞ for all α ∈ (0, 1]. This contra-
dicts the assumption 0 ∈ Do

Λ.
We shall also need the following definition.
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Figure 1: Points x ∈ (0, 1] are not
exposed for the pictured function.

Definition 1. Let I be the Legendre-Fenchel transform of Λ, i.e.

I(x) = sup
x∈Rd

(〈t, x〉 −Λ(t)).

A point x ∈ DI := {x ∈ Rd : I(x) < ∞} is said to be exposed for I if
there is a η ∈ Rd such that

I(y)− I(x) > 〈η, y− x〉 for all y 6= x.

The hyperplane hx(y) = I(x) + 〈η, y− x〉 is called an exposing hyperplane
to the graph of I at x. For a given (x, I(x)), it is characterized by its nor-
mal η. With a slight abuse of terminology, η itself will be referred to as an
exposing hyperplane.

Since I is the Legendre-Fenchel transform of Λ, I is convex and
satisfies all conditions of a rate function, i.e. it is non-negative and
has compact sub-level sets. A justification of the last two claims can
be given along the same lines as in lecture notes 1 (right after Cramér
theorem).

Jurgen Gärtner. On large deviations
from an invariant measure. Teor.
Verojatnost. i Primenen., 22(1):27–42, 1977

Richard S. Ellis. Large deviations for
a general class of random vectors. Ann.
Probab., 12(1):1–12, 1984

Theorem 1 (Gärtner-Ellis). Let (µn)n∈N be a sequence of probability
measures on (Rd,B(Rd)). Assume that for all t ∈ Rd a possibly infinite
limit Λ(t) in (1) exists and that 0 ∈ Do

Λ. Then

(i) for every closed set C ⊂ Rd,

lim sup
n→∞

1
n

ln µn(C) ≤ − inf
x∈C
I(x).
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(ii) for every open set O ⊂ Rd,

lim sup
n→∞

1
n

ln µn(O) ≥ − inf
x∈O∩E

I(x),

where E is the set of those exposed points for I which have an exposing
hyperplane in Do

Λ.

Suppose in addition that Λ is lower semi-continuous on Rd, differentiable
on Do

Λ, and either DΛ = Rd or Λ is steep, i.e.

lim
n→∞

|∇Λ(tn)| = ∞

whenever tn ∈ Do
Λ, tn → t ∈ ∂Do

Λ as n → ∞. Then (µn)n∈N satisfies the
LDP with rate function I .

This theorem is rather general but still it does not capture all the
cases in which a sequence of measures on Rd satisfies a LDP. Our
concern is, of course, only about the lower bound. Here is a simple
example borrowed from 3, p. 45. 3 Amir Dembo and Ofer Zeitouni. Large

deviations techniques and applications,
volume 38 of Applications of Mathematics.
Springer-Verlag, New York, second
edition, 1998

Exercise. Give the details of this com-
putation. Hint: Every open set in R is
a countable union of disjoint open in-
tervals. Use the leftmost interval which
intersects DI .

Example 1. Let µn((−∞, x]) = (1 − e−nx)1[0,∞)(x) (exponential
distribution with parameter n), x ∈ R. Then

Λ(t) = lim
n→∞

1
n

ln
(∫ ∞

0
nentx−nx dx

)
=

0, if t < 1;

∞, if t ≥ 1.

I(x) = sup
t∈R

(tx−Λ(t)) =

x, if x ≥ 0;

∞, if x < 0.

We see that E = {0} while DI = [0, ∞), and for each open set O with
O ∩ E = ∅ Gärtner-Ellis theorem gives only a trivial lower bound
−∞.

But it is easy to see directly that for every open set O for which
O ∩ DI 6= ∅

lim
n→∞

1
n

ln µn(O) = lim
n→∞

1
n

ln
∫

O∩[0,∞)
ne−nx dx

≥ − inf{x, x ∈ O ∩ [0, ∞)} = − inf
x∈O
I(x).

This says that (µn)n∈N satisfy a LDP with rate I .

