
Best and random approximation of convex bodies
by polytopes



a convex body K in Rn is compact convex set with non-empty
interior

a polytope P in Rn is the convex hull of finitely many points
x1, . . . , xN

[x1, . . . , xN ]

How well can a convex body be approximated by a polytope?
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1. Approximation by a polytope P with

(i) a fixed number of vertices

(ii) a fixed number of facets = (n − 1)-dimensional faces

(iii) a fixed number of k-dimensional faces

We will mostly concentrate on (i), the vertex case

Typically, in the literature

in (i) P is inscribed in K

in (ii) P is circumscribed to K
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2. Approximated in which sense ?

(i) The symmetric difference metric

∆v (K , L) = voln

(
(K \ L) ∪ (L \ K )

)
= |(K \ L) ∪ (L \ K )|

= |K ∪ L| − |K ∩ L|

When K ⊂ L,
∆v (K , L) = |L| − |K |
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3. Want optimal dependence on the parameters involved

• the convex body K

• the dimension n

when the number of vertices of the approximating polytope is
prescribed

or the number of facets of the approximating polytope is prescribed

• we want the optimal dependence on the number of vertices, of
facets, etc....
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Theorem (McClure&Vitale; Gruber)

Suppose K has a C 2-boundary with everywhere positive Gauss
curvature κ. Then

lim
N→∞

inf{∆v (K ,PN)| PN ⊂ K and PN has at most N vertices}
1

N
2

n−1

= lim
N→∞

inf{|K | − |PN | : PN ⊂ K and PN has at most N vertices}
1

N
2

n−1

=
1

2
deln−1

(∫
∂K
κ(x)

1
n+1 dµ(x)

) n+1
n−1

µ is the surface area measure on ∂K
deln−1 is a constant that depends only on n
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Best Approximation for N large

∆v (K ,Pbest) = |K | − |Pbest|

∼ 1

2
deln−1

(∫
∂K
κ(x)

1
n+1 dµ(x)

) n+1
n−1 1

N
2

n−1

Theorem (Mankiewicz&Schütt)

There is a numerical constant c > 0 such that

n − 1

n + 1

(
1

|Bn−1
2 |

) 2
n−1

≤ deln−1 ≤ (1+ c log n
n )

n − 1

n + 1

(
1

|Bn−1
2 |

) 2
n−1

deln−1 ∼ n

Affine surface area appears

as(K ) =

∫
∂K
κ(x)

1
n+1 dµ(x)
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Random approximation

Choose N points x1 . . . xN in K or on ∂K w.r. to a probability
measure P,

P =
m

|K |
or P =

µ

|∂K |

the convex hull [x1, . . . , xN ] of these points we call

RANDOM POLYTOPE

when chosen in K , not ALL points become vertices
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More generally:

f : ∂K → R+ strictly positive a.e. on ∂K ,
∫
∂K fdµ = 1

Pf = f µ

Choose N points x1, . . . xN w.r. to Pf on ∂K

As before we call their convex hull [x1, . . . , xN ] a random
polytope. Every point chosen becomes a vertex
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The expected volume of such a random polytope is

EN(∂K ,Pf ) =

∫
∂K
· · ·
∫
∂K

∣∣∣∣[x1, . . . , xN ]

∣∣∣∣dPf (x1) . . . dPf (xN)



Theorem (Schütt&Werner)

Let K be a convex body in Rn with sufficiently regular boundary.

lim
N→∞

|K | − EN(∂K ,Pf )(
1
N

) 2
n−1

=

cn

∫
∂K

κ(x)
1

n−1

f (x)
2

n−1

dµ(x)

I when points are chosen in K , one only gets:

(
1
N

) 2
n+1

I

cn =
(n − 1)

n+1
n−1 Γ

(
n + 1 + 2

n−1

)
2(n + 1)!(voln−2(∂Bn−1

2 ))
2

n−1
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I Proof: nice interplay between probabilistic and geometric
methods

• the geometric tool we use is a variant of the (convex)
floating body (Schütt+Werner):

Let K be a convex body in Rn. Let δ > 0. The (convex)
floating body is the intersection of all halfspaces H+ whose
defining hyperplanes H cut off a set of volume δ of K .

