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1. Introduction

1.1. General framework.We consider here curves inRd that are shaped on many
scales in a manner found in various critical models (see Figure 1). The framework for
the discussion is random systems, where the random object is expressed as a closed
collection of polygonal curves of a small step sizeδ. Our main results are general
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criteria for establishing that as the short distance cutoff is sent to zero, the curves
retain a certain degree of regularity, yet at the same time are intrinsically rough. In
some cases, the object of study is a single random curve. In others, the random object
contains many curves; in such situations, the regularity estimates are intended to cover
the entire collection.
The criteria developed here can be applied to various stochastic geometric models.

In the appendix, we mention as examples critical percolation, the minimal spanning
trees in random geometry, the frontier of two-dimensional Brownian motion, and the
level sets of a two-dimensional random field.
While our discussion does not require familiarity with any of these examples,

let us comment that an important feature they share is the existence of two very
different length scales: themicroscopicscale on which the model’s building variables
reside and themacroscopicscale on which the connected curves are tracked. In such
situations it is natural to seek a meaningful formulation for thescaling limit, in which
the microscopic scale (δ) is taken to zero. The regularity established here enables
such a construction through compactness arguments.
To introduce the results let us start with some of the terminology.
(i) We denote by�� the space of curves in a closed subset�⊂Rd , with the metric

defined in Section 2. The symbol� is reserved here for individual curves, and� is
reserved for sets of curves. The space of closed sets of curves in� is denoted��.
(ii) A configuration of curvesin Rd with a short-distance cutoffδ ∈ (0,1] is a

collection of polygonal paths of step sizeδ which forms a closed subset�δ(⊂ ��).
(iii) A system of random curveswith varying short-distance cutoff is described

by a collection of probability measures{µδ(d�δ)}0<δ≤δmax on ��, where eachµδ
describes random sets of curves in� consisting of polygonal paths of step sizeδ.
(We often takeδmax= 1.)

Figure 1. Schematic depiction of some of the realized paths in a critical percola-
tionmodel. Themodel is formulated (possibly on a lattice) on a scalemuch smaller
than the length of the depicted region. Typical configurations exhibit large-scale
connected clusters, but the connections are tenuous. In this work we discuss the
regularity properties of the self-avoiding paths supported on such clusters.
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To summarize, the individual realizations of the random systems are closed sets
of curves denoted�δ(ω). The entire system is also occasionally referred to by the
symbol�.
We are particularly interested in statements concerning the probability measures

{µδ(d�δ)}0<δ≤δmax that hold uniformly inδ and thus provide information about the
scaling limit. The following notion facilitates the formulation of such statements.

Definition. A random variableX associated with a system� is said to bestochas-
tically bounded, for δ→ 0, if

(i) a versionXδ is defined for each 0< δ(≤ δmax), and
(ii) for every ε > 0 there isu <∞ such that

Probδ
(|Xδ(ω)| ≥ u

)≤ ε (1.1)

uniformly in δ.
A random variable is said to bestochastically bounded away from zeroif its inverse
is stochastically bounded.

1.2. Main results. The main theorems in this paper are derived under two hy-
potheses that require scale-invariant bounds on certain crossing events. In order to
apply these results, the hypotheses need to be verified using specific information on
the given system. The conditions are known to be satisfied in certain two-dimensional
critical percolation models, through the “Russo-Seymour-Welsh theory” (see [35] and
[37]) and its recent extensions [5]. They are expected to be true for critical perco-
lation also in higher dimensions, though not ford > 6 (see [1]). Another proven
example is the minimal spanning tree in two dimensions (see [3]), where the critical-
ity is self-inducedin the sense of [6]. These and other systems are presented in the
appendix.
The first condition concerns repeated crossings of spherical shells

D(x;r,R)= {
y ∈Rd ∣∣ r ≤ |y−x| ≤ R

}
. (1.2)

(See Figure 2.) The assumption is as follows.

Hypothesis H1. Power bound on the probability of multiple crossings.For all
k <∞ and for all spherical shells with radiiδ ≤ r ≤ R ≤ 1, the following bound
holds uniformly inδ:

Probδ

(
D(x;r,R) is traversed byk separate
segments of a curve in�δ(ω)

)
≤Kk

( r
R

)λ(k)
(1.3)

with someKk ≤∞ and

λ(k)→∞ ask→∞. (1.4)

Based on this assumption, we derive the following result.
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Figure 2. A 6-fold crossing of an annulusD(x;r,R). Under Hypothesis H1
the probability of ak-fold crossing of an annulusD(x;r,R) is bounded by
Kk(r/R)

λ(k). The regularity estimates are based on the absence ofk-crossings
for k large enough and 0< r � R = r1−ε � 1.

Theorem 1.1 (Regularity). Let � be a system of random curves in a compact
region�⊂Rd , with variable short-distance cutoffδ > 0, and assume that Hypothesis
H1 is satisfied. Then for eachε > 0, all the curves� ∈ �δ(ω) can be simultaneously
parametrized by continuous functionsγ (t) t ∈ [0,1] such that, for all0≤ t1< t2 ≤ 1,∣∣γ (t1)−γ (t2)∣∣≤ κε;δ(ω)g

(
diam(�)

)1+ε|t1− t2|1/(d−λ(1)+ε), (1.5)

with a random variableκε;δ(ω) (common to all� ∈ �δ(ω)) which stays stochastically
bounded asδ→ 0. The second factor depends on the curve’s diameter through the
function

g(r)= r−λ(1)/[d−λ(1)]. (1.6)

Remarks. (i) The conclusion of Theorem 1.1 is stated in terms of the existence of
Hölder continuous parametrizations, which offers a familiar criterion for regularity.
We actually find it convenient to develop the results in terms oftortuosity bounds, that
is, upper bounds on the functionM(�,�) defined as the minimal number of segments
produced if the curve� is partitioned into segments of diameter no greater than�.
The two notions are linked in Section 2.
(ii) The dependence of the Hölder constant in equation (1.5) on the diameter of the

curve can be removed by lowering the Hölder exponent below 1/d; indeed, interpo-
lating between (1.5) and the trivial relation|γ (t1)−γ (t2)| ≤ diam(�) gives∣∣γ (t1)−γ (t2)∣∣≤ (

κε;δ(ω)
)1+ε̃−d/λ(1)|t1− t2|1/(d+ε̃), (1.7)

whereε̃ is small whenε is small.
(iii) For the main conclusion—that the curves retain Hölder continuity atsome

α > 0—it suffices to require instead of Hypothesis H1 that equation (1.3) holds for
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somek with λ(k) > d. While this is clearly a weaker assumption than (1.4), so far it
has been proven only in situations in which (1.4) also holds.
In addition to being of intrinsic interest, the above regularity property permits us

to construct the scaling (continuum) limit. The basic question concerning this limit is
the following:

Q1. Is the collection of probability measures{µδ(d�δ)}δ tight?
Tightness means that, up to remainders that can be made arbitrarily small, the

measuresµδ share a common compact support. A positive answer to Q1 implies the
existence of limits limµδ,p(δ) at least along some sequences ofδn → 0 (see [9]).
Without tightness, one cannot rule out the possibility that as the cutoff is removed,
curves give way to more general continua. The range of possibilities is rather vast:
curves can converge (in a weaker sense than used here) to continua that do not support
any continuous curve.
Theorem 1.1 yields a positive answer to Q1, as is explained in Section 4. There are

a number of dimension-like quantities for the description of the curves emerging in
the scaling limit. Among them are (see Section 2)
• the Hausdorff dimension dimH �,
• the upper-box dimension (also known as the Minkowski dimension) dimB �,
• and the reciprocal of the optimal Hölder regularity exponent

α(�)= sup

{
α

∣∣∣∣ � can be parametrized as
{
γ (t)

}
0≤t≤1 with∣∣γ (t)−γ (t ′)∣∣≤Kα

∣∣t− t ′∣∣α for all 0≤ t ≤ t ′ ≤ 1

}
. (1.8)

The following result is derived in Section 4.

Theorem 1.2 (Scaling limit). For any system� of random curves in a compact
set�⊂Rd , Hypothesis H1 implies that the limit

lim
n→∞µδn

(
d�

)=: µ(
d�

)
(1.9)

exists at least for some sequenceδn → 0. The limiting probability measure (on��)
is supported on configurations� containing only paths with

dimB �= α(�)−1 ≤ d−λ(1) (1.10)

and

dimH (�)≤ d−λ(2). (1.11)

(The improvement in the dimension estimate of the last inequality over the preced-
ing one is based on considerations of thebackbone.)
The sense of convergence in (1.9) can be expressed by saying that there exists a

family of couplingsconsisting of probability measuresρn(d�δn,d�) such that
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(i) the marginal distributions satisfy

ρn
(
d�δn,��

)= µδn
(
d�δn

)
, ρn

(
��,d�

)= µ
(
d�

)
, (1.12)

and
(ii) the two components are close in the sense that∫

��×��

dist
(
�δn,�

)
ρn

(
d�δn,d�

)−−−→
n→∞ 0, (1.13)

with the distance between two configurations of curves defined by the Haus-
dorff metric

dist
(
�,�′)≤ ε⇐⇒



for everyγ ∈ � there isγ ′ ∈ �′

with supt |γ (t)−γ ′(t)| ≤ ε

and vice versa
(
� ↔ �′).