We note that Gärtner-Ellis Theorem readily implies Cramér the-
orem on Rd, d ≥ 1, when the logarithmic MGF of µ is finite on
all of Rd. Otherwise we have to impose an additional condition of
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steepness (see Theorem 1). As we have already mentioned above,
the inclusion 0 ∈ Do

Λ is sufficient for the result in Cramér theorem
to hold. The following exercise shows that Theorem 1 does not fully
include Cramér theorem if DΛ 6= Rd.

Exercise 1 (Exercise 2.3.17(a) in A. Dembo, O. Zeitouni). Let µ be
a probability measure on (Rd,B(Rd)) with a density proportional to
e−|x|/(1 + |x|d+2) and Λ be its logarithmic MGF.

(a) Find Do
Λ.

(b) Show that Λ is not steep.

Conclude that in this example Cramér theorem yields the full LDP for em-
pirical means while Gärtner-Ellis theorem does not.

A general limitation of Gärtner-Ellis theorem is that the differ-
entiability and steepness conditions on Λ are often hard to check
in applications. This is due to the fact that the existence of the limit
which defines Λ is often obtained by “soft methods” which do not
give a usable formula for Λ.

Let us look again at the already familiar Curie-Weiss model and
see what Gärtner-Ellis theorem can and can not do in this case. This
example also provides a good illustration of notions introduced in
this note.

Curie-Weiss model II: what does Gärtner-Ellis theorem give us?

For each spin configuration σ = (σ1, σ2, . . . , σn) ∈ Σn = {−1, 1}n we
define

Pn,β(σ) =
e−βHn(σ)

Zn,β
,

where

Hn(σ) = −
J

2n

n

∑
i,j=1

σiσj and Zn,β = ∑
σ∈Σn

e−βHn(σ).

For each n we have a different probability space (Σn,Gn, Pn,β). We
study random variables σn = ∑n

i=1 σi ∈ [−1, 1]. Thus, the relevant
probability measures µn,β (the distributions of σn under Pn,β), n ∈ N,
are measures on the common measurable space ([−1, 1],B([−1, 1])).
Thus,

µn,β(A) = Pn,β(σ : σn ∈ A), ∀A ∈ B([−1, 1]).
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We obtained two main results for (µn,β)n∈N: the LDP with the rate
function

Iβ(x) = I0(x)− βJ
2

x2 − inf
y∈[−1,1]

[
I0(y)−

βJ
2

y2
]

,

where

I0(x) =


1+x

2 ln 1+x
2 + 1−x

2 ln 1−x
2 , if |x| < 1;

ln 2, if |x| = 1;

∞, if |x| > 1.

(2)

and weak convergence to a limiting measure. These results clearly
show the existence of a phase transition as β crosses J−1.

Let us apply Gärtner-Ellis theorem for this case and draw conclu-
sions. We know from the start that when β > J−1 we should run
into trouble, since in this regime Iβ is not convex while every rate
function in Gärtner-Ellis theorem is convex.

To start, we need to compute Λβ(t). As we did before, we rewrite
everything in terms of µn,0 (β = 0) which assigns a binomial proba-
bility to each possible value of σn ∈ {−1,−1 + 2/n, . . . , 1− 2/n, 1},

µn,0({−1 + 2m/n}) = 2−n
(

n
m

)
and use the LDP for these measures (with the rate function I0) and
Varadhan’s lemma to get

Λβ(t) = lim
n→∞

1
n

ln
∫

R
entx dµn,β

= lim
n→∞

1
n

ln
Eµn,0

(
en(tσn+

βJ
2 (σn)2

)
Eµn,0

(
en βJ

2 (σn)2
) = sup

x∈[−1,1]

(
tx +

βJ
2

x2 − I0(x)
)
− sup

y∈[−1,1]

(
βJ
2

y2 − I0(y)
)

= sup
x∈[−1,1]

[
tx +

(
βJ
2

x2 − I0(x)− sup
y∈[−1,1]

(
βJ
2

y2 − I0(y)
))]

= sup
x∈[−1,1]

(tx− Iβ(x)).

