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Lecture 1 Gaussian random fields and their

regularity

@ Introduction
@ Construction of Gaussian random fields

@ Regularity of Gaussian random fields

@ A review of Hausdorff measure and dimension
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1.1 Introduction

A random field X = {X(¢),r € T} is a family of random
variables with values in state space S, where T is the pa-
rameter set.

If T C RV and S = RY (d > 1), then X is called an (N, d)
random field. They arise naturally in

@ turbulence (e.g., A. N. Kolmogorov, 1941)
@ oceanography (M.S. Longuet-Higgins, 1953, ...)

@ spatial statistics, spatio-temporal geostatistics (G. Math-
ron, 1962)

@ image and signal processing
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Examples:

X(t,x) = the height of an ocean surface above certain
nominal plane at time ¢ > 0 and location x € R.

X(t,x) = wind speed at time ¢ > 0 and location x € R?.

X(t,x) = the levels of d pollutants (e.g., ozone, PM, s,
nitric oxide, carbon monoxide, etc) measured at location
x € R3 and time ¢ > 0.
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Theory of random fields

@ How to construct random fields?
© How to characterize and analyze random fields?
@ How to estimate parameters in random fields?

© How to use random fields to make predictions?

In this short course, we provide a brief introduction to (1)
and (2).
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1.2 Construction and characterization of

random fields

@ Construct covariance functions

@ For stationary Gaussian random fields, use spectral
representation theorem

@ For random fields with stationary increments or ran-
dom intrinsic functions, use Yaglom (1957) and Math-
eron (1973)

Stochastic partial differential equations

Scaling limits of discrete systems
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1.2.1 Stationary random fields and their

spectral representations

A real-valued random field {X(z), t € RV} is called second-
order stationary if E(X(¢)) = m, where m is a constant, and
the covariance function depends on s — ¢ only:

E[(X(s) — m)(X(t) —m)] = C(s —1), Vs,t€R".

Note that C is positive definite: For alln > 1, ¢ € R and
all complex numbers a¢; € C (j = 1,...,n), we have

zn: zn: a@C(t — 1) > 0.

i=1 j=1
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Bochner’s theorem

Theorem (Bochner, 1932)

A bounded continuous function C is positive definite if and
only if there is a finite Borel measure . such that

C(1) :/ eV du(x),  VreRY.
RN
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Spectral representation theorem

In particular, if X = {X(¢),t € RV} is a centered, station-
ary Gaussian random field with values in R whose covari-
ance function is the Fourier transform of y, then there is
a complex-valued Gaussian random measure W on A =

{A € B(RY) : u(A) < oo} such thatE(ﬁ/(A)) =0,

E(W(A)W(B)) = u(ANB) and W(—A) = W(A)
and X has the following Wiener integral representation:
X(t) = / ¢t dW (x).
RN

The finite measure 1 is called the spectral measure of X.
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The Matérn class

An important class of isotropic stationary random fields are
those with the Matérn covariance function

C(r) = # (@%) X (\/ﬁ%)

where ' is the gamma function, K, is the modified Bessel
function of the second kind, and p and v are non-negative
parameters.

Since the covariance function C(¢) depends only on the
Euclidean norm |¢|, the corresponding Gaussian field X is
called isotropic.

Ng
Yimin Xiao (Michigan State University)  Gaussian Random Fields: Geometric Propertie:



By the inverse Fourier transform, one can show that the
spectral measure of X has the following density function:

1 1

—, YAERY
oY (AP + &)+

fA) =

Whittle (1954) showed that the Gaussian random field X
can be obtained as the solution to the following fractional
SPDE

(A + %)H X(t) = W(),

2 2 . . . .
where A = % +--+ 57 1s the N-dimensional Laplacian,
1 N

and W(¢) is the white noise.
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A smooth Gaussian field: N =2, v = .25

Matern Fields with smoothness nu= 0.25

=S W g —
o n
»l," -
e
=]
=
=4
{5
-—
i 5
o ]
acsupy T
i T
o .
I3 T T T T T T
o} 2 4 G g 10

¥ Coord

ian Random Fields: Geometric Properti



A smooth Gaussian field: N =2, v = 2.5

Matern Fields with smoothness nu= 2.50
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Recent extensions:

