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1.1 Introduction

A random field X = {X(t), t ∈ T} is a family of random
variables with values in state space S, where T is the pa-
rameter set.
If T ⊆ RN and S = Rd (d ≥ 1), then X is called an (N, d)
random field. They arise naturally in

turbulence (e.g., A. N. Kolmogorov, 1941)
oceanography (M.S. Longuet-Higgins, 1953, ...)
spatial statistics, spatio-temporal geostatistics (G. Math-
ron, 1962)
image and signal processing
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Examples:

X(t, x) = the height of an ocean surface above certain
nominal plane at time t ≥ 0 and location x ∈ R2.

X(t, x) = wind speed at time t ≥ 0 and location x ∈ R3.

X(t, x) = the levels of d pollutants (e.g., ozone, PM2.5,
nitric oxide, carbon monoxide, etc) measured at location
x ∈ R3 and time t ≥ 0.
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Theory of random fields

1 How to construct random fields?

2 How to characterize and analyze random fields?

3 How to estimate parameters in random fields?

4 How to use random fields to make predictions?

In this short course, we provide a brief introduction to (1)
and (2).
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1.2 Construction and characterization of
random fields

Construct covariance functions

For stationary Gaussian random fields, use spectral
representation theorem

For random fields with stationary increments or ran-
dom intrinsic functions, use Yaglom (1957) and Math-
eron (1973)

Stochastic partial differential equations

Scaling limits of discrete systems
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1.2.1 Stationary random fields and their
spectral representations
A real-valued random field {X(t), t ∈ RN} is called second-
order stationary if E(X(t)) ≡ m,where m is a constant, and
the covariance function depends on s− t only:

E
[
(X(s)− m)(X(t)− m)

]
= C(s− t), ∀s, t ∈ RN.

Note that C is positive definite: For all n ≥ 1, tj ∈ RN and
all complex numbers aj ∈ C (j = 1, . . . , n), we have

n∑
i=1

n∑
j=1

aiajC(ti − tj) ≥ 0.
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Bochner’s theorem

Theorem (Bochner, 1932)
A bounded continuous function C is positive definite if and
only if there is a finite Borel measure µ such that

C(t) =

∫
RN

ei〈t, x〉 dµ(x), ∀t ∈ RN.
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Spectral representation theorem
In particular, if X = {X(t), t ∈ RN} is a centered, station-
ary Gaussian random field with values in R whose covari-
ance function is the Fourier transform of µ, then there is
a complex-valued Gaussian random measure W̃ on A =
{A ∈ B(RN) : µ(A) <∞} such that E

(
W̃(A)

)
= 0,

E(W̃(A)W̃(B)) = µ(A ∩ B) and W̃(−A) = W̃(A)

and X has the following Wiener integral representation:

X(t) =

∫
RN

ei〈t, x〉 dW̃(x).

The finite measure µ is called the spectral measure of X.
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The Matérn class

An important class of isotropic stationary random fields are
those with the Matérn covariance function

C(t) =
1

Γ(ν)2ν−1

(√
2ν
|t|
ρ

)ν
Kν

(√
2ν
|t|
ρ

)
,

where Γ is the gamma function, Kν is the modified Bessel
function of the second kind, and ρ and ν are non-negative
parameters.
Since the covariance function C(t) depends only on the
Euclidean norm |t|, the corresponding Gaussian field X is
called isotropic.
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By the inverse Fourier transform, one can show that the
spectral measure of X has the following density function:

f (λ) =
1

(2π)N

1

(|λ|2 + ρ2

2ν )ν+
N
2

, ∀λ ∈ RN.