(1.14)

The positive answer to Q1 invites a number of other questions, including the fol-
lowing:

Q2. Is the limit independent of the sequence{δn}, and is it shared
by other models with different short-scale structure?

This question is beyond the scope of the present work. In some of the models of
interest it is related to the purported universality of critical behavior.
To establish some minimal roughness for the realized curves, we require an as-

sumption on the probability of simultaneous crossings of a family of cylinders. It
suffices to restrict the assumption to spatially separated cylinders, with much latitude
in the exact definition of the term.

Definition. A collection of sets{Aj } is well separatedif the distance of each set
Aj to the other sets{Ai}i �=j is at least as large as the diameter ofAj .

The relevant hypothesis is as follows. (See Figure 3.)

Hypothesis H2. Power bound on the probability of simultaneous crossings.There
exist a cross sectionσ > 0 and someρ < 1 with which for every collection ofk
well-separated cylinders,A1, . . . ,Ak, of aspect ratioσ and lengths�1, . . . ,�k ≥ δ,

Probδ

(
A1, . . . ,Ak are traversed (in the
long direction) by segments of
a curve in�δ

)
≤Kρk. (1.15)

An effective way to express curve roughness is in terms ofcapacitylower bounds.
The capacity Caps;�(A) of a setA ⊂ Rd is defined in Section 5. For the purpose of
this summary, it suffices to note that the capacity of a fixed setA increases with the
parameter� and provides the following lower bounds on coverings.
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σLi

Li

Figure 3. A simultaneous crossing event for a family of cylinders of common
aspect ratio. In Hypothesis H2 the probability of such an event is assumed to be
less than Const.ρk , with ρ < 1 (herek = 4). The implication is a uniform lower
bound on the Hausdorff dimensions of all the curves in the configuration.

(i) For every covering ofA by sets{Bj } of diameter at least�,∑
j

(
diamBj

)s ≥ Caps;�A. (1.16)

(ii) The minimal number of elements for a covering ofA by sets of diameter�
satisfies

N(�,�)≥ Caps;�A ·�−s . (1.17)

(iii) The behavior of the capacity for small� provides information on theHausdorff
dimension:

inf
0<�≤1Caps;�(A) > 0�⇒ dimH A≥ s. (1.18)

(The proof of (i) is given in Section 5; (ii) and (iii) are direct consequences.)

Theorem 1.3 (Roughness). If a system� of random curves in a compact subset
� ⊂ Rd with a variable short-distance cutoff satisfies Hypothesis H2, then there
existsdmin > 1 such that for any fixedr > 0 ands > dmin the random variable

Ts,r;δ(ω) := inf
�∈�:diam(�)≥rCaps;δ� (1.19)

stays stochastically bounded away from zero, asδ→ 0.
Furthermore, any scaling limit of the measuresµδ, µ= limδn→0µδn , is supported

on configurations containing only curves with

dimH �≥ dmin(> 1). (1.20)

In particular, the scaling limit contains no rectifiable curves.
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Let us note that Theorem 1.3 complements Theorem 1.1, since by the monotonicity
properties of the capacity, we can combine (1.19) with (1.17) to obtain

N(�,�)≥ Caps,�� ·�−s ≥ Ts,r;δ(ω)�−s (1.21)

for all �≥ δ, whereas under condition (1.5),

N(�,�)≤
[
κε;δ(ω)g(diam�)1+ε

�

]d−λ(1)+ε
. (1.22)

In particular, (1.21) implies that the minimal number of steps of the lattice size (δ)
needed in order to advance distanceL exceeds Const.(L/δ)τ . Some bounds of this
form were previously obtained for the “lowest path” in two-dimensional critical per-
colation models in the work of Kesten and Zhang [24], who refer to the optimal value
of τ as thetortuosityexponent. We slightly modify their terminology, by requiring
the power bounds to hold simultaneously on all scales.
The assumption in Theorem 1.3 can be weakened by restricting (1.15) to collections

of cylinders of comparable dimensions, but then the conclusion is stated in terms of
the box dimension.
In models where spatially separated events are independent, Hypothesis H2 is

implied by Hypothesis H1, provided that the parameterλ(1) of equation (1.4) is
positive. A similar observation applies to models without strict independence but
with a correlation length of only microscopic size, such as the droplet percolation
model.
There is a considerable disparity between the upper and lower bounds derived

here for the dimensions of curves in the scaling limit. Part of the reason is that
our lower bounds are far from sharp. However, we also expect some of the systems
considered here (e.g., the percolation models) to exhibit simultaneously curves of
different dimensions.
The organization of the paper is as follows. In Section 2 we prepare for the dis-

cussion of random systems by clarifying some notions pertaining to single curves.
Introduced there is the concept oftortuosity, which provides a measure of rough-
ness manifestly independent of parametrization. The associated tortuosity exponent
coincides with Richardson’s exponentD. It is related here to the degree of Hölder
regularity achievable through reparametrization (Theorem 2.3). Moreover, under the
tempered crossingcondition, the tortuosity exponent coincides with the curve’s up-
per box dimension (Theorem 2.5). In Section 3 we apply these relations to general
systems of random curves and prove the regularity result, Theorem 1.1. To tighten
the regularity estimate, we briefly discuss the concept of thebackbone. Section 4
deals with the construction of scaling limits and the proof of Theorem 1.2, based on
the afore-mentioned regularity properties. The proof of the roughness result is split
into two parts. In Section 5 we derive a deterministic statement (Theorem 5.1) that
presents a criterion for the roughness of a curve, based on the assumption that the



REGULARITY AND DIMENSION OF RANDOM CURVES 427

straight runsof the curve aresparse. The analysis exploits the relation of the dimen-
sion with capacity and involves suitable energy estimates. In Section 6 we apply this
result to random systems and prove Theorem 1.3 by establishing that Hypothesis H2
implies the sparsity of straight runs. The appendix includes examples of systems for
which the general theorems yield results of interest within the specific context.

2. Analysis of curves through tortuosity. In this section we introduce the space
of curves and the notion of tortuosity. The two basic results are Theorem 2.3, which
relates the tortuosity exponent with the optimal Hölder continuity exponent, and
Theorem 2.5, which provides useful conditions under which the tortuosity exponent
agrees with the upper box dimension and thus is finite.

2.1. The space of curves.We regard curves as equivalence classes of continuous
functions, modulo reparameterizations. More precisely, two continuous functionsf1
andf2 from the unit interval intoRd describe the same curve if and only if there exist
two monotone continuous bijectionsφi : [0,1] → [0,1], i = 1,2, so thatf1 ◦φ1 =
f2◦φ2.
Recall that the space of curves in a closed subset� ⊂ Rd is denoted here byS�.

The distance between two curves is measured by

d
(
�1,�2

) := inf
φ1,φ2

sup
t∈[0,1]

∣∣f1(φ1(t))−f2(φ2(t))∣∣, (2.1)

wheref1 andf2 is any pair of continuous functions representing�1 and�2, and
where the infimum is over the set of all strictly monotone continuous functions from
the unit interval onto itself.

Lemma 2.1. Equation (2.1) defines a metric on the space of curves.

Proof. Clearly, d(�1,�2) is nonnegative, is symmetric, and satisfies the triangle
inequality; and d(�,�) = 0. To prove strict positivity, assume d(�1,�2) = 0 and
choose parametrizationsf1 andf2. We need to show thatf1 andf2 describe the
same curve, that is,�1 = �2. We may choosef1 andf2 to be nonconstant on any
interval. Under these assumptions, there exist sequences of reparametrizationsφi1 and
φi2 such that

sup
t∈[0,1]

∣∣f1◦φi1◦(φi2)−1(t)−f2(t)∣∣= sup
t∈[0,1]

∣∣f1◦φi1(t)−f2◦φi2(t)∣∣−−−→
i→∞ 0. (2.2)

Monotonicity and uniform boundedness imply (due to Helly’s theorem) that there
are subsequences (again denotedφi1 andφ

i
2) so thatφi2 ◦ (φi1)−1 and their inverses

φi1 ◦ (φi2)−1 converge pointwise, at all but countably many points, to monotone
limiting functionsφ and φ̃, with f1 = f2 ◦ φ and f2 = f1 ◦ φ̃. To see thatφ has
no discontinuities, note that jumps ofφ would correspond to intervals wherẽφ is
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constant. But̃φ cannot be constant on an interval, since by our choice of parametriza-
tion, f2 is not constant on any interval.

With this metric,�� is complete, but, even for compact�, it is not compact. This
reflects the properties of the space of continuous functionsC([0,1],�).
2.2. Measures of curve roughness.Let M(�,�) be the minimal number of seg-

ments needed for a partition of a curve� into segments of diameter no greater than
�. We call any bound onM(�,�) a tortuosity bound. In particular, we are interested
in power bounds of the form

M(�,�)≤Ks�
−s . (2.3)

Optimization over the exponents yields the following dimension-like quantity.

