Vol. 99, No. 3 DUKE MATHEMATICAL JOURNAL © 1999

HOLDER REGULARITY AND DIMENSION BOUNDS
FOR RANDOM CURVES

M. AIZENMAN anp A. BURCHARD

To the memory of Roland L. Dobrushin

CONTENTS
L INErOAUCHION .« . vt e 419
1.1. General framework .. ... 419
1.2, Main resURS . ...t 421
2. Analysis of curves through tortuosity. . . .......... ..., 427
2.1. The space Of CUIVES. ... ... e 427
2.2. Measures of curve roughness. . ..., 428
2.3. Tortuosity and Hoélder continuity. . ... 429
2.4, Tortuosity and box dimension. ... 430
3. Regularity for curves in random SyStems. . ..., 432
3.1. Proof of the main regularityresult. ............. ... ... 432
3.2. Tortuosity of random systems and the backbone dimensian...... 434
4. Compactness, tightness, and scalinglimits . .......................... 436
5. Lower bounds for the Hausdorff dimension of curves.................. 438
5.1, Straight runs. . ... 438
5.2. Construction of fractal subsets................... .. L. 439
5.3. Energy estimates. . ...ttt e 441
6. Lower bounds on curve dimensions in random systems............... 445
Appendix: Models with random Curves. . ..., 446
R ErENCES. . o 451

1. Introduction

1.1. General framework.We consider here curves Rf that are shaped on many
scales in a manner found in various critical models (see Figure 1). The framework for
the discussion is random systems, where the random object is expressed as a closed
collection of polygonal curves of a small step sizeOur main results are general
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criteria for establishing that as the short distance cutoff is sent to zero, the curves
retain a certain degree of regularity, yet at the same time are intrinsically rough. In
some cases, the object of study is a single random curve. In others, the random object
contains many curves; in such situations, the regularity estimates are intended to cover
the entire collection.

The criteria developed here can be applied to various stochastic geometric models.
In the appendix, we mention as examples critical percolation, the minimal spanning
trees in random geometry, the frontier of two-dimensional Brownian motion, and the
level sets of a two-dimensional random field.

While our discussion does not require familiarity with any of these examples,
let us comment that an important feature they share is the existence of two very
different length scales: thmicroscopicscale on which the model’s building variables
reside and thenacroscopicscale on which the connected curves are tracked. In such
situations it is natural to seek a meaningful formulation fordbaling limit, in which
the microscopic scales) is taken to zero. The regularity established here enables
such a construction through compactness arguments.

To introduce the results let us start with some of the terminology.

(i) We denote by# the space of curves in a closed subset R?, with the metric
defined in Section 2. The symb@lis reserved here for individual curves, afids
reserved for sets of curves. The space of closed sets of curvessidenoted2 .

(i) A configuration of curvesn R? with a short-distance cutoff € (0,1] is a
collection of polygonal paths of step sigevhich forms a closed subs@(C ¥, ).

(i) A system of random curvesith varying short-distance cutoff is described
by a collection of probability measurégs (d%s)}o<s<sma ON 24, Where eachus
describes random sets of curvesAnconsisting of polygonal paths of step size
(We often takeSmax=1.)

Y

A

Figure 1. Schematic depiction of some of the realized paths in a critical percola-
tion model. The model is formulated (possibly on alattice) on a scale much smaller
than the length of the depicted region. Typical configurations exhibit large-scale
connected clusters, but the connections are tenuous. In this work we discuss the
regularity properties of the self-avoiding paths supported on such clusters.
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To summarize, the individual realizations of the random systems are closed sets
of curves denoteds(w). The entire system is also occasionally referred to by the
symbol F.

We are particularly interested in statements concerning the probability measures
{es (dF5)}o<s<smay that hold uniformly ing and thus provide information about the
scaling limit. The following notion facilitates the formulation of such statements.

Definition. A random variableX associated with a syste#his said to bestochas-
tically boundedfor § — O, if
(i) aversionX; is defined for each & 8(< dmax), and
(i) for everye > 0 there isu < oo such that

Proby (|1Xs(w)| > u) <¢ (1.1)

uniformly in §.
A random variable is said to stochastically bounded away from zéfdts inverse
is stochastically bounded.