Whittle (1954) showed that the Gaussian random field X
can be obtained as the solution to the following fractional
SPDE (

∆ +
ρ2

2ν
)ν

2+
N
4 X(t) = Ẇ(t),

where ∆ = ∂2

dt2
1

+ · · ·+ ∂2

dt2
N

is the N-dimensional Laplacian,

and Ẇ(t) is the white noise.
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A smooth Gaussian field: N = 2, ν = .25
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A smooth Gaussian field: N = 2, ν = 2.5
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Recent extensions:

Random fields on a spatial-temporal domain
In statistics, one needs to consider random fields defined
on the spatial-temporal domain RN × R. It is often not
reasonable to assume that these random fields are isotropic.
Various anisotropic random fields have been constructed
(Cressie and Huang 1999, Stein 2005; Biermé, et al. 2007;
X. 2009; Li and X. 2011)

Multivariate (stationary) random fields

Random fields on the spheres and other manifolds.
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1.2.2 Gaussian fields with stationary
increments
Let X = {X(t), t ∈ RN} be a centered Gaussian random
field with stationary increments and X(0) = 0. Yaglom
(1954) showed that, if R(s, t) = E

[
X(s)X(t)

]
is continu-

ous, then R(s, t) can be written as

R(s, t) =

∫
RN

(ei〈s,λ〉 − 1)(e−i〈t,λ〉 − 1)∆(dλ),

where ∆(dλ) is a Borel measure which satisfies∫
RN

(1 ∧ |λ|2) ∆(dλ) <∞. (1)

The measure ∆ is called the spectral measure of X.
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It follows that

E
[
(X(s)− X(t))2] = 2

∫
RN

(
1− cos〈s− t, λ〉

)
∆(dλ);

and X has the stochastic integral representation:

X(t) d
=

∫
RN

(
ei〈t,λ〉 − 1

)
W̃(dλ),

where d
= denotes equality of all finite-dimensional distribu-

tions, W̃(dλ) is a centered complex-valued Gaussian ran-
dom measure with ∆ as its control measure.

Gaussian fields with stationary increments can be con-
structed by choosing spectral measures ∆.
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Two examples

Example 1 If ∆ has a density function

fH(λ) = c(H,N)|λ|−(2H+N),

where H ∈ (0, 1) and c(H,N) > 0, then X is fractional
Brownian motion with index H.
It can be verified that (for proper choice of c(H,N)),

E
[
(X(s)− X(t))2] = 2c(H,N)

∫
RN

1− cos〈s− t, λ〉
|λ|2H+N dλ

= |s− t|2H.

For the last identity, see, e.g., Schoenberg (1939).
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FBm X has stationary increments: for any b ∈ RN ,{
X(t + b)− X(b), t ∈ RN} d

=
{

X(t), t ∈ RN} ,
where d

= means equality in finite dimensional distri-
butions.
FBm X is H-self-similar: for every constant c > 0,{

X(ct), t ∈ RN} d
=
{

cHX(t), t ∈ RN} .
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Example 2 A large class of Gaussian fields can be obtained
by letting spectral density functions satisfy (1) and

f (λ) � 1(∑N
j=1 |λj|βj

)γ , ∀λ ∈ RN, |λ| ≥ 1, (2)

where (β1, . . . , βN) ∈ (0,∞)N and γ >
∑N

j=1
1
βj
.

More conveniently, we re-write (2) as

f (λ) � 1(∑N
j=1 |λj|Hj

)Q+2 , ∀λ ∈ RN, |λ| ≥ 1, (3)

where Hj =
βj

2

(
γ −

∑N
i=1

1
βi

)
and Q =

∑N
j=1 H−1

j .
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1.2.3 The Brownian sheet and fractional
Brownian sheets

The Brownian sheet W = {W(t), t ∈ RN
+} is a centered

(N, d)-Gaussian field whose covariance function is

E
[
Wi(s)Wj(t)

]
= δij

N∏
k=1

sk ∧ tk.

When N = 1, W is Brownian motion in Rd.
W is N/2-self-similar, but it does not have stationary
increments.
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Fractional Brownian sheet W ~H =
{

W ~H(t), t ∈ RN
}

is a mean zero Gaussian field in R with covariance
function

E
[
W ~H(s)W ~H(t)

]
=

N∏
j=1

1
2
(
|sj|2Hj + |tj|2Hj − |sj − tj|2Hj

)
,

where ~H = (H1, . . . ,HN) ∈ (0, 1)N .
For all constants c > 0,{

W ~H(cEt), t ∈ RN
}

d
=
{

c W ~H(t), t ∈ RN
}
,

where E = (aij) is the N × N diagonal matrix with
aii = 1/(NHi) for all 1 ≤ i ≤ N and aij = 0 if i 6= j.
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1.2.4 Linear stochastic heat equation
As an example, we consider the solution of the linear stochas-
tic heat equation