Definition. For a given curve�,

τ(�)= inf
{
s > 0 | �sM(�,�)−−→

�→0
0
}

(2.4)

is called thetortuosity exponent.

There are a number of ways of dividing a curve into short segments that yield
comparable results. Of particular interest to us is the observation that the tortuosity
exponent can also be based onM̃(�,�), which we define as the maximal number of
points that can be placed on the curve so that successive points have distance at least
�.M(�,�) andM̃(�,�) are comparable but have different continuity properties.

Lemma 2.2. M(�,�) andM̃(�,�) are related by the inequalities

M(�,4�)≤ M̃(�,�)≤ inf
ε
M(�,�−ε). (2.5)

Furthermore,M(�,�) is lower semicontinuous and̃M(�,�) is upper semicontinuous
on the space of curves.

Proof. The first inequality holds because a segment of the curve of diameter at
least 4� certainly contains a point that has a distance of at least� from both endpoints.
The second inequality holds because no segment of diameter less than� can contain
two points of distance� or more. The continuity properties follow easily from the
fact thatM was defined through minimization and̃M through maximization of cut
points.

It follows from Lemma 2.2 that the tortuosity exponent coincides with Richardson’s
exponentD ([34]; see also [29]); this was called the “divider dimension” in [17],
where it was pointed out thatD can take arbitrarily large values.
From a different perspective, the curve’s regularity may be expressed through the

degree ofHölder continuityachievable through reparametrization. One attempts to
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describe the curve by means of a continuous function�= {γ (t)}0≤t≤1, satisfying
|γ (t1)−γ (t2)| ≤Kα|t1− t2|α for all 0≤ t1 ≤ t2 ≤ 1, (2.6)

with some exponentα > 0. Greater values of the exponent correspond to higher
degrees of regularity, and thus one is interested in

α(�)= sup
{
α | � admits a parametrization satisfying (2.6) with exponentα

}
.

(2.7)

The tortuosity exponent may remind one of theupper box dimension, which has a
similar definition. LetN(�,�) be the minimal number of sets of diameter� needed
to cover the curve. Then

dimB(�) := inf
{
s > 0 | �sN(�,�)−−→

�→0
0
}
. (2.8)

The two definitions are different, since a single set of diameter� may contain a large
number of segments of the curve. The box dimension can be calculated using only
coverings with boxes taken from subdivisions of a fixed grid.
A trivial relation between the three parameters is

dimB(�)≤ τ(�)≤ α(�)−1, (2.9)

which follows immediately from

N(�,�)≤M(�,�)≤
⌈
Kα

�

⌉1/α
, (2.10)

where�x� denotes the smallest integer at least as large asx.

2.3. Tortuosity and Hölder continuity.It turns out that the tortuosity exponent and
the optimal Hölder exponent are directly related.

Theorem 2.3. For any curve� in �Rd ,

τ(�)= α(�)−1. (2.11)

More explicitly, uniform continuity is equivalent to a uniform upper tortuosity
bound, as expressed in the following lemma.

Lemma 2.4. If a curve� in Rd admits a parametrization as{γ (t)}0≤t≤1 so that
for all t1, t2 in the unit interval

ψ
(|γ (t1)−γ (t2)|)≤ |t1− t2|, (2.12)

whereψ : (0,1] → (0,1] is a nondecreasing function, then for all�≤ 1,

M(�,�)≤
⌈

1

ψ(�)

⌉
. (2.13)



430 AIZENMAN AND BURCHARD

Conversely, if

M(�,�)≤ 1

ψ(�)
(2.14)

for all �≤ 1, then� can be parametrized as{γ (t)}0 with a function satisfying
ψ̃

( |γ (t1)−γ (t2)|)≤ |t1− t2| , (2.15)

for all 0≤ t1< t2 ≤ 1, with

ψ̃(�)= ψ(�/2)

2
(
log2(4/�)

)2 . (2.16)

Proof. The tortuosity bound in equation (2.13) follows from the uniform conti-
nuity condition in (2.12) with the definition ofM(�,�), by partitioning the curve
into segments corresponding to time intervals of lengthψ(�). To prove the reverse
implication, we need to construct a parametrization satisfying the uniform continu-
ity condition in (2.15), given that (2.14) holds for 0< � ≤ 1. Choose an auxiliary
parametrization of the curve� = {γ (s)} that is not constant on any interval. We
associate with each curve segment�s = γ ([0, s]) the time of travel

tε(s) :=
∑

n(n+1)−2ψ(�n)M(�s ,�n)∑
n(n+1)−2ψ(�n)M(�,�n)

, (2.17)

with �n = 2−n. Clearly,t is a strictly increasing continuous function ofs and hence
defines a reparametrization of�. The denominator satisfies∑

n

(n+1)−2ψ(�n)M(�,�n)≤
∑
n

(n+1)−2< 2 (2.18)

by assumption (2.14). Consider two pointsγ (s1) andγ (s2) (with s1 < s2) that are
at least3q apart, and let3t be the corresponding time difference. For largen we
observe that

�n < 3q �⇒ M
(
�s2,�n

)−M(
�s1,�n

)≥ 1. (2.19)

It follows that

3t ≥ 1

2

∑
n:�n<3q

(n+1)−2ψ(�n)≥ ψ(3q/2)

2
(
log2(4/3q)

)2 , (2.20)

as claimed in equation (2.15).

2.4. Tortuosity and box dimension.In view of Theorem 2.3 it is important for us
to have conditions implying finiteness of the tortuosity exponent. It is also of interest
to have efficient estimates of the exponent’s value. Both goals are accomplished here
through a criterion for the equality ofτ(�) with the upper box dimension dimB(�),
which is relatively easier to estimate (and never exceedsd). Some criterion is needed,
since in general the tortuosity exponent may exceed the upper box dimension and
may even be infinite (see [17]).
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Definition. (i) We say that a curve� in Rd exhibits ak-fold crossing of power
ε, at the scaler ≤ 1 if it traversesk times some spherical shellD(x;r1+ε, r) (in the
notation of equation (1.2)).
(ii) A curve has thetempered crossing propertyif for every 0< ε < 1, there are

k(ε) <∞ and 0< ro(ε) < 1 such that on scales smaller thanro(ε), the curve has no
k(ε)-fold crossing of powerε.

Note that the condition places restrictions on crossings at arbitrarily small scales;
however, it is less restrictive at smaller scales since it rules out only crossings of
spherical shells with increasingly large aspect ratio.

Theorem 2.5. If a curve� has the tempered crossing property, then

τ(�)= dimB �. (2.21)

In particular,� admits Hölder continuous parametrizations with every exponentα <

(dimB(�))
−1.

Proof. SinceM(�,�) ≤ N(�,�), it is always true thatτ(�) ≥ dimB � (equation
(2.9)). To establish the opposite inequality, we first prove that if a curve� has no
k-fold crossings of powerε at the scale�, then

M(�,2�)≤ kN
(
�,�1+ε

)
. (2.22)

To prove (2.22) we recursively partition the curve into segments of diameter at
most 2�. The segments are defined by a sequence of pointsxi along the curve. We
start withx1= γ (0). After x1, . . . ,xn are determined, the next pointxn+1 is taken as
the site of the first exit, afterxn, of γ from the ball of radius� aboutxn; if γ does not
leave this ball, we terminate.
The number of stopping points produced by this algorithm is clearly an upper

bound forM(�,2�). To estimate this number, let us consider a covering of� by balls
of diameter�1+ε. Since there are nok-fold crossings of powerε at the scale�, no
such ball contains more thank of the stopping sites, and hence we have (2.22).
By the definition of the upper box dimension, for eachs > dimB � the number

N(�,�) of elements in a minimal covering satisfies

N(�,�)≤Ks�
−s (2.23)

for some constantKs that depends on the curve. Therefore, for anys > dimB(�)

M(�,2�)≤ kKs�
−s(1+ε), (2.24)

with someKs(�) <∞. Our assumptions imply that the exponents(1+ ε) can be
made arbitrarily close to dimB �, and thereforeτ(�) ≤ dimB �. This concludes the
proof of (2.21). The assertion about the Hölder regularity follows from Theorem 2.3.
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Remark. The proof of Theorem 2.5 shows that the tortuosity exponent can be
bounded by the box dimension under the weaker assumption that for some integerk

andε > 0, the curve has nok-fold crossings of powerε below some scalero. In this
case, inequality (2.24) implies the bound

dimB �≤ τ(�)≤ (1+ε)dimB �. (2.25)

3. Regularity for curves in random systems. We now extend the discussion
from a single curve to systems of random curves, in the terminology presented in the
introduction. Our first goal is to prove Theorem 1.1. Following that, we discuss the
concept of the backbone and thus improve the bounds on the dimension of curves.

3.1. Proof of the main regularity result.An essential step towards establishing
regularity of random curves consists of showing that under Hypothesis H1,k-fold
crossings of spherical shells are rare in a sense that provides a probabilistic version of
the tempered crossing condition. For this purpose, let us define the random variables

rε,k;δ(ω) := inf

{
0< r ≤ 1

∣∣∣ some shellD(x;r1+ε, r), x ∈�, is traversed
by k distinct segments of curves in�δ(ω)

}
; (3.1)

if no such crossing occurs, we setrε,k;δ = 1.

