Best and random approximation of convex bodies
by polytopes
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How well can a convex body be approximated by a polytope?
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2. Approximated in which sense ?

(i) The symmetric difference metric

A1) = vl ((K\D ULV K)) = I(K\ D UL\ K)
= |KUL|—|KNL|

When K C L,
Ay(K, L) = |L| = |K]
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3. Want optimal dependence on the parameters involved

e the convex body K
e the dimension n

when the number of vertices of the approximating polytope is
prescribed

or the number of facets of the approximating polytope is prescribed

e we want the optimal dependence on the number of vertices, of

facets, etc....
BEST APPROXIMATION
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Theorem (McClure& Vitale; Gruber)

Suppose K has a C?-boundary with everywhere positive Gauss
curvature k. Then

inf{A,(K, Pn)| Py C K and Py has at most N vertices}

m 1

N—oo ——
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im inf{|K| — |Pn|: Py C K and Py has at most N vertices}
|
N—o0 %

Nn—1

1 N =
= —delp_1 </ K(x)nT d,u(x))
2 oK

1 is the surface area measure on 0K
del,_1 is a constant that depends only on n




Best Approximation for N large

AV(K7 Pbest) = |K’ - |Pbest‘

n+1

1 1 -1 1
~  —delp_1 </ K(x) du(x)) 5
2 oK Nn—1



Best Approximation for N large

AV(K7 Pbest) = |K’ - |Pbest‘

n+1

1 1 -1 1
~  —delp_1 </ K(x) du(x)) 5
2 oK Nn—1

Theorem (Mankiewicz&Schiitt)

There is a numerical constant ¢ > 0 such that
2 2

n—1 1 et n—1 1 -t
- <del. 1< (1 clogn
n+1 <|52"—1|> < delpg = (1455 )n+1 (Bg—1|>




Best Approximation for N large

AV(K7 Pbest) = |K’ - |Pbest‘

n+1

1 1 -1 1
~  —delp_1 </ K(x) du(x)) 5
2 oK Nn—1

Theorem (Mankiewicz&Schiitt)

There is a numerical constant ¢ > 0 such that
2 2

n—1 1 et n—1 1 -t
- <del. 1< (1 clogn
n+1 <|52"—1|> < delpg = (1455 )n+1 (Bg—1|>

del,—1 ~n




Best Approximation for N large
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Theorem (Mankiewicz&Schiitt)

There is a numerical constant ¢ > 0 such that
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n+1 <|52"—1|> < delpg = (1455 )n+1 (Bg—1|>

del,—1 ~n

Affine surface area appears

as(K) = [ w(x)71dp()
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Random approximation

Choose N points xj ...xy in K or on 0K w.r. to a probability

measure P, m i
P=— o P=-—-
K] 0K

the convex hull [xi, ..., xy] of these points we call

RANDOM POLYTOPE

when chosen in K, not ALL points become vertices
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More generally:

f:OK — R strictly positive a.e. on 9K, [, fdu=1

Pr = fu

Choose N points xi,...xy w.r. to Pr on 0K

As before we call their convex hull [xg, ..., xy] a random
polytope. Every point chosen becomes a vertex




The expected volume of such a random polytope is

EN(aK,]P’f):/aK.../aK

[x1, ..., xn]|dPr(x1) . .. dPr(xn)
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Let K be a convex body in R" with sufficiently regular boundary.
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> the optimal f which minimizes the right hand side is
1

I€”+1

fas = 1
Jo T du

Putting this f,s in the above formula, we get

n+1

(fox 00 eu) "
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How do best and random approximation compare?
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v K| — En(OK. By, ) ~ (k) (faK i du(x )) cn

To see how best and random approximation compare, we have to
compare ¢, and %deln_l

With an absolute constant ¢

1 1
Sdeln1 < o < (14 Sl Sdeln_1
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1. Approximation by a polytope P with

(i) a fixed number of vertices

(i) a fixed number of facets = (n — 1)-dimensional faces

Typically, in the literature

in (i) P is inscribed in K
in (i) P is circumscribed to K

These restrictions need to be dropped

Again: we concentrate on the vertex case



Drop requirement that Py C K resp. K C Py



Drop requirement that Py C K resp. K C Py
Theorem (Ludwig, Schiitt, Werner)

Let K be C_%. There is a constant ¢ > 0 s.th. for all n € N there is

N, € N s.th. for all N > N, there is a polytope P in R” with at
most N vertices s.th.

2

AJ(K,P) < ¢ |K| <1>"1

N



Drop requirement that Py C K resp. K C Py
Theorem (Ludwig, Schiitt, Werner)

Let K be C_%. There is a constant ¢ > 0 s.th. for all n € N there is

N, € N s.th. for all N > N, there is a polytope P in R” with at
most N vertices s.th.