∂u
∂t

(t, x) =
∂2u
∂x2 (t, x) + σ Ẇ

u(0, x) ≡ 0, ∀x ∈ R.
(4)

It follows from Walsh (1986) that the mild solution of (4)
is the mean zero Gaussian random field u = {u(t, x), t ≥
0], x ∈ R} defined by

u(t, x) =

∫ t

0

∫
R

G̃t−r(x− y)σW(drdy), t ≥ 0, x ∈ R,
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where G̃t(x) is the Green kernel given by

G̃t(x) = (4πt)−1/2 exp
(
− |x|

2

4t

)
, ∀ t > 0, x ∈ R.

One can verify that
for every fixed x ∈ R, the process {u(t, x), t ∈ [0,T]}
is a bi-fractional Brownian motion.
For every fixed t > 0, the process {u(t, x), x ∈ R} is
stationary with an explicit spectral density function.

This allows to study the properties of u(t, x) in the time and
space-variables either separately or jointly.
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1.3 Regularity of Gaussian random fields
Let X = {X(t), t ∈ RN} be a random field. For each
ω ∈ Ω, the function X(·, ω) : RN → Rd:

t 7→ X(t, ω)

is called a sample function of X.

The following are natural questions:
(i) When are the sample functions of X bounded, or con-

tinuous?

(ii) When are the sample functions of X differentiable?

(iii) How to characterize the analytic and geometric prop-
erties of X(·) precisely?
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Let X = {X(t), t ∈ T} be a centered Gaussian process
with values in R, where (T, τ) is a metric space; e.g., T =
[0, 1]N , or T = SN−1.
We define a pseudo metric dX(·, ·) : T × T → [0,∞) by

dX(s, t) =
{
E[X(t)− X(s)]2

} 1
2 .

(dX is often called the canonical metric for X.)
Let D = supt,s∈T dX(s, t) be the diameter of T , under the
pseudo metric dX.

For any ε > 0, let N(T, dX, ε) be the minimum number of
dX-balls of radius ε that cover T .
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Dudley’s Theorem
H(T, ε) =

√
log N(T, dX, ε) is called the metric entropy

of T .
Theorem 1.3.1 [Dudley, 1967]
Assume N(T, dX, ε) <∞ for every ε > 0. If∫ D

0

√
log N(T, dX, ε) dε <∞.

Then there exists a modification of X, still denoted by X,
such that

E
(

sup
t∈T

X(t)
)
≤ 16

√
2
∫ D

2

0

√
log N(T, dX, ε) dε. (5)
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The proof of Dudley’s Theorem is based on a chaining ar-
gument, which is similar to that of Kolmogorov’s conti-
nuity theorem. See Talagrand (2005), Marcus and Rosen
(2007).

Example: For a Gaussian random field {X(t), t ∈ T} satis-
fying

dX(s, t) �
(

log
1
|s− t|

)−γ
,

its sample functions are continuous if γ > 1/2.

Fernique (1975) proved that (5) is also necessary if X
is a Gaussian process with stationary increments.

In general, (5) is not necessary for sample bounded-
ness and continuity.
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Majorizing measure

For a general Gaussian process, Talagrand (1987) proved
the following necessary and sufficient for the boundedness
and continuity.

Theorem 1.3.2 [Talagrand, 1987]
Let X = {X(t), t ∈ T} be a centered Gaussian process
with values in R. Suppose D = supt,s∈T dX(s, t) < ∞.
Then X has a modification which is bounded on T if and
only if there exists a probability measure µ on T such that

sup
t∈T

∫ D

0

(
log

1
µ(B(t, u))

)1/2
du <∞. (6)

Yimin Xiao (Michigan State University) Gaussian Random Fields: Geometric Properties and Extremes
Northwestern University, July 11–15, 2016 29

/ 56



Majorizing measure

Theorem 1.3.2 (Continued)
There exists a modification of X with bounded, uniformly
continuous sample functions if and only if there exists a
probability measure µ on T such that

lim
ε→0

sup
t∈T

∫ ε

0

(
log

1
µ(B(t, u))