Lemma 3.1. Let � be a system of random curves with variable short-distance
cutoff in a compact region� ⊂ Rd . Let ε > 0, and assume that condition (1.3) of
Hypothesis H1 holds for somek <∞ andλ(k) large enough so that

ελ(k)−d > 0. (3.2)

Then the random variablerε,k(ω) is stochastically bounded away from zero, with

Probδ
(
rε,k;δ(ω)≤ u

)≤ Const.(ε,k)uελ(k)−d . (3.3)

Proof. We need to estimate the probability that there is ak-fold crossing of
power ε at some scaler ≤ u. Any such crossing gives rise to a crossing in a
smaller spherical shell with discretized coordinates:D(x;3r1+εn ,rn/2)with rn = 2−n,
x ∈ (2r1+εn /

√
d)Zd (whereZd is the integer lattice inRd ), andn chosen so that

rn < r ≤ rn+1. Using Hypothesis H1 and adding the probabilities over the possible
placements of the discretized shells, we find

Probδ

(
�δ(ω) exhibits a(k,ε) crossing
at some scaler ∈ (rn,rn+1]

)
≤

( √
d

2r1+εn

)d

Kk

(
3r1+εn

rn/2

)λ(k)

≤ Const. rελ(k)−(1+ε)dn ,

(3.4)

where the constant depends only onk, λ(k), and the dimension. This bound decays
exponentially inn. Its sum over scalesrn (δ ≤ rn ≤ u) yields the claim.
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Proof of Theorem 1.1.First let us note that the statement to be proven can be
reformulated as follows:
Let � be a system of random curves in a compact region� ⊂ Rd , with variable

short-distance cutoffδ > 0, and assume that Hypothesis H1 is satisfied. Then for
anyε > 0 there is a random variablẽκε;δ(ω), which stays stochastically bounded as
δ → 0, with which the following tortuosity bound applies simultaneously to all the
curves� ∈ �δ(ω):

M(�,�)≤ κ̃ε;δ(ω)(diam�)−[λ(1)+ε]�−[d−λ(1)+ε]. (3.5)

In this formulation, the Hölder continuity estimate of equation (1.5) is replaced
by a tortuosity bound. The equivalence is based on Lemma 2.4, with the function
ψ(�)= Const.�α for which the inverse function is the power law withs = 1/α. The
logarithmic correction in equation (2.16) is absorbed through the “infinitesimal slack”
we have in the power law.
Now let ε > 0. By Hypothesis H1, there existsk large enough so equation (3.2)

is satisfied. For such value ofk, we learn from Lemma 3.1 and Theorem 2.5 (more
specifically, (2.22)) that for� small enough (i.e.,� < rε,k(ω)),

M(�,2�)≤ kN
(
�,�1+ε

)
. (3.6)

In the complementary range�≥ rε,k(ω), we use that

M(�,2�)≤M
(
�,2rε,k(ω)

)≤ kN
(
�, rε,k(ω)

1+ε). (3.7)

It follows that

M(�,2�)≤ Aε,k;δ(ω)N
(
�,�1+ε

)
, (3.8)

where the random variable

Aε,k;δ(ω)=
(

�

rε,k(ω)

)(1+ε)d
(3.9)

remains stochastically bounded asδ→ 0 by Lemma 3.1.
We now introduce some useful random variables which permit us to extract from

equation (3.8) bounds valid simultaneously for all curves� ∈ �δ(ω). Referring to the
standard grid partition of�, let

Ñδ(r,�;ω) :=
{
the number of cubesB of diameter� that meet

a curve� ∈ �δ(ω) with diameter diam(�)≥ r.
(3.10)

Its expectation value is E(Nδ(r,�)). Summing over scalesrn ≥ �m ≥ δ, with rn =
�n = 2−n, we define

Uδ(ω) :=
∑
m≤n

Ñδ(rn,�m;ω)
E
(
Nδ

(
rn,�m

)) (n+1)−2(m+1)−2. (3.11)
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This random variable stays stochastically bounded asδ → 0, by the Chebysheff
inequality and the observation that the mean is independent ofδ:

E
(
Uδ

)≤
[ ∞∑
n=1

1

n2

]2
. (3.12)

For the mean value of̃Nδ(r,�;ω), we find

Eδ
(
Ñδ(r,�;ω)

)= ∑
B⊂�;diam(B)=�

Probδ

(
B meets a curve� ∈ �
with diam(�)≥ r

)

≤
∑

B⊂�;diam(B)=�
K

(
�/2

r/2

)λ(1)

≤ K ′|�|
rλ(1)

(
1

�

)d−λ(1)
.

(3.13)

We now return to equation (3.8). For curves with diam(�)≥ r, we use

N(�,�)≤ Ñδ(r,�;ω)≤
(
log2

(
2

�

))2(
log2

(
2

r

))2

Uδ(ω)E
(
Ñδ(r,�)

)
(3.14)

(the last inequality based on definition (3.11)). Combining equations (3.8), (3.13),
and (3.14), we learn that

M(�,2�)≤ [
(1+ε)2K ′|�|Aε;δ(ω)Uδ(ω)

]
×

(
log22/�

)2( log22/r)2
rλ(1)

�−(1+ε)[d−λ(1)]. (3.15)

The product of stochastically bounded variables is stochastically bounded, and the
logarithm can be absorbed by adjustingε. Hence equation (3.15) implies the claimed
equation (3.5).

3.2. Tortuosity of random systems and the backbone dimension.To summarize
some of the results in a compact form, it may be useful to extend the notions of
tortuosity and dimensions to systems of random curves with varying cutoff.

Definition. For a system� of curves in a compact set�⊂Rd :
(i) the upper tortuosity exponentτ(�) is the infimum ofs > 0 for which the

random variable

sup
{
M(�,�)�s | � ∈ �δ(ω),diam(�)≥ r

}
(3.16)

remains stochastically bounded, asδ→ 0 at fixed 0< r ≤ 1;
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(ii) similarly, theupper box dimensiondimB(�) is defined through the bounded-
ness of the variables given by

sup
{
N(�,�)�s | � ∈ �δ(ω),diam�≥ r

}
(3.17)

with s,r as above.

The analysis carried above implies that if Hypothesis H1 holds, then the upper
tortuosity exponentτ(�) is finite, and furthermore

τ(�)= dimB(�)≤ d−λ(1). (3.18)

The dimension estimate, equation (3.18), reflects the fact that each point on a curve
� ∈ � is connected a macroscopic distance away. It might seem that most points
on a curve are in fact at the endpoints oftwo line segments of macroscopic length.
This suggests an improved upper bound, in whichd−λ(1) is replaced by the smaller
d−λ(2). However, one has to proceed here with caution.
There are two reasons for whichd−λ(2) may not provide a valid upper bound for

the dimension.
(i) The union

⋃
�∈�δ(ω);diam�>r � may be dominated by the collection of the

endpointsof curves in� which are onlysingly connecteda macroscopic distance
away. For instance, that would occur if the connected clusters to which the curves
of �δ(ω) are restricted have many short branches. (One could call this thebroccoli
effect.)

(ii) Certain curves� ∈ � may be rougher at their ends, where only one segment
is accommodated in the available space, than in their interior. We expect this to be
the case for some examples of self-avoiding paths. When that happens, it is not true
that most of the curve, as counted by covering boxes, consists of its interior.
Nevertheless, the proposed bound is obviously valid for the union of the interior

parts of the curves. By an “interior part of the curve” we mean a collection of points
on � whose distance to the endpoints is at least somea > 0, which remains fixed
asδ→ 0. The proof is by a direct adaptation of the argument used in the proof of
Theorem 1.1, making the suitable correction in equation (3.13).
A situation like that has been addressed in the percolation context through the

concept of thebackbone. The term is used to distinguish between aspanning cluster
(i.e., a cluster that connects two opposite faces of a macroscopic-size cube and typi-
cally contains manydangling ends) and the smaller set of bonds that carry a current
between the faces (see [38]).
A mathematically appealing formulation is possible in the continuum limit (at

δ = 0), for which we define the backbone�(ω) of the system of curves�(ω) as the
union of all interior segments of curves� ∈ �(ω).
For the backbone, the Hausdorff and box dimensions need not coincide. Since the

statement is closely related to the considerations of this section, we present it here,
even though it anticipates the construction better described in the next section.



436 AIZENMAN AND BURCHARD

Theorem 3.2. In the scaling limit (defined in the next section)

dimH �(ω)≤ d−λ(2) (a.s.), (3.19)

whereas

dimB �(ω)≤ dimB �(ω)≤ d−λ(1) (a.s.). (3.20)

The last inequality can be saturated.

Proof. Equation (3.19) follows from the continuity of the Hausdorff dimension
under countable unions and from the previous observation on the dimension of the
sets defined with fixed macroscopic cutoffs. Equation (3.20) holds, since the box
dimension of a set equals that of its closure, which for�(ω) is the union of all curves
in �.