@ Random fields on a spatial-temporal domain
o In statistics, one needs to consider random fields defined
on the spatial-temporal domain RY x R. It is often not
reasonable to assume that these random fields are isotropic.
Various anisotropic random fields have been constructed
(Cressie and Huang 1999, Stein 2005; Biermé, et al. 2007,
X.2009; Li and X. 2011)

@ Multivariate (stationary) random fields

@ Random fields on the spheres and other manifolds.
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1.2.2 Gaussian fields with stationary

increments

Let X = {X(t), t € R"} be a centered Gaussian random

field with stationary increments and X(0) = 0. Yaglom
(1954) showed that, if R(s,7) = E|[X(s)X(r)] is continu-
ous, then R(s, t) can be written as

R(s,t) = / (N — 1) (e N — 1)A(dN),
RN
where A(d)) is a Borel measure which satisfies
/ (1A AP A(dN) < . (1)
RN

The measure A is called the spectral measure of X.
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It follows that
B(X() = X()7] =2 [ (1= cos(s = 1,0) Al

and X has the stochastic integral representation:
4 i{t,\) i~
XL [ (e - 1) Wian,
RN

d . o . o
where = denotes equality of all finite-dimensional distribu-
tions, W(d)\) is a centered complex-valued Gaussian ran-
dom measure with A as its control measure.

Gaussian fields with stationary increments can be con-
structed by choosing spectral measures A.
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Example 1 If A has a density function
fa(A) = e(H,N)[A[~2),

where H € (0,1) and ¢(H,N) > 0, then X is fractional
Brownian motion with index H.
It can be verified that (for proper choice of ¢(H, N)),

1 —cos(s —t, \)
(\[ZHN

E[(X(s) — X(r))?] = 2¢(H,N) / d\

RN
= |s —t*.

For the last identity, see, e.g., Schoenberg (1939).
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@ FBm X has stationary increments: for any b € RY,
{X(t+b) —X(), t € R"} 4 {X(1), 1 e RV},

d o o : o
where = means equality in finite dimensional distri-
butions.

@ FBm X is H-self-similar: for every constant ¢ > 0,

{X(ct), t e RV} £ {cFX(1), 1 € RV}
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Example 2 A large class of Gaussian fields can be obtained
by letting spectral density functions satisfy (1) and

1
f) = VAERY, N[ >1, ()

(Zszl |>‘j|’6j)7’

where (B1,...,y) € (0,00)¥ and vy > > | /Bl,
More conveniently, we re-write (2) as

f) = ‘ VAERY, A >1, (3)

where H; = 2(y = SN D)y and 0 = YV | H".
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1.2.3 The Brownian sheet and fractional

Brownian sheets

The Brownian sheet W = {W(¢), t € RY} is a centered
(N, d)-Gaussian field whose covariance function is

@ When N = 1, W is Brownian motion in R<.

@ W is N/2-self-similar, but it does not have stationary
increments.
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o Fractional Brownian sheet WH = {Wﬁ (1), € RN }

1s a mean zero Gaussian field in R with covariance
function

1 . ) .
E[WH } H§ (i + 5% = [s; — 6*)
j=1

whereFI = (I‘Il7 ce ,HN) c (0, I)N
For all constants ¢ > 0,

{Wﬁ(c 1), teRN} {cWH() teRN},

where E = (a;) is the N x N diagonal matrix with
a; = 1/(NH;) forall 1 <i < Nanda; =0ifi#j.
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1.2.4 Linear stochastic heat equation

As an example, we consider the solution of the linear stochas-
tic heat equation

au(t) O*u
ar N T o

u(0,x) =0, Vx € R.

——(t,x)+o W @)

It follows from Walsh (1986) that the mild solution of (4)
is the mean zero Gaussian random field u = {u(t,x),t >
0], x € R} defined by

t
u(t,x) = / / Gro(x — ) aW(drdy), 1> 0,x€ R,
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where G,(x) is the Green kernel given by

~ 2
G:(x) = (4mt)" 2 exp ( — |fl_‘t)’ V> 0,xeR.