1.2. Main results. The main theorems in this paper are derived under two hy-
potheses that require scale-invariant bounds on certain crossing events. In order to
apply these results, the hypotheses need to be verified using specific information on
the given system. The conditions are known to be satisfied in certain two-dimensional
critical percolation models, through the “Russo-Seymour-Welsh theory” (see [35] and
[37]) and its recent extensions [5]. They are expected to be true for critical perco-
lation also in higher dimensions, though not #r> 6 (see [1]). Another proven
example is the minimal spanning tree in two dimensions (see [3]), where the critical-
ity is self-inducedn the sense of [6]. These and other systems are presented in the
appendix.

The first condition concerns repeated crossings of spherical shells

D(x;r,R):{ye[Rd |r§|y—x|§R}. (1.2)
(See Figure 2.) The assumption is as follows.

Hypothesis H1. Power bound on the probability of multiple crossinger all
k < oo and for all spherical shells with raddi < r < R < 1, the following bound
holds uniformly ing:

D(x;r, R) istraversed by separat r MK
Proly (segments of a curve ifis(w) = ki (E) (1.3)
with someK; < oo and
Ak) > co  ask — oo. (1.4)

Based on this assumption, we derive the following result.
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FIGURE 2. A 6-fold crossing of an annulu®(x;r, R). Under Hypothesis H1
the probability of ak-fold crossing of an annulu®(x;r, R) is bounded by
Ki(r/R)*® . The regularity estimates are based on the absengecafssings
for k large enough and @ r <« R = r17¢ « 1.

THEOREM 1.1 (Regularity) Let & be a system of random curves in a compact
regionA C R?, with variable short-distance cutdff> 0, and assume that Hypothesis
H1 is satisfied. Then for each> 0, all the curvesé € F;s(w) can be simultaneously
parametrized by continuous functiop&) ¢ € [0, 1] suchthat, foralD < < < 1,

ly (11) =y (12)| < Ko (@) g (diam(@)) 7|1y — 1o V@ D+e) (1.5)

with a random variable.s(w) (common to ali¢ € F;(w)) which stays stochastically
bounded a$ — 0. The second factor depends on the curve’s diameter through the
function

g(r) = r—HO/d=2(D], (1.6)

Remarks. (i) The conclusion of Theorem 1.1 is stated in terms of the existence of
Holder continuous parametrizations, which offers a familiar criterion for regularity.
We actually find it convenient to develop the results in termextiosity boundsthat
is, upper bounds on the functid (%, £) defined as the minimal number of segments
produced if the curvé& is partitioned into segments of diameter no greater than
The two notions are linked in Section 2.

(ii) The dependence of the Holder constant in equation (1.5) on the diameter of the
curve can be removed by lowering the Holder exponent belay ihdeed, interpo-
lating between (1.5) and the trivial relatiop(z1) — y (t2)| < diam(6) gives

1+E—d /a1 :
ly (1) =y (12)| < (kess (@)™ POy — g M@+, (1.7)

whereg is small where is small.
(i) For the main conclusion—that the curves retain Holder continuitgahe
a > 0—it suffices to require instead of Hypothesis H1 that equation (1.3) holds for
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somek with L(k) > d. While this is clearly a weaker assumption than (1.4), so far it
has been proven only in situations in which (1.4) also holds.

In addition to being of intrinsic interest, the above regularity property permits us
to construct the scaling (continuum) limit. The basic question concerning this limit is
the following:

Q1. Is the collection of probability measurgss (d%s)}s tight?

Tightness means that, up to remainders that can be made arbitrarily small, the
measureg; share a common compact support. A positive answer to Q1 implies the
existence of limits limus ,(5) at least along some sequencesspf— 0 (see [9]).
Without tightness, one cannot rule out the possibility that as the cutoff is removed,
curves give way to more general continua. The range of possibilities is rather vast:
curves can converge (in a weaker sense than used here) to continua that do not support
any continuous curve.

Theorem 1.1 yields a positive answer to Q1, as is explained in Section 4. There are
a number of dimension-like quantities for the description of the curves emerging in
the scaling limit. Among them are (see Section 2)

o the Hausdorff dimension digné,

o the upper-box dimension (also known as the Minkowski dimensionk&im

e and the reciprocal of the optimal Holder regularity exponent

% can be parametrized s (1)},_,, with L.8)
ly@®)—y )| < Ke|t—t'|“forallo<e <t <1|° '

o (B) = Sup{a

The following result is derived in Section 4.