4. Compactness, tightness, and scaling limits.We now turn to the construction
of scaling limits for a random system of curves. Such a system is described by
a collection of probability measuresµδ on the space of configurations of curves
��, which was defined in the introduction. We will see that the tortuosity bound,
equation (3.5) derived in Theorem 1.1, allows one to conclude the existence of limits
for µδ.
The proof of Theorem 1.2 rests on the relation of the space of curves with the space

of continuous functionsC([0,1],�) and the well-developed theory of probability
measures on the space of closed subsets of a complete separable metric space. We
recall some of this theory below. The first step is the following counterpart to the
Arzelà-Ascoli theorem.

Lemma 4.1 (Compactness in��). A closed subset� ⊂ �� of the space of curves
in a compact� ⊂ Rd is compact if and only if there exists a functionψ : (0,1] →
(0,1] so that for all� ∈ �,

M(�,�)≤ 1

ψ(�)
for all 0< �≤ 1. (4.1)

Proof. We first show that if a closed set� ⊂ �� consists of curves satisfying
uniform tortuosity bounds, then� is compact. It suffices here to show that each
sequence of curves in� has an accumulation point in��. The limit will be in �
because� is closed.
By Lemma 2.4, we can parametrize each curve in the sequence by a continu-

ous function satisfying the corresponding continuity condition, equation (2.15). That
yields an equicontinuous family of functions inC([0,1],�). Applying the Arzelà-
Ascoli theorem, we deduce the existence of a uniformly convergent subsequence. It
is easy to see that the curves defined by these functions also converge, with respect
to the metric on�.



REGULARITY AND DIMENSION OF RANDOM CURVES 437

In the converse direction (which we do not use in this work), we need to show
that if � is compact, thenM(�,�) is uniformly bounded on it. That follows from
Lemma 2.2, which shows that (i)M(�,�) is bounded above bỹM(�,�/4); (ii) since
M̃(�,�) is upper semicontinuous by Lemma 2.2, it achieves its supremum on the
compact set�.

Standard arguments, such as those used forC([0,1],Rd), show that the space of
curves�Rd is a complete and separablemetric space. The completeness and separabil-
ity of �Rd are passed on to��. For this space, we get the following characterization
of compactness.

Lemma 4.2 (Compactness in��). A closed subset̃A of�� is compact if and only
if there exists someψ : (0,1] → (0,1] for which each configuration� ∈ Ã consists
exclusively of curves satisfying a bound of the form given in equation (4.1).

Proof. The claim follows from the basic property of the Hausdorff metric, under
which the closed subsets of a compact metric space form a compact space.

The scaling limit we are interested in is taken in the space of probability measures
on�� for compact� ⊂ Rd . Our discussion now makes use of a number of useful
general concepts and results, which we briefly list here. A thorough treatment can be
found in [9].
A family of probability measures{µn} is said to betight if there exists for everyε

a compact setA so thatµn(A)≥ 1−ε.
The sequenceµn is said toconverge toµ if lim n→∞

∫
f dµn =

∫
f dµ for every

continuous functionf :�→R. If the distance function is uniformly bounded, as is
the case for measures on�� with compact�, this convergence statement is equivalent
to the existence of a coupling as described in the introduction, below the statement
of Theorem 1.2.
A collection of measures is said to berelatively compactif every sequence has

a convergent subsequence. Tightness and compactness are equivalent in this general
setting, as shown in the following theorem.

Theorem (Prohorov [33]; see also [9]). A family of probability measures on a
complete separable metric space is relatively compact if and only if it is tight.

Thus, to prove Theorem 1.2, we need to show that for eachε > 0, up to remainders
of probability≤ ε, the measures{µδ} are supported on a common compact subset of
��, which may depend onε.

Proof of Theorem 1.2.By Theorem 1.1 and point (ii) of the remark following it,
for eachs > d, all curves in the random configuration�(ω) drawnwith the probability
measureµδ can be parametrized Hölder continuously with exponents and Hölder
constantκs;δ, as in equation (1.5). By Lemma 2.4, this implies that

M(�,�)≤K�−s for all curves� ∈ �δ(ω), (4.2)
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except for a collection of configurations whose total probability is less than or equal
to ε. By Lemma 4.2, the setA�(K,s)⊂�� of all configurations consisting only of
curves that satisfy equation (4.2) is compact. In other words, finite upper tortuosity of
� implies that upon truncation of small remainders, the measuresµδ are supported
in the compact sets of the formA�(K,s). (Note thatK <∞ needs to be adjusted
depending onε and the choice ofs.) This proves that the familyµδ is tight. By
Prohorov’s theorem, that is equivalent to compactness.
To see that the limiting measure is supported on curves that can be parametrized

Hölder continuously with any exponent less than 1/(d−λ(1)), consider the collections
�(r) of curves of diameter at leastr. The above argument shows that the measure
restricted to this collection is almost supported onA�(K(r),s) for anys > d−λ(1)
andK(r) large enough. By Prohorov’s theorem, the limiting measure is supported on⋃

K>0A�(K,s), which proves the claim by Lemma 2.4.

Let us remark that the notion of convergence we use here (technically it is called
weak convergenceon the space of measures on��) is quite strong, due to our choice
of topology on��. As equation (1.13) makes clear, forn large typical configurations
of �δn are close to typical configurations of the scaling limit—close in the sense
of the Hausdorff metric induced on the space of configurations�� by the uniform
metric in the space of curvesS�. This sense of convergence is stronger than that
defined through the joint probability distributions of finite collections of macroscopic
crossing events. In this respect, the notion of convergence used here is reminiscent
of the sense in which Brownian motion is proven to approximate random walks in
Donsker’s theorem [16].

5. Lower bounds for the Hausdorff dimension of curves. Our next goal and the
third theme of this work is to prove the statement of Theorem 1.3—that in a system
satisfying Hypothesis H2, almost surely none of the curves that appear in the scaling
limit are of Hausdorff dimension lower than somedmin > 1.
The proof is split into two parts. The first part, carried out in this section, con-

sists of measure-theoretic analysis based on the assumption that a certain auxiliary
deterministic condition is satisfied for a given curve. In the next section the proof is
completed with a probabilistic argument showing that in a system of random curves
satisfying Hypothesis H2, the auxiliary condition is met almost surely.

5.1. Straight runs.Standard examples of curves of dimension greater than 1 are
curves whose segments deviate from straight lines proportionally on all scales. How-
ever, for random systems (and other setups) that criterion is too restrictive, since
one may expect exceptions to any rule to occur on many scales. The criterion that
we develop here is thesparsity of straight runs, which is an abbreviated expression
for the absence of sequences of nested straight runs occurring over an excessively
dense collection of scales. The concept is defined with a macroscopic scaleL > 0, a
shrinkage factorγ > 1 used to specify a sequence of length scales
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Lk = γ−kLo, (5.1)

and an integerko used to allow exceptions above a certain scale.

Definition. A curve inRd is said to exhibit astraight runat scaleL (= Lk for some
k) if it traverses some cylinder of lengthL and cross-sectional diameter(9/

√
γ )L

in the “length” direction, joining the centers of the corresponding faces. Two straight
runs arenestedif one of the defining cylinders contains the other.
We say that straight runs are(γ,ko)-sparse, down to the scale�, if � does not

exhibit any nested collection of straight runs on a sequence of scalesLk1 > · · ·> Lkn ,
with Lkn ≥ � and

n≥ 1

2
max{kn,ko}. (5.2)

The deterministic result follows, stated here only in the continuum (� = δ = 0).
For systems of random curves, we make use of the more detailed information in the
proof (see (5.22)).

Theorem 5.1. If the straight runs of a given curve� are (γ,ko)-sparse, then
dimH �≥ s, with s given by

γ s =√
m(m+1), (5.3)

andm an integer strictly smaller thanγ .

Clearly, if for some integerm the above condition is met for allγ > m, then the
bound becomes

dimH �≥ 1+ ln
(
1+(1/m))
2lnm

. (5.4)

We prove Theorem 5.1 by cutting the given curve� into a hierarchical family of
subsegments at different scales, with segments at the same scale separated by a certain
minimal distance. This family defines a Cantor-like (i.e., closed, perfect, and totally
disconnected) subset�̃ of �. If � contains no straight runs at all, a scaling argument
easily shows that the dimension of�̃, and hence the dimension of�, exceeds 1.
We use capacity arguments to show that this holds also under the weaker condition
that straight runs are sparse. For the construction of the family of subsegments that
defines the fractal subset�̃, we modify the exit-point algorithm from the proof of
Theorem 2.5.

5.2. Construction of fractal subsets.Let γ > 1 be a positive number,m an integer
in [γ /2,γ ], andkmax a positive integer. By an iterative procedure, we construct for
a given curve� a nested sequence:o, . . . ,:kmax of collections of segments of� at
scales

Lk = γ−kLo, k = 0, . . . ,kmax, (5.5)
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Xn

Xn+1

Figure 4. The algorithm used for marking the pointsxj in the construction of:k

with Lo = diam�, having the following properties:
(i) each:k is a collection of segments of diameter at leastLk;
(ii) in each generation (as defined byk), distinct segments are at distances at least

εLk with ε = (γ /m)−1;
(iii) each segment of:k (k > 1) is contained in one of the segments of:k−1, with

the number of immediatedescendantsthus contained in a given element of
:k−1 at leastm and very frequently at leastm+1.