One can verify that
e for every fixed x € R, the process {u(t,x),t € [0,T]}
is a bi-fractional Brownian motion.

@ For every fixed ¢ > 0, the process {u(t,x),x € R} is
stationary with an explicit spectral density function.

This allows to study the properties of u(¢, x) in the time and
space-variables either separately or jointly.
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1.3 Regularity of Gaussian random fields

Let X = {X(1),t € R"} be a random field. For each
w € , the function X(+,w) : RY — R%

t— X(t,w)

is called a sample function of X.

The following are natural questions:

(i) When are the sample functions of X bounded, or con-
tinuous?

(ii) When are the sample functions of X differentiable?

(iii) How to characterize the analytic and geometric prop-
erties of X(-) precisely?
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Let X = {X(¢#),t € T} be a centered Gaussian process
with values in R, where (T, 7) is a metric space; e.g., T =
[0,1]¥, or T = SN,

We define a pseudo metric dx(-,-) : T x T — [0, 00) by

dy(s,1) = {E[X(t) — X(s)}".

(dx 1s often called the canonical metric for X.)
Let D = sup, 7 dx(s,t) be the diameter of 7', under the
pseudo metric dy.

For any € > 0, let N(T, dx, €) be the minimum number of
dx-balls of radius ¢ that cover 7.
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Dudley’s Theorem

H(T, ¢) = \/log N(T,dx,¢) is called the metric entropy
of T.
Theorem 1.3.1 [Dudley, 1967]

Assume N(T, dx,c) < oo for every € > 0. If

D
/ V1og N(T,dx, ) de < .
0

Then there exists a modification of X, still denoted by X,
such that

teT

]E(supX(t)) < 16V2 /0 P JlogNT. ds.e)de.  (5)
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The proof of Dudley’s Theorem is based on a chaining ar-
gument, which is similar to that of Kolmogorov’s conti-
nuity theorem. See Talagrand (2005), Marcus and Rosen
(2007).

Example: For a Gaussian random field {X(7),7 € T} satis-
fying

1 =
dx(s,t) < <log 5o f’> :

its sample functions are continuous if v > 1/2.
@ Fernique (1975) proved that (5) is also necessary if X

is a Gaussian process with stationary increments.

@ In general, (5) is not necessary for sample bounded-
ness and continuity.
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Majorizing measure

For a general Gaussian process, Talagrand (1987) proved
the following necessary and sufficient for the boundedness
and continuity.

Theorem 1.3.2 [Talagrand, 1987]

Let X = {X(#),t € T} be a centered Gaussian process
with values in R. Suppose D = sup, .y dx(s,t) < oo.
Then X has a modification which is bounded on T if and
only if there exists a probability measure ;2 on T such that

D 1 1/2
w), (o miay) < ©
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Majorizing measure

Theorem 1.3.2 (Continued)

There exists a modification of X with bounded, uniformly
continuous sample functions if and only if there exists a
probability measure ¢ on T such that

e 1 \1P2
lim su / (10 —) du=0 (7
205er Jo \ % u(B(t,w)
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Uniform modulus of continuity

Theorem 1.3.3

Under the condition of Theorem 1.3.1, there exists a ran-
dom variable € (0, co) and a constant K > 0 such that
for all 0< § < 7,

5
Wy gy (0) < K/ V1og N(T, dy, ¢) de,
0

where wy 4,(0) = sup  |X(¢#) —X(s)| is the modulus
s,0€T, dx (s,)<6

of continuity of X () on (7, dy).
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Corollary 1.3.4

Let BY = {B"(¢t),t € R"} be a fractional Brownian mo-
tion with index H € (0,1). Then B¥ has a modification,
still denoted by B, whose sample functions are almost
surely continuous. Moreover,

Fiiiles maxXe(o,1]V,|s|<e |B"(1 4 5) — B"(1)] <K as
e—0 el V log 1/8 -

Proof: Recall that dgu(s,t) = |s — t/T and V & > 0,

1 N
N
N([O, 1] ,dBH, 5) S K (W) .
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It follows from Theorem 1.3.3 that 3 a random variable
n > 0 and a constant K > 0 such that

Returning to the Euclidean metric and noticing
dgi(s,1) <0 <= |s—1] < oVH,

yields the desired result.
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Later on, we will prove that there is a constant K € (0, c0)
such that

. maxco 1} sj<e [B7 (1 + 5) — B (1) B
lim sup =K, a.s.

e—0 efl\/log1/e

This is an analogue of Lévy’s uniform modulus of conti-
nuity for Brownian motion.
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Differentiability

(1). Mean-square differentiability: the mean square partial
derivative of X at ¢ is defined as

oxX(t) X(t+ he;) — X(1)
o = l.imy,_ P ,

where ¢; is the unit vector in the j-th direction.