Since we take the supremum of continuous functions over [−1, 1],
Λβ(t) < ∞ for all t, i.e. DΛβ

= R. By Theorem 1 (i) we get a LDP
upper bound with the rate function Λ∗β.

If β ≤ J−1
then Iβ is convex and Λ∗β = I ∗∗ = Iβ with DIβ

=

[−1, 1]. Moreover, Iβ is strictly convex so that every point in (−1, 1)
is exposed with an exposing hyperplane in DΛβ

simply because
DΛβ

= R. By Theorem 1 (ii) we get a LDP lower bound: for every
open set O

lim inf
n→∞

1
n

ln µn,β(O) ≥ − inf
x∈O∩(−1,1)

Iβ(x)

= − inf
x∈O∩[−1,1]

Iβ(x) = − inf
x∈O
Iβ(x).



gärtner-ellis theorem and applications. 6

The next to the last equality is due to continuity of Iβ on [−1, 1].
The last equality holds because Iβ(x) = ∞ outside of [−1, 1]. We
recover an earlier obtained LDP in this case. Alternatively, we could
have used the last statement of Theorem 1: Λβ satisfies all additional
conditions needed for a full LDP.

If β > J−1
then Λ∗β is convex while Iβ is not and

Λ∗β(x) =

Iβ , if |x| ≥ mβ ;

0, if |x| < mβ ,

where ±mβ ∈ (−1, 0) ∪ (0, 1) are the points where Iβ attains its
In lecture note 3 we have shown that
mβ is the unique solution in (0, 1) of the
equation x = tanh(βJx).

minimal value 0.

−1 −mβ mβ 1

0.1

x

y

Graph of Iβ(x)

−1 −mβ mβ 1

0.1

x

y

Graph of Λ∗(x)

−1 −mβ mβ 1

0.1

−Λ(t)

x

y

Construction of Λ(t)

y = tx
y = Λ∗(x)

Our first observation is that Λ∗β < Iβ on (−mβ, mβ) and an up-
per bound provided by Theorem 1 is strictly larger than the one we
obtained earlier: for every closed set G ⊂ (−mβ, mβ)

− inf
x∈G
Iβ(x) < − inf

x∈G
Λ∗β(x).

We also see that Λ∗β ≡ 0 on [−mβ, mβ]. This implies that Λβ(t) =

I∗β(t) = Λ∗∗β (t) ≥ |t|mβ and, since Λβ(0) = 0, we conclude that Λβ

has a corner at the origin.

−0.6 −0.4 −0.2 0.2 0.4 0.6

0.2

0.4

t

z
Λ(t)
mβ|t|

Figure 2: Graph of Λ(t) = Λ∗∗(t).

The differentiability condition fails at 0, and Theorem 1 only gives
us the following lower bound: for all open sets O

lim inf
n→∞

1
n

ln µn,β(O) ≥ − inf
x∈O∩E

Λ∗β(x),

where the set of exposed points E is (−1, mβ) ∪ (mβ, 1) (we have to
exclude the set where Λ∗β is not strictly convex). If O ⊂ [−mβ, mβ]

then Theorem 1 gives us only a trivial lower bound −∞ (the infimum
is taken over the empty set), while our earlier results give us more
information in this case.

Now it is the right time for an example where Gärtner-Ellis theo-
rem provides an efficient and quick way of getting a LDP.



gärtner-ellis theorem and applications. 7

Curie-Weiss model III: adding a random external field

This subsection follows 4 and shows how to get a LDP for Curie- 4 Matthias Löwe, Raphael Meiners,
and Felipe Torres. Large deviations
principle for Curie-Weiss models with
random fields. J. Phys. A, 46(12):125004,
10 pp., 2013

Weiss model in the case when a constant global external magnetic
field h is replaced by a random local field h := (hi)i∈N satisfying an
appropriate averaging assumption (see Assumption below).