To define�̃ let�k be the union of the segments in:k. Then�̃= ∩k≤kmax:k. In the
construction, we find it convenient to use thespanof a curve, which we define to be
the distance between the curve’s endpoints, in place of the diameter.

Lemma 5.2 (Construction of̃�). There is an algorithmic construction for each
curve� that yields a sequence of collections of segments with properties (i)–(iii) and
with the further property that unless a segmentη ∈ :k exhibits a straight run of scale
Lk, the number of its descendants is at leastm+1.

Proof. Wemay assume (by trimming) that the span of� equalsLo. Let:o consist
of only one element: a segment that starts at one end of the curve and stops upon the
first exit from a ball of radius diam(�). Once:k has been constructed, we form:k+1
by selecting for each elementη ∈ :k a collection of descendantsη1, . . . ,ηN , which
are subsegments ofη cut by two sequences of pointsxj andyj , strung along it in
the ordery1 < x1 < y2 < x2 < · · · . The cutting points are selected by the following
procedure (see Figure 4).
We lety1 be the starting point andx1 be the first exit ofη from the ball of radius

Lk+1 = Lk/γ centered aty1. Then, recursively, we choosexn as the first point onη
having distance at leastLk/m from the already constructed subsegmentsη1, . . . ,ηn−1,
and terminating if no such point can be found. The pointyn is selected as the last
entrance, prior toxn, into the ball of radiusLk+1 centered atxn.
It can be verified that the sequence of subsegmentsηn, n = 1, . . . ,N , with the

endpoints{xn,yn} has the following properties:
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(i) eachηn spans distanceLk+1;
(ii) the distance of each point onηn to the union of the segmentsη1 · · ·ηn−1 lies

betweenεLk+1 andLk/m; while
(iii) the distance fromyn to the starting pointx is at mostnLk−1/m.
We need to estimate the number of segments generated by the above procedure. It

is easy to construct from the collection of segments a polygon with step size at most
Lk−1/m that connects the endpoints ofη. Choose the pointxN as the vertex before
the last. For any given vertex inηn (n > 1), select the preceding one from someηi
with i < n so that the resulting leg has length at mostLk/m; if n= 1, terminate and
usey1 as the initial point. Clearly, the polygon has at leastm interior vertices, and
hence the numberN of subsegments is at leastm.
Assume now thatη does not exhibit a straight run at scaleLk. We claim that

the numberN of descendants is at leastm+ 1 (see Figure 5). By construction,
at least one of the segmentsηn has a distance of less thanLk/m from the lateral
boundary of the cylinder of width 9/

√
γ defining a straight run fromx to y. If that

segment contributes a vertex to the polygon, then this vertex must lie outside the
cylinder of width (9/

√
γ −4/m)Lk ≥ (2/

√
m)Lk. Then the polygon has length at

least
√
1+4/mLk ≥ (1+1/m)Lk, and hence contains at leastm+1 interior vertices,

coming from distinct subsegments. On the other hand, if some subsegment does not
contribute a vertex to the polygon, we also haveN >m. This completes the proof of
the lemma.

One may think of the elements of∪k:k as vertices of a graded tree, with the root in
:o, and edges joining each segment to its immediate descendants. For any two points
x,y ∈ �̃ that are not in the same element of:kmax,

|x−y| ≥ εLk(x,y), (5.6)

wherek(x,y) is the index of the first generation at which the two points are separated.
The next section contains two general results that we use to estimate the dimension
of �̃.

5.3. Energy estimates.For a metric spaceA and� ≥ 0, let Cov�(A) denote the
collection of coverings ofA by sets of diameter not smaller than�. By the definition
of the Hausdorff dimension, a lower bound on dimH Ameans that for somes > 0 the
quantity

inf{Bj }∈Cov�(A)
∑
j

(
diamBj

)s (5.7)

does not tend to zeroas�→ 0 (in which case dim�A ≥ s). It is difficult to use this
definition directly to find lower bounds on the Hausdorff dimension. We therefore
make use of the relation of Hausdorff measures with capacities and deduce a lower
bound on dimension from an upper bound on theenergyof a judiciously chosen
probability measure (charge distribution) supported on the setA.



442 AIZENMAN AND BURCHARD

Figure5. The subdivision of an element of:k into:k+1. Unless there is a straight
run in a cylinder positioned as indicated, the number of elements increases at a
higher rate than the factor by which the radius shrinks (γ ). Under Hypothesis H2,
straight runs are sparse in a sense that permits us to derive a lower bound on the
Hausdorff dimension based on this picture.

Lemma 5.3. For s > 0 and � ≥ 0, let the capacityCaps;�A of a subset ofRd be
defined by

1

Caps;�A
= inf

µ≥0,∫A dµ=1
∫ ∫

A×A
µ(dx)µ(dy)

max{|x−y|,�}s . (5.8)

Then, for every collection of sets{Bj } coveringA, withminj diam(Bj )≥ �,

∑
j

(
diamBj

)s ≥ Caps;�A. (5.9)

(The case� = 0 can be found in Falconer [19]. The statement is related to the
theorem of Erd̋os and Gillis [18] that thes-dimensional Hausdorff measure ofA is
infinite whenever Caps;0 is positive.)

Proof. Bymonotonicity, it clearly suffices to prove equation (5.9) for any covering
by disjoint sets. Let{Bj } be such a collection, and letµ be a probability measure
supported onA. Then

∫ ∫
A×A

µ(dx)µ(dy)

max{|x−y|,�}s ≥
∑
j

∫ ∫
x,y∈Bj

µ(dx)µ(dy)

max
{
diamBj ,�

}s
=

∑
j

µ
(
Bj

)2(
diamBj

)s . (5.10)
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We also have

1=

∑

j

µ
(
Bj

)
2

≤

∑

j

µ
(
Bj

)2(
diamBj

)s




∑

j

(
diamBj

)s (5.11)

(by the Schwarz inequality). Combining the last two relations, we learn that

∑
j

(
diamBj

)s ·(∫ ∫
A×A

µ(dx)µ(dy)

max{|x−y|,�}s
)
≥ 1 (5.12)

for any probability measure supported onA, and any covering ofA by sets with
diameters≥ �. Minimizing overµ, one obtains the relation claimed in (5.9).

Lemma 5.4. LetA be a compact subset ofRd . Assume there is a sequence:o, . . . ,
:kmax of (nonempty) collections of closed disjoint subsets ofRd such that for each
k = 1, . . . ,kmax(≤∞):

(i) each element of:k is contained in some element of:k−1, and each element
of :k−1 contains at least one such “descendant”;

(ii) any two distinct sets in:k are a distance at leastεLk apart, whereLk =
γ−k,Lo with someLo > 0, γ > 1, and0< ε ≤ γ ;

(iii) for each elementη ⊂ :k: η∩� �= ∅.
For pointsx ∈ ∪η∈:kη, let nk(x) be the number of immediate descendants of the set
containingx within :k−1. Assume, furthermore,
(iv) there is someβ > 1 such that

k∏
j=1

nj (x)≥ βk, for all k = ko, . . . ,kmax (5.13)

with some commonko, wheneverx ∈ ∪η∈:kη.
Then fors > 0 such thatγ s < β and for�= γ−kmaxLo:

Caps;�A≥ (εLo)
s

[
γ sko+ β

1−β−1γ s
]−1

. (5.14)

Remark. It should be appreciated that� andkmax do not appear on the right-hand
side of (5.14). If straight runs are sparse on all scales (that is,kmax= ∞), then the
limit �→ 0 of (5.9) yields a bound on thes-dimensional Hausdorff measure ofA.

Proof. For a bound on the capacity, it suffices to produce a single probability
measure supported onA with a correspondingly small “energy integral” (see (5.8)).
We construct the measureµ so that for eachη ∈ :k the total measure ofA ∩ η
is distributed evenly among its immediate descendants. This means that for each
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k = 0, . . . ,kmax and eachη ∈ :k,

µ(η)=
k∏

j=1
nj (η)

−1, (5.15)

where (forj ≤ k), and the numbernj (η) is the constant value thatnj (x) takes forx ∈
η. To specify the measure uniquely, we designate as its support{xmin(η) | η ∈ :kmax},
where for eachη ∈ :kmax the pointxmin(η) is the earliest point inη with respect to
the lexicographic order ofRd .
If two pointsx,y ∈ A are in separate elements of:kmax, we letk(x,y) denote the

index of the level at which they separated. In estimating the energy integral we use
the bound

|x−y| ≥ εLk(x,y) (5.16)

for points separated in:kmax. Otherwise, we use max{|x−y|,�} ≥ �. Thus

�(µ)=
∫ ∫

A×A
µ(dx)µ(dy)

max{|x−y|,�}s
≤

∫ ∫
k(x,y)≤kmax

(
εLk(x,y)

)−s
µ(dx)µ(dy)

+
∑

η∈:kmax
L−skmax

∫ ∫
η×η

µ(dx)µ(dy).