For a Gaussian field, sufficient conditions can be given
in terms of the differentiability of the covariance function
(Adler, 1981).

(11). Sample path differentiability: the sample function
t — X(t) is differentiable. This is much stronger and more
useful than (1).
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Sample path differentiability of X(¢) can be proved by us-
ing criteria for continuity.

Consider a centered Gaussian field with stationary incre-
ments whose spectral density function satisfies

FO) = VAERY, A1, ()

(X, In]%)"

where (31,...,8v) € (0,00)" and
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Differentiability

Theorem 1.3.5 (Xue and X. 2011)

(i) If
|
@-(v—Z—) > 2, )
prllel
then the partial derivative 0X(¢)/0t is continuous almost

surely. In particular, if (9) holds for all 1 < j < N, then
almost surely X(7) is continuously differentiable.
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Differentiability

Theorem 1.3.5 (Xue and X. 2011)

(i) If
|
@-(v—Z—) > 2, )
prllel
then the partial derivative 0X(¢)/0t is continuous almost

surely. In particular, if (9) holds for all 1 < j < N, then

almost surely X(7) is continuously differentiable.
(i) If

|
max 3 (7 - E) =2, (10)

i=1

then X (¢) is not differentiable in any direction.
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1.4 A review of Hausdorff measure and

dimension

Let ® be the class of functions ¢ : (0,0) — (0, 00) which
are right continuous, monotone increasing with ¢(0+) = 0
and such that there exists a finite constant K > 0 such that

©(2s)
©(s)

1
< K for 0<s<§5.
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1.4 A review of Hausdorff measure and

dimension

Let ® be the class of functions ¢ : (0,0) — (0, 00) which
are right continuous, monotone increasing with ¢(0+) = 0
and such that there exists a finite constant K > 0 such that

©(2s)
©(s)

1
< K for 0<s<§5.

A function ¢ in ® is often called a measure function or
gauge function.
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1.4 A review of Hausdorff measure and

dimension

Let ® be the class of functions ¢ : (0,0) — (0, 00) which
are right continuous, monotone increasing with ¢(0+) = 0
and such that there exists a finite constant K > 0 such that

©(2s)
©(s)

1
< K for 0<s<§5.

A function ¢ in ® is often called a measure function or
gauge function.

For example, ¢ (s) = s* (a > 0) and ¢(s) = s* loglog(1/s)
are measure functions.
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Given ¢ € @, the p-Hausdorff measure of E C RY is
defined by

-m(E) = lim i )V EC| |B(xir), ri<es,
o-m(E) lgglnf{ZSO(Zrz) U ) ri< |
(11)
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Given ¢ € @, the p-Hausdorff measure of E C RY is
defined by

- _1 f 21: E C irli i
o-m(E) El_f)%ll’l{ZgO v _L_J Xi, 1) r<5}

(1D)
where B(x, r) denotes the open ball of radius r centered at
x. The sequence of balls satisfying the two conditions on
the right-hand side of (11) is called an e-covering of E.
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Theorem 1.4.1 [Hausdorff, etc]

@ p-mis a Carathéodory outer measure.

@ The restriction of p-m to B(R?) is a [Borel] measure.
o If p(s) = s%, then p-m| s(re) = € Lebesgue measure
on R4

vy
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Theorem 1.4.1 [Hausdorff, etc]

@ -m 1s a Carathéodory outer measure.

@ The restriction of p-m to B(R?) is a [Borel] measure.

o If p(s) = s%, then p-m| s(re) = € Lebesgue measure
on RY,

vy

A function ¢ € ® is called an exact (or a correct) Haus-
dorff measure function for E if 0 < o-m(E) < oo.
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If p(s) = s*, we write p-m(E) as H,(E). The following
lemma is elementary.