Let (Ω,F , P) be a probability space and h = (hi)i∈N be a sequence
of random variables on it. We shall consider random probability
measures on (Σn,Gn) defined by

Pn,β,h(σ) :=
e−βHn,h(σ)

Zn,β,h
,

where

Hn,h(σ) = −
J

2n

n

∑
i,j=1

σiσj −
n

∑
i=1

hiσi, Zn,β,h = ∑
σ∈Σn

e−βHn,h(σ).

An important difference with the original deterministic model is that
the measure Pn,β,h(σ) is not anymore completely determined by the
value of σn.

For each ω ∈ Ω, let µn,β,h be the distribution of σn. It is a measure
on [−1, 1]. Our goal will be to state and prove a LDP for (µn,β,h)n∈N.
For this we shall need an assumption on a random field h.

Assumption: Let h = (hi)i∈N be a sequence of random variables on
some probability space (Ω,F , P). We assume that for almost every
ω ∈ Ω

fn(t, ω) :=
1
n

n

∑
i=1

ln cosh(t + βhi(ω))→ f (t) as n→ ∞

for every t ∈ R and some differentiable function f : R→ R.

Exercise 2. Prove that if f satisfies the above assumption then necessarily
| f ′(t)| ≤ 1 for all t ∈ R and, therefore, f ∗(x) := supt∈R(tx − f (t)) is
equal to ∞ for all |x| > 1.

The most basic example is given by a sequence (hi)i∈N of i.i.d.
random variables with a finite first moment, E[|hi|] < ∞. The
convergence follows by the strong law of large numbers (and a
small additional argument, see the exercise below) and f (t) =

E[ln cosh(t + βhi)].

Note that | ln cosh t| ≤ |t| and, thus,
E[| ln cosh(t + βhi)|] ≤ |t|+ βE[|hi |] <
∞.
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Exercise 3. The strong law of large numbers implies that for every t the
convergence holds outside of a set of probability 0. But R is uncountable.
Start with rational t and show rigorously that the assumption is indeed
satisfied.

Another example, now with dependence, arises when (hi)i∈N is
an irreducible positive recurrent Markov chain on a countable subset
S of R. Such Markov chain has a unique stationary distribution π on
S. Assuming that

∑
s∈S
| ln cosh(t + βs)|π(s) < ∞,

the ergodic theorem for Markov chains (see Theorem 4.1 in 5) implies 5 Pierre Brémaud. Markov chains, vol-
ume 31 of Texts in Applied Mathematics.
Springer-Verlag, New York, 1999. Gibbs
fields, Monte Carlo simulation, and
queues

that for any initial distribution with probability 1

lim
n→∞

1
n

n

∑
i=1

ln cosh(t + βhi) = f (t) := ∑
s∈S

ln cosh(t + βs)π(s).

Note that when the initial distribution is different from π the random
variables (hi)i∈N are not identically distributed.

For our last example let (hi)i∈N∪{0} be a stationary ergodic A sequence (hi)i∈N∪{0} is said to
be stationary if for every k ∈ N ∪
{0} and n ∈ N the random vector
(hn, hn+1, . . . , hn+k) has the same
distribution as (h0, h1, . . . , hn).

sequence on some probability space (Ω,F , P). More precisely, let
T : Ω → Ω be a measure preserving transformation, i.e. T be F -
measurable and P(T−1 A) = P(A) for all A ∈ F . In addition, assume
that T is ergodic, that is T−1 A = A implies that P(A) ∈ {0, 1}. Let In simple words, ergodicity of T means

that there are no non-trivial T-invariant
sets.

h be any random variable on (Ω,F , P) with a finite first moment.
Define hi(ω) = h(Tiω), i ∈ N ∪ {0}. The ergodicity assumption

This general framework, in fact, in-
cludes the previous two examples
provided that the Markov chain in
the second example starts from the
stationary distribution.

and the finiteness of the first moment of h ensure (by Birkhoff ergodic
theorem) that for almost every ω ∈ Ω

lim
n→∞

1
n

n−1

∑
i=0

ln cosh(t + βhi(ω)) = f (t) := E[ln cosh(t + βh(ω))].