)1/2
du = 0. (7)
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Uniform modulus of continuity

Theorem 1.3.3
Under the condition of Theorem 1.3.1, there exists a ran-
dom variable η ∈ (0, ∞) and a constant K > 0 such that
for all 0< δ < η,

ωX,dX(δ) ≤ K

δ∫
0

√
log N(T, dX, ε) dε,

where ωX,dX(δ) = sup
s,t∈T, dX(s,t)≤δ

|X(t)−X(s)| is the modulus

of continuity of X(t) on (T, dX).
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Corollary 1.3.4
Let BH = {BH(t), t ∈ RN} be a fractional Brownian mo-
tion with index H ∈ (0, 1). Then BH has a modification,
still denoted by BH, whose sample functions are almost
surely continuous. Moreover,

lim sup
ε→0

maxt∈[0,1]N ,|s|≤ε |BH(t + s)− BH(t)|
εH
√

log 1/ε
≤ K, a.s.

Proof: Recall that dBH(s, t) = |s− t|H and ∀ ε > 0,

N
(
[0, 1]N, dBH , ε

)
≤ K

( 1
ε1/H

)N
.
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It follows from Theorem 1.3.3 that ∃ a random variable
η > 0 and a constant K > 0 such that

ωBH(δ) ≤ K

δ∫
0

√
log
( 1
ε1/H

)
dε

≤ K δ

√
log

1
δ

a.s.

Returning to the Euclidean metric and noticing

dBH(s, t) ≤ δ ⇐⇒ |s− t| ≤ δ1/H,

yields the desired result.
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Later on, we will prove that there is a constant K ∈ (0,∞)
such that

lim sup
ε→0

maxt∈[0,1]N ,|s|≤ε |BH(t + s)− BH(t)|
εH
√

log 1/ε
= K, a.s.

This is an analogue of Lévy’s uniform modulus of conti-
nuity for Brownian motion.
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Differentiability

(i). Mean-square differentiability: the mean square partial
derivative of X at t is defined as

∂X(t)
∂tj

= l.i.mh→0
X(t + hej)− X(t)

h
,

where ej is the unit vector in the j-th direction.
For a Gaussian field, sufficient conditions can be given
in terms of the differentiability of the covariance function
(Adler, 1981).
(ii). Sample path differentiability: the sample function
t 7→ X(t) is differentiable. This is much stronger and more
useful than (i).
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Sample path differentiability of X(t) can be proved by us-
ing criteria for continuity.

Consider a centered Gaussian field with stationary incre-
ments whose spectral density function satisfies

f (λ) � 1(∑N
j=1 |λj|βj

)γ , ∀λ ∈ RN, |λ| ≥ 1, (8)

where (β1, . . . , βN) ∈ (0,∞)N and

γ >
N∑

j=1

1
βj
.
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Differentiability

Theorem 1.3.5 (Xue and X. 2011)
(i) If

βj

(
γ −

N∑
i=1

1
βi

)
> 2, (9)

then the partial derivative ∂X(t)/∂tj is continuous almost
surely. In particular, if (9) holds for all 1 ≤ j ≤ N, then
almost surely X(t) is continuously differentiable.
(ii) If

max
1≤j≤N

βj

(
γ −

N∑
i=1

1
βi

)
≤ 2, (10)

then X(t) is not differentiable in any direction.
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1.4 A review of Hausdorff measure and
dimension

Let Φ be the class of functions ϕ : (0, δ) → (0,∞) which
are right continuous, monotone increasing with ϕ(0+) = 0
and such that there exists a finite constant K > 0 such that

ϕ(2s)
ϕ(s)

≤ K for 0 < s <
1
2
δ.