Q IfH.(E) < oo, then Hoi5(E) = 0 for all 6 > 0.
Q IfHL(E) =00, thenH, 5(E) = ccforallé € (0, ).
Q@ Forany E C RY, we have Hq,s(E) = 0.
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The Hausdorff dimension of E is defined by

dim,E = inf {a > 0 : H,(E) =0}
=sup{a>0: Ha( ) = oo},

Convention: sup @ := 0.

Q@ EC FCR! = dim E < dim F < d.
@ (o-stability) dim,, ( Uiz, Ej) = sup;.; dim, E;.
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Example: Cantor’s set

@ Let C denote the standard ternary Cantor set in [0, 1].
At the nth stage of its construction, C is covered by 2"
intervals of length/diameter 37" each.
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Example: Cantor’s set

@ Let C denote the standard ternary Cantor set in [0, 1].
At the nth stage of its construction, C is covered by 2"
intervals of length/diameter 37" each.

@ Therefore, for a = log; 2,

Ho(C) < lim 2737 =1,

n—o0
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Example: Cantor’s set

@ Let C denote the standard ternary Cantor set in [0, 1].
At the nth stage of its construction, C is covered by 2"
intervals of length/diameter 37" each.

@ Therefore, for a = log; 2,

Ho(C) < lim 27 - 37" = 1.

n—o0

@ Thus, we obtain dim,C < log; 2 ~ 0.6309.
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Example: Cantor’s set

@ Let C denote the standard ternary Cantor set in [0, 1].
At the nth stage of its construction, C is covered by 2"
intervals of length/diameter 37" each.

@ Therefore, for a = log; 2,

Ho(C) < lim 2737 =1,

n—o0

@ Thus, we obtain dim,C < log; 2 ~ 0.6309.
@ We will prove later that this is an equality and

0< H10g32(C) < Q.
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Example: Images of Brownian motion

Let B([0, 1]) be the image of Brownian motion in R?. Lévy
(1948) and Taylor (1953) proved that

dim,B([0, 1]) = min{d, 2} a.s.
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Example: Images of Brownian motion

Let B([0, 1]) be the image of Brownian motion in R?. Lévy
(1948) and Taylor (1953) proved that

dim,B([0, 1]) = min{d, 2} a.s.

Ciesielski and Taylor (1962), Ray and Taylor (1964 ) proved
that
0 < pa-m(B([0,1])) < oo as.,

where

pr(r) =r
©a2(r) = r*log(1/r)logloglog(1/r)
¢a(r) = r*loglog(1/r),  ifd >3
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A method for determining upper bounds

Lemma

Let I C RN be a hyper-cube. If there is a constant o €
(0, 1) such that for every ¢ > 0, the function f : I — R4
satisfies a uniform Holder condition of order o — € on I,
then for every Borel set E C 1

1
dim, f(E) < min {d, —dimHE}, (12)
8}

dim,, Grf(E) < min {édimHE, dim, E+ (1 —a)d}, (13)
where Gtf (E) = {(t,f(¢)) : t € E}.
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Proof of (12)

For any v > dim,E, there is a covering {B(x;,r;)} of E
such that

o

d )y <t

i=1
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Proof of (12)

For any v > dim,E, there is a covering {B(x;,r;)} of E
such that

o

d )y <t

i=1

For any fixed € € (0, «), f(B(x;, r;)) is contained in a ball
in RY of radius ¢, which yields a covering of f(E).
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Proof of (12)

For any v > dim,E, there is a covering {B(x;,r;)} of E
such that

o

d )y <t

i=1

For any fixed € € (0, «), f(B(x;, r;)) is contained in a ball
in RY of radius ¢, which yields a covering of f(E).

Since
> ~\/(a—¢)
> () =t
i=1

we have dim, f(E) < v/(a — ¢).
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Proof of (12)

For any v > dim,E, there is a covering {B(x;,r;)} of E
such that

o

d )y <t

i=1

For any fixed € € (0, «), f(B(x;, r;)) is contained in a ball
in RY of radius ¢, which yields a covering of f(E).