THEOREM 1.2 (Scaling limit) For any systen# of random curves in a compact
setA c R?, Hypothesis H1 implies that the limit

im s, (dF) =: u(d%F) (1.9)

exists at least for some sequerdge— 0. The limiting probability measure (of2 )
is supported on configuratior$g containing only paths with

dimzp€ =a(€) "t <d—A(1) (1.10)
and
dimy (6) <d—X1(2). (2.12)

(The improvement in the dimension estimate of the last inequality over the preced-
ing one is based on considerations of baekbong

The sense of convergence in (1.9) can be expressed by saying that there exists a
family of couplingsconsisting of probability measureg (d%;,, d%) such that
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(i) the marginal distributions satisfy
on(dFs,, Qa) = ws, (dFs,), on(Q4,dF) = n(dF), (1.12)

and
(ii) the two components are close in the sense that

n—oo

/ dist(Fs, . F) pn (dFs, . dF) — O, (1.13)
QA X

with the distance between two configurations of curves defined by the Haus-
dorff metric

for everyy € & there isy’ € %
dist(F, F') <& < {with sug |y (1) —y'(t)| < (1.14)
and vice versgF < F').

The positive answer to Q1 invites a number of other questions, including the fol-
lowing:

Q2. Is the limit independent of the sequeii§;g, and is it shared
by other models with different short-scale structure?

This question is beyond the scope of the present work. In some of the models of
interest it is related to the purported universality of critical behavior.

To establish some minimal roughness for the realized curves, we require an as-
sumption on the probability of simultaneous crossings of a family of cylinders. It
suffices to restrict the assumption to spatially separated cylinders, with much latitude
in the exact definition of the term.

Definition. A collection of set§A;} is well separatedf the distance of each set
A; to the other set§A; };; is at least as large as the diameterdgt

The relevant hypothesis is as follows. (See Figure 3.)

Hypothesis H2. Power bound on the probability of simultaneous crossifgere
exist a cross sectios > 0 and somep < 1 with which for every collection ok
well-separated cylindersi, ..., Ay, of aspect rati@ and lengthe;, ..., ¢, > 6,

A1,..., Ay are traversed (in t
Prok [ long direction) by segments $f< K p*. (1.15)
a curve inFs
An effective way to express curve roughness is in termsayacitylower bounds.
The capacity Cap,(A) of a setA C R? is defined in Section 5. For the purpose of

this summary, it suffices to note that the capacity of a fixeddsigicreases with the
paramete¥ and provides the following lower bounds on coverings.
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FiGURE 3. A simultaneous crossing event for a family of cylinders of common
aspect ratio. In Hypothesis H2 the probability of such an event is assumed to be
less than Consp*, with p < 1 (herek = 4). The implication is a uniform lower
bound on the Hausdorff dimensions of all the curves in the configuration.

(i) For every covering ofA by sets{B;} of diameter at least,

> (diamB;)" > Cap_,A. (1.16)

J

(i) The minimal number of elements for a covering Afby sets of diametet
satisfies

N(€,6)>Cap. A-£~". (1.17)

(iif) The behavior of the capacity for smdlprovides information on thelausdorff
dimension

oirz]f 1Cag;e(A) >0=dimg A =>s. (1.18)

(The proof of (i) is given in Section 5; (ii) and (iii) are direct consequences.)

THEOREM 1.3 (Roughness) If a systent® of random curves in a compact subset
A C R4 with a variable short-distance cutoff satisfies Hypothesis H2, then there
existsdmin > 1 such that for any fixed > 0 ands > dmin the random variable

Ts - = inf Cap.s% 1.19
s (@) CeF:diam(€)=>r R:s (1.19)

stays stochastically bounded away from zero§ as O.
Furthermore, any scaling limit of the measuges n = lims, o us, , iS supported
on configurations containing only curves with

In particular, the scaling limit contains no rectifiable curves.
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Let us note that Theorem 1.3 complements Theorem 1.1, since by the monotonicity
properties of the capacity, we can combine (1.19) with (1.17) to obtain

N(€,0) > Cap 6L > Ty ;.5 (@) (1.21)

for all £ > §, whereas under condition (1.5),

. —A(1
xs;aw)g(duam%)“sr o (1.22)

N(%,Z)f[ 7

In particular, (1.21) implies that the minimal number of steps of the lattice 8)ze (
needed in order to advance distardcexceeds ConstL/§)*. Some bounds of this
form were previously obtained for the “lowest path” in two-dimensional critical per-
colation models in the work of Kesten and Zhang [24], who refer to the optimal value
of T as thetortuosity exponent. We slightly modify their terminology, by requiring
the power bounds to hold simultaneously on all scales.

