
Random Walks on Infinite Discrete Groups
Problem Set 2

A. Amenability

Exercise 1. Find the Cheeger (isoperimetric) constant of the infinite homogeneous tree Td

of degree d.

Exercise 2. Show that the isoperimetric constant of the d−dimensional lamplighter group
Gd = Zd o ⊕ZdZ2 is 0. HINT: Consider the set Fn of all group element (x, λ) where x ∈ Zd is
in the boxRn of radius n centered at the origin in Zd and λ ∈ ⊕ZdZ2 is a lamp configuration
with all lamps off (i.e., in state 0) outside Rn.

Exercise 3. Show that the (modified) lamplighter random walk in dimensions d ≥ 3 has
positive speed. NOTE: Recall that the modified lamplighter random walk evolves as fol-
lows: at each time n = 1, 2, · · · , the hooligan first randomizes the state of the lampp at his
current location, then randomly moves to a nearest neighbor of his current location, and
finally randomizes the state of the lamp at his new location.

Exercise 4. (For those of you who know the basics of Fuchsian groups.) Show that every
co-compact Fuchsian group is nonamenable. HINT: A Fuchsian group Γ acts on the circle
at infinity by linear fractional transformations. Show that this action has no invariant prob-
ability measure. To do this, you will need the following fact: every co-compact Fuchsian
group has hyperbolic elements (linear fractional transformations with two fixed point on the
circle at infinity), and the set of fixed point pairs of these hyperbolic elements is dense in
the circle at infinity.

B. Random Walk on Γ = Z2 ∗ Z2 ∗ Z2: Boundary Behavior

Recall that elements of Γ are finite reduced words in the letters a, b, c; these are repre-
sented by vertices of the tree. Define ∂T, the space of ends of the tree, to be the set of all
infinite reduced words

ω = α1α2 · · · .

Let d be the metric on T∪∂T defined by d(ω, ω′) = 2−n, where n ≥ 0 is the maximal integer
such that the words ω and ω′ (whether finite or infinite) agree in their first n coordinates.

In the following exercises, let Xn be the nearest-neighbor random walk on Γ with step
distribution P{ξi = j} = µ(j) > 0, where j ∈ {a, b, c}. Define the hitting probability function
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u by

u(x) = P 1{Xn = x for some n ≥ 0}
= P x{Xn = 1 for some n ≥ 0}

Exercise 5. Prove that
lim
n→∞

Xn = X∞ ∈ ∂T

exists with P x−probability one for any initial point x ∈ Γ. (Here the convergence is with
respect to the metric d.) The distribution (under P x) of the exit point X∞ is, sensibly
enough, called the exit distribution. Denote this by νx.

Exercise 6. Show that

(A) If x has word representation x = a1a2 · · · am then u(x) =
∏m

i=1 u(ai).
(B) Show that for each generator i = a, b, c,

u(i) = µ(i) +
∑
j 6=i

µ(j)u(j)u(i).

Exercise 7. For any finite reduced word w = a1a2 · · · am, define Σ(w) to be the subset of ∂T
consisting of all infinite reduced words whose first m letters are a1a2 · · · am.

(A) Show that

P 1{X∞ ∈ Σ(w)} = ν1(Σ(w)) =
u(w)

1 + u(am)
.

(B) Conclude that ∑
i=a,b,c

u(i)

1 + u(i)
= 1.

(C) Let X∞ have reduced word representation X∞ = A1A2A3 · · · . Show that under
P 1 the sequence A1, A2, A3, · · · is a Markov chain on the set {a, b, c}. What are the
transition probabilities and intial distribution?

Exercise 8. Let xn be a sequence of group elements that converge (in the metric d) to a point
ω ∈ ∂T of the space of ends. Prove that the exit measures νxn converge weakly to the unit
point mass at ω, that is, show that for any open set U ⊂ ∂T containing ω,

lim
n→∞

νxn(U) = 1.