Since
> ~\/(a—¢)
> () =t
i=1

we have dim, f(E) < 7/(a — ¢). Letting ¢ | 0 and 7 |
dim, E yield (12).
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A method for determining lower bounds

P(E) := all probability measures that are supported in E.
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A method for determining lower bounds

P(E) := all probability measures that are supported in E.

Lemma (Frostman, 1935)

Let E be a Borel subset of R? and o > 0 be a constant.
Then H,(E) > 0 if and only if there exist yn € P(E) and a
constant K such that

w(B(x,r) < Kr* VxeRYr>0.
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A method for determining lower bounds

P(E) := all probability measures that are supported in E.

Lemma (Frostman, 1935)

Let E be a Borel subset of R? and o > 0 be a constant.
Then H,(E) > 0 if and only if there exist yn € P(E) and a
constant K such that

w(B(x,r) < Kr* VxeRYr>0.

e Sufficiency follows from the definition of #,,(E) and
the subadditivity of .
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A method for determining lower bounds

P(E) := all probability measures that are supported in E.

Lemma (Frostman, 1935)

Let E be a Borel subset of R? and o > 0 be a constant.
Then H,(E) > 0 if and only if there exist yn € P(E) and a
constant K such that

w(B(x,r) < Kr* VxeRYr>0.

e Sufficiency follows from the definition of #,,(E) and
the subadditivity of .

@ For a proof of the necessity, see Kahane (1985).
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Theorem 1.4.2 [Frostman, 1935]

Let E be a Borel subset of R?. Suppose there exist a > 0
and p € P(E) such that

// Ix—ylo‘ =

Then, dim E > .
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Theorem 1.4.2 [Frostman, 1935]

Let E be a Borel subset of R?. Suppose there exist a > 0
and p € P(E) such that

// Ix—yla =

@ I,(u) := the a-dimensional [Bessel-] Riesz energy of
i3

Then, dim E > .
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Theorem 1.4.2 [Frostman, 1935]

Let E be a Borel subset of R?. Suppose there exist a > 0
and p € P(E) such that

// Ix—yla =

@ I,(u) := the a-dimensional [Bessel-] Riesz energy of

L.
@ the a-dimensional capacity of E is

Then, dim E > .

Ca(E) = [ int ()]

neP
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Yimin Xiao (Michigan State University)  Gaussian Random Fields: Geometric Propertie:



Proof: For A > 0, let

EA:{er:/%SA}.

Then p(E)) > 0 for A large enough.
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Proof: For A > 0, let

EA:{er:/%SA}.

Then p(Ey) > 0 for A large enough. To show dim,, (E)) >
o, we take an arbitrary e-covering {B(x;, ;) } of E. WLOG,
we assume x; € E).
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Proof: For A > 0, let

EA:{xEE:/‘j(_d;;)‘aé)\}.

Then p(Ey) > 0 for A large enough. To show dim,, (E)) >
o, we take an arbitrary e-covering {B(x;, ;) } of E. WLOG,
we assume x; € E).

AD ()" =y (2n)° /B ( f @

xiari)

> ZM(B(Xi,”i)) > W(Ey).

i=1
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Proof: For A > 0, let

EA:{xEE:/‘j(_d;;)‘aé)\}.

Then p(Ey) > 0 for A large enough. To show dim,, (E)) >
o, we take an arbitrary e-covering {B(x;, ;) } of E. WLOG,
we assume x; € E).

AD ()" =y (2n)° /B ( f @

xiari)

> ZM(B(Xi,”i)) > W(Ey).

i=1

Hence H,(Ey) > pn(E)) /X > 0.

Yimin Xiao (Michigan State University)  Gaussian Random Fields: Geometric Propertie:




Using Frostman’s lemma, one can also prove that if o <
dim, E, then there exists a probability measure 1 on E such
that 7,(¢t) < 00, 80 Co(E) > 0.
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Using Frostman’s lemma, one can also prove that if o <
dim, E, then there exists a probability measure 1 on E such
that 7,(¢t) < 00, 80 Co(E) > 0.