H

H
+

δ
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|K | − EN(∂K ,Pf ) ∼ cn

(
1

N

) 2
n−1
∫
∂K

κ(x)
1

n−1

f (x)
2

n−1

dµ(x)

I the optimal f which minimizes the right hand side is

fas =
κ

1
n+1∫

∂K κ
1

n+1 dµ

Putting this fas in the above formula, we get

I |K | − EN(∂K ,Pfas ) ∼ cn

(
1
N

) 2
n−1
(∫

∂K κ(x)
1

n+1 dµ(x)

) n+1
n−1

How do best and random approximation compare?
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I |K | − |Pbest| ∼
(

1
N

) 2
n−1
(∫

∂K κ(x)
1

n+1 dµ(x)

) n+1
n−1

1
2deln−1

I |K | − EN(∂K ,Pfas ) ∼
(

1
N

) 2
n−1
(∫

∂K κ(x)
1

n+1 dµ(x)

) n+1
n−1

cn

To see how best and random approximation compare, we have to
compare cn and 1

2deln−1

With an absolute constant c

1

2
deln−1 ≤ cn ≤ (1 + c log n

n )
1

2
deln−1
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1. Approximation by a polytope P with

(i) a fixed number of vertices

(ii) a fixed number of facets = (n − 1)-dimensional faces

Typically, in the literature

in (i) P is inscribed in K

in (ii) P is circumscribed to K

These restrictions need to be dropped

Again: we concentrate on the vertex case
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Drop requirement that PN ⊂ K resp. K ⊂ PM

Theorem (Ludwig, Schütt, Werner)

Let K be C 2
+. There is a constant c > 0 s.th. for all n ∈ N there is

Nn ∈ N s.th. for all N ≥ Nn there is a polytope P in Rn with at
most N vertices s.th.

∆v (K ,P) ≤ c |K |
(

1

N

) 2
n−1

I the corresponding result for facets holds as well

I When P ⊂ K (Bronsteyn&Ivanov)

∆v (K ,P) = |K | − |P| ≤ c n |K |
(

1

N

) 2
n−1

• If we drop the restriction, we gain by a factor of dimension: n
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2. Approximated in which sense

(i) The symmetric difference metric

∆v (K , L) = |K ∪ L| − |K ∩ L|

(ii) The surface deviation

∆s(K , L) = voln−1 (∂(K ∪ L))− voln−1 (∂(K ∩ L))

= |∂(K ∪ L)| − |∂(K ∩ L)|

I ∆s is not a metric: it fails the triangle inequality
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I There are many other metrics (Hausdorff, ...).
The advantage of the above: those are Quermassintegrals

1 ≤ lim
N→∞

EN (∆v (K ,PPf
))

∆v (K ,Pbest)
≤ 1 + c

log n
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Surface deviation

Theorem (Hoehner, Schütt & Werner)

There exists an absolute constant c > 0 such that for every integer
n ≥ 3, there is an Nn such that for every N ≥ Nn there is a polytope PN

in Rn with N vertices such that

∆s(Bn
2 ,PN) ≤ c

voln−1 (∂Bn
2 )

N
2

n−1

I We gain by a factor of dimension when we drop the assumption that
the polytope is contained in K

Theorem (J. Müller)

Let PN be the convex hull of N points chosen i.i.d. from ∂Bn
2 with

respect to the normalized surface measure. Then for N large

voln−1(∂Bn
2)− Evoln−1(∂PN) ∼ n

voln−1 (∂Bn
2)

N
2

n−1
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I A polytope in Rn is called simple if at every vertex exactly n
facets meet.

Proposition (Hoehner, Schütt & Werner)

There is a constant c > 0 and N0 ∈ N such that for all n ∈ N with
n ≥ 2, all N ∈ N with N ≥ N0 and all simple polytopes PN in Rn

with no more than N vertices

∆s(Bn
2 ,PN) ≥ c

voln−1(∂Bn
2)

N
2

n−1

.
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Theorem (Hoehner, Schütt, Werner)

There exists an absolute constant c > 0 such that for every integer
n ≥ 3, there is an Nn such that for every N ≥ Nn there is a
polytope PN in Rn with N vertices such that
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2 )
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We choose at random points x1, . . . , xN with respect to P =
µ∂Bn

2
|∂Bn

2 |
on ∂Bn

2 . Get random polytope

PN = [x1, . . . , xN ]

We choose the points from ∂Bn
2 and we approximate

(1− r)Bn
2 , r chosen appropriately
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where dP(x) = dP(x1) · · · dP(xN)
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By a result of Wendel, the second summand equals
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out that the first summand is of the order of N−
2
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