A function ϕ in Φ is often called a measure function or
gauge function.
For example, ϕ(s) = sα (α > 0) andϕ(s) = sα log log(1/s)
are measure functions.
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Given ϕ ∈ Φ, the ϕ-Hausdorff measure of E ⊆ Rd is
defined by

ϕ-m(E) = lim
ε→0

inf
{∑

i

ϕ(2ri) : E ⊆
∞⋃

i=1

B(xi, ri), ri < ε

}
,

(11)
where B(x, r) denotes the open ball of radius r centered at
x. The sequence of balls satisfying the two conditions on
the right-hand side of (11) is called an ε-covering of E.
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Theorem 1.4.1 [Hausdorff, etc]
ϕ-m is a Carathéodory outer measure.
The restriction of ϕ-m to B(Rd) is a [Borel] measure.
If ϕ(s) = sd, then ϕ-m

∣∣
B(Rd)

= c× Lebesgue measure
on Rd.

A function ϕ ∈ Φ is called an exact (or a correct) Haus-
dorff measure function for E if 0 < ϕ-m(E) <∞.
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dorff measure function for E if 0 < ϕ-m(E) <∞.
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If ϕ(s) = sα, we write ϕ-m(E) as Hα(E). The following
lemma is elementary.

Lemma
1 IfHα(E) <∞, thenHα+δ(E) = 0 for all δ > 0.
2 IfHα(E) =∞, thenHα−δ(E) =∞ for all δ ∈ (0 , α).
3 For any E ⊂ Rd, we haveHd+δ(E) = 0.
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The Hausdorff dimension of E is defined by

dimHE = inf
{
α > 0 : Hα(E) = 0

}
= sup

{
α > 0 : Hα(E) =∞},

Convention: sup∅ := 0.

Lemma
1 E ⊂ F ⊂ Rd ⇒ dimHE ≤ dimHF ≤ d.
2 (σ-stability) dimH

(⋃∞
j=1 Ej

)
= supj≥1 dimHEj.
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Example: Cantor’s set

Let C denote the standard ternary Cantor set in [0 , 1].
At the nth stage of its construction, C is covered by 2n

intervals of length/diameter 3−n each.
Therefore, for α = log3 2,

Hα(C) ≤ lim
n→∞

2n · 3−nα = 1.

Thus, we obtain dimHC ≤ log3 2 ≈ 0.6309.
We will prove later that this is an equality and

0 < Hlog3 2(C) <∞.
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Example: Images of Brownian motion
Let B([0, 1]) be the image of Brownian motion in Rd. Lévy
(1948) and Taylor (1953) proved that

dimHB([0, 1]) = min{d, 2} a.s.

Ciesielski and Taylor (1962), Ray and Taylor (1964) proved
that

0 < ϕd-m
(
B([0, 1])

)
<∞ a.s.,

where
ϕ1(r) = r

ϕ2(r) = r2 log(1/r) log log log(1/r)

ϕd(r) = r2 log log(1/r), if d ≥ 3.
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A method for determining upper bounds

Lemma

Let I ⊂ RN be a hyper-cube. If there is a constant α ∈
(0, 1) such that for every ε > 0, the function f : I → Rd

satisfies a uniform Hölder condition of order α − ε on I,
then for every Borel set E ⊂ I

dimH f (E) ≤ min
{

d,
1
α

dimHE
}
, (12)

dimH Grf (E) ≤ min
{1
α

dimHE, dimHE+(1−α)d
}
, (13)

where Grf (E) = {(t, f (t)) : t ∈ E}.
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Proof of (12)

For any γ > dimHE, there is a covering {B(xi, ri)} of E
such that

∞∑
i=1

(2ri)
γ ≤ 1.

For any fixed ε ∈ (0, α), f (B(xi, ri)) is contained in a ball
in Rd of radius rα−εi , which yields a covering of f (E).
Since

∞∑
i=1

(
rα−εi

)γ/(α−ε)
≤ 1,

we have dimH f (E) ≤ γ/(α − ε). Letting ε ↓ 0 and γ ↓
dimHE yield (12).

Yimin Xiao (Michigan State University) Gaussian Random Fields: Geometric Properties and Extremes
Northwestern University, July 11–15, 2016 46

/ 56



Proof of (12)

For any γ > dimHE, there is a covering {B(xi, ri)} of E
such that

∞∑
i=1

(2ri)
γ ≤ 1.