2
AJ(K,P) < ¢ |K| G/) "

» the corresponding result for facets holds as well



Drop requirement that Py C K resp. K C Py
Theorem (Ludwig, Schiitt, Werner)

Let K be C}r. There is a constant ¢ > 0 s.th. for all n € N there is

N, € N s.th. for all N > N, there is a polytope P in R” with at
most N vertices s.th.

2
AJ(K,P) < ¢ |K| G/) "

» the corresponding result for facets holds as well
» When P C K (Bronsteyn&lvanov)

]_ n—1
AKP) = IK| - IPl < c n K] ()



Drop requirement that Py C K resp. K C Py
Theorem (Ludwig, Schiitt, Werner)

Let K be C}r. There is a constant ¢ > 0 s.th. for all n € N there is

N, € N s.th. for all N > N, there is a polytope P in R” with at
most N vertices s.th.

2
AJ(K,P) < ¢ |K| G/) "

» the corresponding result for facets holds as well
» When P C K (Bronsteyn&lvanov)

]_ n—1
AKP) = IK| - IPl < c n K] ()

o |f we drop the restriction, we gain by a factor of dimension: n
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> lower bound in the general case

Theorem (Boroczky)

For every polytope Py with at most N vertices

2

n c 1 -1 n
Ay (B3, Py) ZE N |B7|

RECALL upper bound

2

1 n—1
s P <c(y)" I8

GAP between lower and upper bound by a factor of dimension
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(i) The symmetric difference metric

Ay(K,L)=|KULl —|KNL|

(ii) The surface deviation

Ag(K,L) = volp—1 (0(KUL))—vol,—1 (O(KN L))
= |[0(KUL)|—|o(KNL)

> A is not a metric: it fails the triangle inequality
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» There are many other metrics (Hausdorff, ...).
The advantage of the above: those are Quermassintegrals

1§ lim EN(AV(K,P]}Df)) Iogn

<l+c
N— oo AV(K, Pbest)
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Theorem (Hoehner, Schiitt & Werner)

There exists an absolute constant ¢ > 0 such that for every integer
n > 3, there is an N, such that for every N > N, there is a polytope Py
in R"” with N vertices such that

vol,_1 (0B3)

AS(BS,Pu) < e

» We gain by a factor of dimension when we drop the assumption that
the polytope is contained in K

Theorem (J. Miiller)

Let Py be the convex hull of N points chosen i.i.d. from 9B with
respect to the normalized surface measure. Then for N large

l,—1 (OB}
pain—1 (9B3)

vol,_1(0B%) — Evol,,_1(0PN) ~ N
n—1
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» A polytope in R" is called simple if at every vertex exactly n
facets meet.

Proposition (Hoehner, Schiitt & Werner)

There is a constant ¢ > 0 and Ny € N such that for all n € N with
n> 2, all N € N with N > Ny and all simple polytopes Py in R"”
with no more than N vertices

VOln_l(aBg)

Ag(By, Py) > c————==.
anl




Theorem (Hoehner, Schiitt, Werner)

There exists an absolute constant ¢ > 0 such that for every integer
n > 3, there is an N, such that for every N > N, there is a
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vol,_1 (9B2)

Ay(B7,Py) <c ——
anl



Koy

We choose at random points xi, ..., xy with respect to P = 0B;
2

on 0BJ. Get random polytope

PN = [Xl,...,XN]




Koy

We choose at random points xi, ..., xy with respect to P = 0B;
2

on 0BJ. Get random polytope
PN = [Xl,.. . ,XN]
We choose the points from 9Bj and we approximate

1—r)BS, r chosen appropriately
2
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E([((1 =B noPu|) —E (|0 ((1 - r)BE) N Pul)
which is equivalent to

E (}a((1 — BN P,\C,|) +E(|0((1-nB5)nPy|) =
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or

0((1=r)B3)| =E(|oPn|)
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EA((1~ r)BS. Pu)] =
~2(E (o ((1— B N PS]) —E (|- NBENoRw) )

;2(/1—/2)
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L= / / voly_1 [ ((1 — 1)BE) N P&] Lipcine(py )} dP(x)
oBy  JoBy

n / / voly—1 [0 ((1 —1)B3) NPY] - Liogint(py)ydP(%)
o8y 0By

< / - / VOlnfl [8 ((1 — r)BS) N PCN] ]l{OEint(PN)}dP(X)
oBY 0B}
+ vola_1(8B3) P(0 ¢ int(Py))

where dP(x) = dP(x1) - - - dP(xpn)



By a result of Wendel, the second summand equals
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By a result of Wendel, the second summand equals

n—1
voly—1(9B3) P(0 ¢ int(PN)) = vola—1 (9B5) 271 ) <N1§ 1)
k=0

< vol,_1 (0BY) 2~ N+1nN®,

The second summand is essentially of the order 27N and it turns

2
out that the first summand is of the order of N™ »-1. Therefore, we
can concentrate on the first summand

/ / Vol [0 (1 — 1)BE) N P& Loy AP()
oBy  JoBy