Now we are ready to state the main theorem of this subsection.

Theorem 2. Suppose that h = (hi)i∈N satisfies the assumption above.
Then for almost every ω ∈ Ω measures (µn,β,h)n∈N satisfy a LDP with
deterministic rate function

Iβ, f (x) := f ∗(x)− βJ
2

x2 − inf
y∈[−1,1]

[
f ∗(y)− βJ

2
y2
]

,

where f ∗(x) := supt∈R(tx− f (t)).
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Remark 1. Note that if hi ≡ h then f (t) = ln cosh (t + βh) and after
a calculation we get that f ∗(x) = I0(x)− βhx, where I0 is given by A useful identity:

ln cosh(arctanhx) = − 1
2 ln(1− x2).(2). Combining this result with Theorem 2 we get the rate function

for the last exercise in lecture notes 3.

Proof. The plan is to introduce a family of convenient reference mea-
sures which satisfies a LDP and then use tilting to get a desired LDP
for the original measures.

In our previous considerations measures (µn,0)n∈N were such
reference measures. They were the distributions of σn under the
uniform measure Pn,0 on all spin configurations {−1, 1}n. Under
this uniform measure spins σi, 1 ≤ i ≤ n, were independent and
identically distributed with Pn,0(σ : σi = 1) = 1/2.

We consider measures Qn,β,h under which individual spins are still
independent but not identically distributed:

Qn,β,h(σ ∈ Σn : σi = ±1) =
e±βhi

2 cosh(βhi)
.

Let νn,β,h be the distribution of σn under Qn,β,h. These are our new
reference measures. We are going to apply Gärtner-Ellis theorem
to (νn,β,h)n∈N to get a LDP. We need to compute Λβ(t). Using our
assumption we find that for almost every ω ∈ Ω

Λβ(t) := lim
n→∞

1
n

ln
∫

R
entx dνn,β,h

= lim
n→∞

1
n

ln ∑
σ∈Σn

et ∑n
i=1 σi Qn,β,h(σ) = lim

n→∞

1
n

ln
n

∏
i=1

eβhi+t + e−βhi−t

2 cosh(βhi)

= lim
n→∞

( fn(t)− fn(0)) = f (t)− f (0)

for all t ∈ R. Therefore, DΛβ
= R and Λβ is differentiable on R. By

Gärtner-Ellis theorem (νn,β,h)n∈N satisfy a LDP with rate

Λ∗β(x) = f ∗(x) + f (0).

According to Exercise 2, DΛ∗β
⊂ [−1, 1].

A simpler way to see this is to note that
σn ∈ [−1, 1], and, therefore, the rate
function has to be infinite outside of
[−1, 1].Our next step is tilting. For every A ∈ B([−1, 1])

µn,β,h(A) = ∑
σ: σn∈A

Pn,β,h(σ) = ∑
σ: σn∈A

Pn,β,h(σ)

Qn,β,h(σ)
Qn,β,h(σ)

=
2n ∏n

i=1 cosh(hiσi)

Zn,β,h
∑

σ: σn∈A
e

nβJ
2 (σn)2

Qn,β,h(σ)

=
2n ∏n

i=1 cosh(hiσi)

Zn,β,h

∫
A

e
nβJ

2 x2
dνn,β,h =:

1
ZG

n,β,h

∫
A

enG(x)dνn,β,h, where

G(x) : =
βJ
2

x2, x ∈ [−1, 1]; ZG
n,β,h :=

Zn,β,h

2n ∏n
i=1 cosh(hiσi)

=
∫
[−1,1]

enG(x)dνn,β,h.
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By part (b) of Lemma 0.3 from lecture notes 3 we conclude that for
almost every ω ∈ Ω measures (µn,β,h)n∈N satisfy a LDP with rate
function

IG(x) = Λ∗β(x)− G(x)− inf
y∈[−1,1]

(Λ∗β(y)− G(y)) = Iβ, f (x)

as claimed.
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