(5.17)

Splitting the first integral on the right according to the value ofk(x,y) (separating
out the casek(x,y)≤ ko) and replacingLk by γ−kLo throughout, we obtain

�(µ)≤ (εLo)
−sγ sko+

kmax∑
k=ko+1

(εLo)
−sγ sk

∑
η∈:k−1

µ(η)2+L−so γ skmax
∑

η∈:kmax
µ(η)2.

(5.18)

Sinceε ≤ γ , the last term on the right-hand side of (5.18) can be replaced there by
adding the termk = kmax+1 to the preceding sum. Finally, we use assumption (5.13)
together with the definition of the measure in (5.15) and∑

η∈:k
µ(η)= 1 (5.19)

to see that

∑
η∈:k

µ(η)2=
k∏

j=0
nj (η)

−1 ∑
η∈:k

µ(η)≤ β−k. (5.20)

This yields a geometric series bound for the sum overk in (5.18), which results in
the bound stated in (5.14).
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Proof of Theorem 5.1.Let � be a curve where straight runs are(γ,ko) sparse
down to scale� = γ−kmaxLo. The hierarchical construction of Lemma 5.2 results in
a fractal subset̃� of �. Since straight runs are sparse by assumption,C̃ satisfies the
branching condition (5.13) of Lemma 5.4, with the value ofβ defined by the relation

β =√
m(m+1). (5.21)

Thus, Lemma 5.4 implies that for anys such thatγ s < β,

Caps;��≥ (εLo)
s

[
γ sko+ β

1−β−1γ s
]−1

; (5.22)

this inequality holds for all� ∈ (γ−kmax,1]. By Lemma 5.3, the same lower bound
holds for inf{Bj }∈Cov�(�̃)

∑
j (diamBj )

s . Since we may choosekmax as large as we
please, thes-Hausdorff measure of� is positive, and hence, the Hausdorff dimension
is at leasts.

6. Lower bounds on curve dimensions in random systems.We now combine
the previous deterministic results with a probabilistic estimate and prove Theorem 1.3.
The proof consists of showing that with high probability straight runs are sparse, and
then applying the results of the previous section.

Lemma 6.1 (Sparsity of straight runs). Assume that a system of random curves in
a compact set� ∈Rd satisfies the Hypothesis H2. Forγ > 4d, define a sequence of
length scalesLk = γ k. Then there are constantsK�,K1 <∞,K2 > 0, with which
for any fixed sequencek1< k2< · · ·< kn,

Probδ

(
there is a nested sequence
of straight runs at scalesLk1, . . . ,Lkn

)
≤K�γ

2dkne(K1−K2
√
γ )n, (6.1)

provided thatγ−kn > δ.

Proof. If a curve traverses a cylinder of lengthL and width(9/(
√
γ )L, then it also

traverses a cylinder of width(10/
√
γ )L and lengthL/2 centered at a line segment

joining discretized points inL′Zd , provided thatL′ ≤ L/γ . The number of possible
positions of such a cylinder in a set of diameter� is bounded above by(�/L′)2d . The
number of positions ofn nested cylinders at scalesLk1, . . . ,Lkn is thus bounded by

K�γ
2dk1γ 2d(k2−k1) · · ·γ 2d(kn−kn−1) ≤K�γ

2dkn . (6.2)

Fix now a sequenceAi , i = 1, . . . ,n of nested cylinders of lengthLki /2 and width
(10/

√
γ )Lki . Let σ be the aspect ratio for which Hypothesis H2 holds with some

ρ < 1. Cut each of the cylinders into
√
γ /(10σ) shorter cylinders of aspect ratioσ ,

and pick a maximal number of well-separated cylinders from this collection. Since
Ai+1 intersects at most two of the shorter cylinders obtained by subdividingAi ,
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the number of cylinders in a maximal collection is at leastn(
√
γ /(20σ)−2). The

probability of a curve traversing all of theAi is bounded above by the probability of
crossing the shorter cylinders. Applying Hypothesis H2 gives

Probδ

(
A′1, . . . ,A′n are crossed
by a curve in�δ(ω)

)
≤K1e

(K2−K3
√
γ )n. (6.3)

Summing over the possible positions and adjusting the constants completes the proof.

Proof of Theorem 1.3.We first show that for each system of random curves in a
compact set� ⊂ Rd satisfying Hypothesis H2, there existm <∞ andq < 1 such
that for everyγ > m

Probδ
(
straight runs are(γ,ko)-sparse
in �, down to scaleδ

)
≥ 1− qko

1−q ; (6.4)

in other words, the random variable given by

ko;δ(ω)= inf
{
k ≥ 0 | straight runs are(γ,ko)-sparse down to scaleδ

}
(6.5)

is stochastically bounded asδ→ 0. To see this, note that for specifiedk,

Prob

(
there exist a nested sequence
of straight runs on scales
k1< · · ·< kn = k with k ≥ n≥ k/2

)
≤

k∑
n=k/2

(
k

n

)
K1m

2dke−K2
√
mn

≤K1(2m)
2dke−(K2

√
m)k/2.

(6.6)

Choosingm large enough so that

q ≡m2de−(K2
√
m/2) < 1 (6.7)

and summing the geometric series overk, we obtain equation (6.4).
As in the proof of Theorem 5.1, we use Lemmas 5.2 and 5.4 to conclude from

equation (6.5) that all curves in a given configuration satisfy the bound

Caps;δ �≥ (
εdiam�

)s [
γ sko;δ(ω)+ β

1−β−1γ s
]−1

, (6.8)

withm andγ as above,β =√
m(m+1), ands small enough so thatγ s < β. Choosing

γ sufficiently close tom we may takes > 1, which proves the claim.

Appendix: Models with random curves

In order to provide some context for the discussion of systems of random curves,
we present here a number of guiding examples. Familiarity with this material is not
necessary for reading the work; however, it does offer a better perspective both on the
motivation and on the choice of criteria employed here. We start with some systems
exhibiting the percolation transition.
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A.1. Percolation models.Among the simplest examples to present (for a re-
view, see [39] and [21]) is the independent bond percolation model on the cubic
d-dimensional lattice, which we scale down toδZd , δ� 1.Bondsare pairsb = {x,y}
of neighboring lattice sites. Associated with them are independent and identically dis-
tributed random variablesnb(ω) with values in{0,1}. The one-parameter family of
probability measures is parametrized by

p = Prob(nb = 1). (A.1)

For a given realization, the bonds withnb(ω)= 1 are referred to asoccupied. The lat-
tice decomposes into clusters of connected sites, with two sites regarded as connected
if there is a path of occupied bonds linking them.
For an intuitive grasp of the terminology, onemay think of the example in which the

occupied bonds represent electrical conductors (of sizeδ� 1) embedded randomly in
an insulating medium. If a macroscopic piece of material with such characteristics is
placed between two conducting plates maintained at different potentials, the resulting
current is restricted to the macroscopic-scale clusters connecting the two plates (the
“spanning clusters”).
The model exhibits a phase transition. Its simplest manifestation is that the proba-

bility of there being aninfinite clusterchanges from zero forp < pc to 1 forp > pc.
The transition is also noticeable in finite volumes of macroscopic size: forp < pc the
probability of observing aspanning clusterin [0,1]d is vanishingly small, whereas
for p > pc this probability is extremely close to 1. In both cases the probabilities of
the unlikely events decay as exp(− const./δ), whenδ→ 0 at fixedp(�= pc).
The generally believed picture in dimensions 2≤ d < 6 is that forp in the vicinity

of the critical point (|p− pc| = O(δ1/ν)), macroscopic clusters do occur but are
tenuous. Much of this is proven in two dimensions (see [35], [37], [23]), though gaps
in the proof remain ford > 2 (see [11], [1]). Typical configurations exhibit many
choke points, where the change of the occupation status of a single bond forces a
large-scale shift in the available connecting routes (see [35]) and possibly even breaks
a connected cluster into two large components, as indicated in Figure 1. The clusters
are “fractal” in the sense that they exhibit fluctuating structure on many scales (see
[29]). This is the situation addressed in this work.
For a given configuration of the model, we let�δ(ω) stand for the collection of all

the self-avoiding paths along the occupied bonds (possibly restricted to a specified
subset� ⊂ Rd ). This random configuration of paths provides an explicit way of
keeping track of the possible connecting routes within a given bond configuration.
One of the goals of this work was to establish that the description of the model in

terms of a system of random curves (see [2]) remains meaningful even in the scaling
limit (δ→ 0). It may be noted that the alternate (andmore common) description of the
random configuration in terms of the collection ofconnected clustersis problematic
in that limit. Clusters are naturally viewed as elements of the space of closed subsets
of Rd , with the distance provided by the Hausdorff metric. As long asδ �= 0, the two
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formulations of the model—as a system of random clusters or a system of random
curves—are equivalent. However, the ubiquity of choke points renders the random
cluster description insufficient for the scaling limit. (The Hausdorff metric is not
sensitive enough to pick up small differences, such as flips of individual bonds, which
may have a drastic effect on the available routes.)
It is expected that in the scaling limit the configurations of the connected paths in

the critical bond percolation model are hard to distinguish from those arising from a
number of other systems of different microscopic structure—for example, percolation
models where the conducting objects are randomly occupied sites of the latticeδZd