This leads to

Let E be a Borel subset of RY. Then

dim,E = sup{a > 0: C,(E) > 0}. (14)
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Images of Brownian motion: continued

Theorem 1.4.3 [Lévy, 1948; Taylor, 1953; McKean,
1955]

For any Borel set E C R, dim,B(E) = min{d , 2dim,E}
a.s.
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Images of Brownian motion: continued

Theorem 1.4.3 [Lévy, 1948; Taylor, 1953; McKean,

1955]
For any Borel set E C R, dim,B(E) = min{d , 2dim,E}
a.s.

e Suffices to prove that dim,B(E) > min{d ,2dim,E};
the upper bound follows from Lemma 1.3.
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Images of Brownian motion: continued

Theorem 1.4.3 [Lévy, 1948; Taylor, 1953; McKean,

1955]
For any Borel set E C R, dim,B(E) = min{d , 2dim,E}
a.s.

e Suffices to prove that dim,B(E) > min{d ,2dim,E};
the upper bound follows from Lemma 1.3.

@ Need a probability measure on B(E) such that [, (1) <
oo a.s. for « < min{d , 2dim,E}.
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Images of Brownian motion: continued

Theorem 1.4.3 [Lévy, 1948; Taylor, 1953; McKean,

1955]
For any Borel set E C R, dim,B(E) = min{d , 2dim,E}
a.s.

e Suffices to prove that dim,B(E) > min{d ,2dim,E};
the upper bound follows from Lemma 1.3.

@ Need a probability measure on B(E) such that [, (1) <
oo a.s. for « < min{d , 2dim,E}.

@ Since /2 < dim,E, by Frostman’s lemma, there ex-
ists a probability measure o on E such that

/E/E W U(ds)a() <.
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Define
W) = ot € E: B() € A} — /1A o ()

then © € P(B(E)). Its a-dimensional [Bessel-] Riesz en-

ergy is
= [ 18 o (ds) o (dr).
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Define
W) = ot € E: B() € A} — /1A o ()

then © € P(B(E)). Its a-dimensional [Bessel-] Riesz en-

ergy is
= [ 18 o (ds) o (dr).

_ /E /E s — 1|2 o (ds) o (dr) x B(|Z|™"),

where Z is a vector of d i.i.d. N(0, 1)’s.
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Note that E(|Z|*) < oo iff o < d [use polar coordinates].
we see that

a.s.

a < dA2dimE = 1,(n) < oo.
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Note that E(|Z|*) < oo iff o < d [use polar coordinates].
we see that

a.s.

a < dA2dimE = 1,(n) < oo.

a.s.
Hence dim,B(E) > d A 2dim,E.
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An upper density theorem

For any Borel measure 1 on R? and ¢ € ®, the upper -
density of ;1 at x € R? is defined as

e uBG)
DM(X) - r—>0p p(2r)
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An upper density theorem

For any Borel measure 1 on R? and ¢ € ®, the upper -
density of ;1 at x € R? is defined as

e uBG)
DM(X) - r—>0p p(2r)

Theorem 1.4.5 [Rogers and Taylor, 1961]

Given ¢ € ®, 3K > 0 such that for any Borel measure
pon RY with 0 < ||u||=p(RY) < oo and every Borel set
E C RY, we have

—_

K~ (E) inf {D[(0)} " < pom(E) < Klpll sup {D(x)} .
(15)
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Cantor’s set: continued

Let 1 be the mass distribution on C. That is, p satisfies
p(l)) =2"" vYn>01<i<2"
Then for every x € C and any r € (0, 1),

1(B(x,r)) < K r'°&2, (16)
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Cantor’s set: continued

Let 1 be the mass distribution on C. That is, p satisfies
p(l)) =2"" vYn>01<i<2"
Then for every x € C and any r € (0, 1),

1(B(x,r)) < K r'°&2, (16)

Hence sup,. D10g3 2(x) <K.
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Cantor’s set: continued

Let 1 be the mass distribution on C. That is, p satisfies
p(l)) =2"" vYn>01<i<2"
Then for every x € C and any r € (0, 1),

1(B(x,r)) < K r'°&2, (16)

Hence sup,. D10g3 (x) <K.
By the above theorem, Hiog,2(C) > K.
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Thank you!

Random Fields: Geometric Proper
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