Exercise 9. Let f : ∂T→ R be any bounded, Borel measurable function. Define h : Γ→ R
by

h(x) := Exf(X∞) =

∫
ω∈∂T

f(ω) dνx(ω).

(A) Show that h is harmonic on Γ.
(B) Show that if f is continuous then limn→∞ h(Xn) = f(X∞) almost surely (for any P x).
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Exercise 10. This exercise outlines a proof of the converse to Exercise 9. Let h : Γ → R be
any bounded, harmonic function. For each n ≥ 1 define a function fn : Γ ∪ ∂T→ by

fn(a1a2 · · · am) = h(a1a2 · · · am) if m ≤ n;

fn(a1a2 · · · am) = h(a1a2 · · · an) if m > n;

fn(a1a2 · · · ) = h(a1a2 · · · an).

(A) Use the convergence theorem for harmonic functions along random walk paths (The-
orem 5.9 in the notes) to show that for any x ∈ Γ,

νx{ω : lim
n→∞

fn(ω) := f(ω) exists} = 1.

(B) Let G be the set of all ω ∈ ∂T such that lim fn(ω) = f(ω) exists. For ω ∈ Γ \G, define
f(ω) = 0. Prove that for every x ∈ Γ,

h(x) = Exf(X∞) =

∫
ω∈∂T

f(ω) dνx(ω).

The last (optional) exercise provides a breif introduction to Martin boundary theory for
nearest-neighbor random walks on Γ.

Exercise 11. ∗ For any ω = a1a2a3 · · · ∈ ∂T let wn = a1a2 · · · an be the sequence of group
elements along the geodesic ray from 1 to ω. For any x = b1b2 · · · bm ∈ Γ, let n(x, ω) ≤ m be
the maximal nonnegative integer such that the words a1a2 · · · and b1b2 · · · bm agree in the
first n coordinates.

(A) Show that the sequence u(x−1wn)/u(wn) stabilizes for n ≥ n(x, ω).
(B) Show that for any finite word w that has wn(x,ω) as a prefix (i.e., the group element w

lies on the geodesic ray from wn(x,ω) to ω),

νx(Σ(w))

ν1(Σ(w))
=
u(x−1wn(x,ω))

u(wn(x,ω))
.

(C) Conclude from (B) that the measures νx and ν1 are mutually absolutely continuous,
and that the Radon-Nikodym derivative (likelihood ratio) dνx/dν1 is given by

dνx
dν1

(ω) =
u(x−1xn(x,ω)))

u(xn(x,ω)))
= lim

n→∞

u(x−1wn)

u(wn)
:= K(x, ω).

NOTE: The Radon-Nikodym derivative is by definition the unique Borel measurable
function on ∂T such that for every Borel set F ⊂ ∂T,

νx(F ) =

∫
ω∈F

dνx
dν1

(ω) dν1(ω)

(D) Show that for each ω ∈ ∂T the function x 7→ K(x, ω) is harmonic.
(E) Show that for each x ∈ Γ the function ω 7→ K(x, ω) is (Hölder) continuous on ∂T.
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The function K(x, ω) defined in Exercise 11 is called the Martin kernel of the random
walk. It extends to a Hölder continuous function K : T× (T ∪ ∂T)→ (0,∞) by setting

K(x, y) =
u(x−1y)

u(y)
=
P x{Xn = y for some n}
P 1{Xn = y for some n}

.

Since linear combinations (even infinite ones) of harmonic functions are harmonic, it fol-
lows from (E) that for any finite probability measure λ on ∂T, the integral

h(x) :=

∫
ω∈∂T

K(x, ω) dλ(ω) (0.1)

is wel-defined and finite, and from (D) that h is harmonic, with value h(1) = 1 at the
identity. This is called the Martin representation of the harmonic function. It can be shown
(cf., for example, E. B. DYNKIN, Boundary Theory of Markov Processes (The Discrete
Case)) that every nonnegative harmonic function has a Martin representation, and that the
representation is unique.
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