(viewed as a subset ofRd ) or droplets of radiusδ randomly distributed inRd . The
definition of�δ(ω) for such models may require minor adjustments, one in the notion
of self-avoidance and the other in the selection of the polygonal approximation. For
the droplet model both are taken care of by restricting the attention to the polygonal
paths joining centers of intersecting droplets thatdo not re-enterany of the droplets.
We form the set�δ(ω) as the collection of all such paths.
In two dimensions, our Hypotheses H1 and H2 are satisfied by the independent

bond, site, and droplet percolation models. Thek = 1 case of the bounds (1.3) with
λ(1) > 0 and (1.15) are particular implications of the Russo-Seymour-Welsh theory
(see [35], [37], and [5]). The statementλ(k)→ ∞ follows by the van den Berg–
Kesten inequality [40], which implies that for independent systems the probability of
multiple crossings is dominated by the corresponding product of the probabilities of
single events. (More detailed analysis implies thatλ(k) actually grows quadratically
in k; see [1], [36], and [13].) The conditions in Hypothesis H1 and H2 are expected
to hold also for other dimensionsd < 6, but not ford > 6 (see [1]).
Thus, our general results imply the following statement, which was outlined in [2].

Theorem A.1. In two dimensions, in each of the above-mentioned percolation
models, based on random bonds, random sites, or random droplets, at the critical
point all the nonrepeating paths supported on the connected clusters within the com-
pact region[0,1]2 can be simultaneously parametrized by functionsγ (t), 0≤ t ≤ 1,
satisfying the Hölder continuity condition given by equation (1.5). The continuity
constantsκε;δ(ω), which apply simultaneously to all curves in[0,1]2, remain stochas-
tically bounded asδ→ 0. (This holds for anyε > 0 as explained in Theorem 1.1).
Furthermore, for each of these critical models, the probability distribution of the

random collection of curves�δ(ω) has a limit (in the sense of Theorem 1.2), at least
for some sequence ofδn → 0. The limiting measure is supported on collections of
curves whose Hausdorff dimensions satisfy

dmin ≤ dimH (�)≤ d−λ(2), (A.2)

with some nonrandomdmin > 1.

In fact, by similar reasoning we can also deduce the existence of a one-parameter
family of such limits, corresponding to values ofp that deviate frompc by an amount
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scaled down to zero asδ→ 0 (in essense,p(δ; t)= pc+ tδ1/ν).
The apparent universality of critical behavior leads one to expect that the scal-

ing limits constructed here are common to the models listed above. If so, then the
limiting measures have the full rotation and reflection symmetry ofRn (and in two di-
mensions exhibit alsoself-duality). Remarkably, there is evidence for an even higher
symmetry—conformal invariance (see [26], [14], [2], [8]) at the special pointp = pc,
that is,t = 0 for the one-parameter family alluded to above. The mathematical deriva-
tion of such universality of the scaling limits and of the conformal invariance at the
critical point form outstanding open problems.

A.2. Random spanning trees.The regularity criteria presented here can also be
verified for a number of random spanning tree models in two dimensions (see [3]).
Each is a translation-invariant process describing a tree graph spanning a set of sites
in Rd with neighboring sites spaced distances of orderδ� 1 apart.
Minimal spanning tree (MST).The underlying graph is the regular latticeδZd ⊂

Rd , with edges connecting nearest neighbors. Associated with the edgesb = {x,y}
is a collection of independent randomcall numbers(or edge lengths) u(b), with the
uniform probability distribution in[0,1]. For a bounded region�⊂Rd , the minimal
spanning tree:δ;�(ω) is the tree spanning the set�∩δZd minimizing thetotal edge
length(i.e., the sum of the call numbers).
Euclidean (minimal) spanning tree (EST).The vertices of the graph are generated

as a random collection of points, with the Poisson distribution of densityδ−d on�.
:δ;� is the covering tree graph which minimizes the total (Euclidean) edge length.
Uniformly random spanning tree (UST).The spanning tree:δ;� is drawn uniformly

at random from the set of trees spanning the vertices in�∩ δZd using the nearest
neighbor edges.
In each of the above cases, there is a well-defined limit

:δ(ω)= lim
�↗Rd

:δ,�(ω), (A.3)

whereλ is increased through a sequence that exhaustsRd . (The restrictions of:δ,� to
compact subsets̃� ⊂ Rd are monotone decreasing in� once� ⊃ �̃.) The limiting
spanning tree is independent of the sequence of volumes and is translational-invariant
in the stochastic sense.
In general, the limit:δ(ω) may be either a single tree or a collection of trees. For

two dimensions it is known that each of MST, EST, and UST almost surely consists
of a single tree with a single topological end, that is, a single route to infinity (see
[32], [22], [7], [4], [15], [5]). The structure of UST changes from a tree to a forest in
dimensionsd > 4 (see [32]), while MST and EST are expected to change similarly
for d > 8 (see [30] and [31]). (The transition may appear differently from the scaling
limit perspective; see [3].)
For eachn-tuple of pointsx1, . . . ,xn ∈Rd , let T (n)x1,...,xn(ω) be the tree subgraph of
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:δ(ω) with vertices corresponding to the closestn sites in:δ(ω). Our methods can
be applied to the following question, analogous to Q1 in the introduction:

Q3. Is there a limiting distribution for these graphs asδ→ 0?

To control the limit forT (n)x1,...,xn(ω), one needs information on the curves supported

on :δ(ω). This collection of curves forms the set�(2)
δ (ω) to which the analysis of

this work may be applied.
Random spanning trees provide striking examples of the phenomenon we encoun-

tered in critical percolation—that the formulation of the model in terms of random
clusters is inadequate for the description of the scaling limit. Here the Hausdorff dis-
tance between any two different realizations (as subsets ofRd ) is δ, and hence the
space of configurations seems to collapse to a single point. That can be resolved by
looking at the curves, as is done here. Let us add that the more complete description
of the spanning trees requires the consideration of all the embedded finite trees and
that defines the object�δ(ω) for those systems. However, their study can be based
on the analysis of the curves that provide the tree branches.
In contrast with independent percolation, spatially separated events are not inde-

pendent for stochastic trees. Moreover,λ(1)= 0, since any two vertices are connected
with probability one. Nevertheless, Hypotheses H1 and H2 are valid (withλ(2) > 0)
for the three spanning tree processes ind = 2 dimensions (see [3]). Instrumental in
the derivation are the relations of MST and EST with invasion percolation (studied in
[15]), and of UST with the loop-erased random walk via theWilson algorithm[41].
The latter relation permits us also to draw nontrivial conclusions about the scaling
limit of the loop-erased random walk ind = 2 dimensions.

A.3. The frontier of Brownian motion.Yet another example of a random curve
is provided by thefrontier of the two-dimensionalBrownian motion({b(t) | t ∈
[0,1],b(0)= 0}) (abbreviated here as FBM). The frontier of a sample path is defined
as the boundary of the unbounded connected component of the complement of the
path inR2.
For FBM,�(ω) consists of a single curve. Its dimension has been considered in the

literature: it is conjectured that dim(FBM)= 4/3 (almost surely) (see [20] and [29])
and the best rigorous bounds are 1.015≤ dim(FBM)≤ 1.475 (see [27] and [12]).
Our general results apply to this example.We do not derive here Hypotheses H1 and

H2. Let us note, however, that H2 is easy to establish by making use of the observation
that the event depicted in Figure 3 requires that the Brownian path should hit each
of the boxes but not traverse it in the width direction. Thus, the mechanism behind
our lower bound is similar in spirit to the earlier work of Bishop et al. [10], in its
reliance on the fact that Brownian paths move erratically. The resulting upper bound,
while not as tight an estimate of the dimension as that of Burdzy and Lawler [12],
is expressed as a bound on the tortuosity, and hence it can be used to establish that
FBM is parametrizable as a Hölder continuous curve.
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A.4. The trail of three-dimensional Brownian motion.The trail of Brownian mo-
tion is the set of all sites visited by the Brownian path for times 0≤ t <∞. In the
transient case,d > 2, the trail almost surely forms a closed random set of Hausdorff
dimension 2. Can it support curves of dimension arbitrarily close to 1? In a recent
work of Lawler [28], this question was answered negatively for the interesting case
d = 3, through analysis involving a number of results concerning the Brownian mo-
tion intersection exponent. Let us note that a negative answer can also be deduced
from the general Theorem 1.3, since Hypothesis H2 is rather easy to establish (for
d > 2) within the setup relevant for this problem.

A.5. Contour lines of random functions.As the last example of a system of random
lines, let us mention contour lines of a random function. Kondev and Henley [25] have
considered the distribution of the level sets of a family of random functions defined
on a lattice,φδ(ω) : δZ2 → R. They present an interesting conjecture concerning
the scale invariance for the distribution of the loops bounding the connected regions
with φ(x) > φ(0). It would be of interest to see an extension of our analysis to such
systems.
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