For any fixed ε ∈ (0, α), f (B(xi, ri)) is contained in a ball
in Rd of radius rα−εi , which yields a covering of f (E).
Since

∞∑
i=1

(
rα−εi

)γ/(α−ε)
≤ 1,

we have dimH f (E) ≤ γ/(α − ε). Letting ε ↓ 0 and γ ↓
dimHE yield (12).

Yimin Xiao (Michigan State University) Gaussian Random Fields: Geometric Properties and Extremes
Northwestern University, July 11–15, 2016 46

/ 56



Proof of (12)

For any γ > dimHE, there is a covering {B(xi, ri)} of E
such that

∞∑
i=1

(2ri)
γ ≤ 1.

For any fixed ε ∈ (0, α), f (B(xi, ri)) is contained in a ball
in Rd of radius rα−εi , which yields a covering of f (E).
Since

∞∑
i=1

(
rα−εi

)γ/(α−ε)
≤ 1,

we have dimH f (E) ≤ γ/(α − ε). Letting ε ↓ 0 and γ ↓
dimHE yield (12).

Yimin Xiao (Michigan State University) Gaussian Random Fields: Geometric Properties and Extremes
Northwestern University, July 11–15, 2016 46

/ 56



Proof of (12)

For any γ > dimHE, there is a covering {B(xi, ri)} of E
such that

∞∑
i=1

(2ri)
γ ≤ 1.

For any fixed ε ∈ (0, α), f (B(xi, ri)) is contained in a ball
in Rd of radius rα−εi , which yields a covering of f (E).
Since

∞∑
i=1

(
rα−εi

)γ/(α−ε)
≤ 1,

we have dimH f (E) ≤ γ/(α − ε). Letting ε ↓ 0 and γ ↓
dimHE yield (12).

Yimin Xiao (Michigan State University) Gaussian Random Fields: Geometric Properties and Extremes
Northwestern University, July 11–15, 2016 46

/ 56



A method for determining lower bounds

P(E) := all probability measures that are supported in E.

Lemma (Frostman, 1935)
Let E be a Borel subset of Rd and α > 0 be a constant.
Then Hα(E) > 0 if and only if there exist µ ∈ P(E) and a
constant K such that

µ(B(x, r)) ≤ K rα ∀ x ∈ Rd, r > 0.

Sufficiency follows from the definition of Hα(E) and
the subadditivity of µ.
For a proof of the necessity, see Kahane (1985).
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Theorem 1.4.2 [Frostman, 1935]
Let E be a Borel subset of Rd. Suppose there exist α > 0
and µ ∈ P(E) such that

Iα(µ) :=

∫∫
µ(dx)µ(dy)

|x− y|α
<∞.

Then, dimHE ≥ α.

Iα(µ) := the α-dimensional [Bessel-] Riesz energy of
µ.
the α-dimensional capacity of E is

Cα(E) :=
[

inf
µ∈P

Iα(µ)
]−1

.
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Proof: For λ > 0, let

Eλ =

{
x ∈ E :

∫
µ(dy)

|x− y|α
≤ λ

}
.

Then µ(Eλ) > 0 for λ large enough. To show dimH(Eλ) ≥
α, we take an arbitrary ε-covering {B(xi, ri)} of Eλ. WLOG,
we assume xi ∈ Eλ.

λ
∞∑

i=1

(2ri)
α ≥

∞∑
i=1

(2ri)
α

∫
B(xi,ri)

µ(dy)

|x− y|α

≥
∞∑

i=1

µ
(
B(xi, ri)

)
≥ µ(Eλ).

HenceHα(Eλ) ≥ µ(Eλ)/λ > 0.
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Using Frostman’s lemma, one can also prove that if α <
dimHE, then there exists a probability measure µ on E such
that Iα(µ) <∞, so Cα(E) > 0.

This leads to
Corollary
Let E be a Borel subset of Rd. Then

dimHE = sup{α > 0 : Cα(E) > 0}. (14)
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Images of Brownian motion: continued

Theorem 1.4.3 [Lévy, 1948; Taylor, 1953; McKean,
1955]
For any Borel set E ⊂ R+, dimHB(E) = min{d , 2dimHE}
a.s.

Suffices to prove that dimHB(E) ≥ min{d , 2dimHE};
the upper bound follows from Lemma 1.3.
Need a probability measure on B(E) such that Iα(µ) <
∞ a.s. for α < min{d , 2dimHE}.
Since α/2 < dimHE, by Frostman’s lemma, there ex-
ists a probability measure σ on E such that∫

E

∫
E

1
|s− t|α/2 σ(ds)σ(dt) <∞.
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Theorem 1.4.3 [Lévy, 1948; Taylor, 1953; McKean,
1955]
For any Borel set E ⊂ R+, dimHB(E) = min{d , 2dimHE}
a.s.

Suffices to prove that dimHB(E) ≥ min{d , 2dimHE};
the upper bound follows from Lemma 1.3.
Need a probability measure on B(E) such that Iα(µ) <
∞ a.s. for α < min{d , 2dimHE}.
Since α/2 < dimHE, by Frostman’s lemma, there ex-
ists a probability measure σ on E such that∫

E

∫
E

1
|s− t|α/2 σ(ds)σ(dt) <∞.

Yimin Xiao (Michigan State University) Gaussian Random Fields: Geometric Properties and Extremes
Northwestern University, July 11–15, 2016 51

/ 56



Images of Brownian motion: continued
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Define

µ(A) := σ{t ∈ E : B(t) ∈ A} =

∫
E

1A(B(t))σ(dt);

then µ ∈ P(B(E)). Its α-dimensional [Bessel-] Riesz en-
ergy is

Iα(µ) =

∫
E

∫
E
|B(s)− B(t)|−α σ(ds)σ(dt).

E(Iα(µ)) =

∫
E

∫
E
|s− t|−α/2 σ(ds)σ(dt)× E(|Z|−α),

where Z is a vector of d i.i.d. N(0 , 1)’s.
Yimin Xiao (Michigan State University) Gaussian Random Fields: Geometric Properties and Extremes

Northwestern University, July 11–15, 2016 52
/ 56



Define

µ(A) := σ{t ∈ E : B(t) ∈ A} =

∫
E

1A(B(t))σ(dt);

then µ ∈ P(B(E)). Its α-dimensional [Bessel-] Riesz en-
ergy is

Iα(µ) =

∫
E

∫
E
|B(s)− B(t)|−α σ(ds)σ(dt).

E(Iα(µ)) =

∫
E

∫
E
|s− t|−α/2 σ(ds)σ(dt)× E(|Z|−α),

where Z is a vector of d i.i.d. N(0 , 1)’s.
Yimin Xiao (Michigan State University) Gaussian Random Fields: Geometric Properties and Extremes

Northwestern University, July 11–15, 2016 52
/ 56



Note that E(|Z|−α) <∞ iff α < d [use polar coordinates].
we see that

α < d ∧ 2dimHE ⇒ Iα(µ)
a.s.
< ∞.

Hence dimHB(E)
a.s.
≥ d ∧ 2dimHE.
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An upper density theorem
For any Borel measure µ on Rd and ϕ ∈ Φ, the upper ϕ-
density of µ at x ∈ Rd is defined as

Dϕ
µ(x) = lim sup

r→0

µ(B(x, r))

ϕ(2r)
.

Theorem 1.4.5 [Rogers and Taylor, 1961]
Given ϕ ∈ Φ, ∃K > 0 such that for any Borel measure
µ on Rd with 0 < ‖µ‖=̂µ(Rd) < ∞ and every Borel set
E ⊆ Rd, we have

K−1µ(E) inf
x∈E

{
Dϕ
µ(x)

}−1 ≤ ϕ-m(E) ≤ K‖µ‖ sup
x∈E

{
Dϕ
µ(x)

}−1
.

(15)
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Cantor’s set: continued

Let µ be the mass distribution on C. That is, µ satisfies

µ(In,i) = 2−n, ∀n ≥ 0 1 ≤ i ≤ 2n.

Then for every x ∈ C and any r ∈ (0, 1),

µ(B(x, r)) ≤ K rlog3 2. (16)

Hence supx∈C Dlog3 2
µ (x) ≤ K.

By the above theorem,Hlog3 2(C) ≥ K−1.
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Thank you!
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