The assumption in Theorem 1.3 can be weakened by restricting (1.15) to collections
of cylinders of comparable dimensions, but then the conclusion is stated in terms of
the box dimension.

In models where spatially separated events are independent, Hypothesis H2 is
implied by Hypothesis H1, provided that the parametét) of equation (1.4) is
positive. A similar observation applies to models without strict independence but
with a correlation length of only microscopic size, such as the droplet percolation
model.

There is a considerable disparity between the upper and lower bounds derived
here for the dimensions of curves in the scaling limit. Part of the reason is that
our lower bounds are far from sharp. However, we also expect some of the systems
considered here (e.g., the percolation models) to exhibit simultaneously curves of
different dimensions.

The organization of the paper is as follows. In Section 2 we prepare for the dis-
cussion of random systems by clarifying some notions pertaining to single curves.
Introduced there is the concept tfrtuosity, which provides a measure of rough-
ness manifestly independent of parametrization. The associated tortuosity exponent
coincides with Richardson’s exponebt It is related here to the degree of Hélder
regularity achievable through reparametrization (Theorem 2.3). Moreover, under the
tempered crossingondition, the tortuosity exponent coincides with the curve’s up-
per box dimension (Theorem 2.5). In Section 3 we apply these relations to general
systems of random curves and prove the regularity result, Theorem 1.1. To tighten
the regularity estimate, we briefly discuss the concept ofbiekbone Section 4
deals with the construction of scaling limits and the proof of Theorem 1.2, based on
the afore-mentioned regularity properties. The proof of the roughness result is split
into two parts. In Section 5 we derive a deterministic statement (Theorem 5.1) that
presents a criterion for the roughness of a curve, based on the assumption that the
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straight runsof the curve arsparse The analysis exploits the relation of the dimen-
sion with capacity and involves suitable energy estimates. In Section 6 we apply this
result to random systems and prove Theorem 1.3 by establishing that Hypothesis H2
implies the sparsity of straight runs. The appendix includes examples of systems for
which the general theorems yield results of interest within the specific context.

2. Analysis of curves through tortuosity. In this section we introduce the space
of curves and the notion of tortuosity. The two basic results are Theorem 2.3, which
relates the tortuosity exponent with the optimal Hdlder continuity exponent, and
Theorem 2.5, which provides useful conditions under which the tortuosity exponent
agrees with the upper box dimension and thus is finite.

2.1. The space of curvesWe regard curves as equivalence classes of continuous
functions, modulo reparameterizations. More precisely, two continuous fungtjons
and f from the unit interval intdR“ describe the same curve if and only if there exist
two monotone continuous bijectiois : [0,1] — [0,1], i = 1,2, so thatfio¢1 =
f2o¢2.

Recall that the space of curves in a closed subsetR? is denoted here by, .

The distance between two curves is measured by

d(61,62) == inf sup] | f1(61(D)) — f2(d2(D)]. (2.1)

$1.42 ¢c[0,1

where f1 and f2 is any pair of continuous functions representiig and 6., and
where the infimum is over the set of all strictly monotone continuous functions from
the unit interval onto itself.

LemmMA 2.1 Equation (2.1) defines a metric on the space of curves.

Proof. Clearly, d¢1,62) is nonnegative, is symmetric, and satisfies the triangle
inequality; and ¢€,€) = 0. To prove strict positivity, assume(@y, 62) = 0 and
choose parametrizationg and f>. We need to show thaf; and f> describe the
same curve, that is61 = 62. We may chooségi and f> to be nonconstant on any
interval. Under these assumptions, there exist sequences of reparametrtﬂ?ﬁnds
#5 such that

sup |flo¢§o(¢g)‘1(z)—fz(z)| = SUp |fiodi(t) — froph(t)] — 0. (2.2)
t€[0,1] t€[0,1] i—00

Monotonicity and uniform boundedness imply (due to Helly’s theorem) that there
are subsequences (again denatédand ¢5) so thatg) o (¢])~! and their inverses

¢} o (¢5)~1 converge pointwise, at all but countably many points, to monotone
limiting functions ¢ and ¢, with fi = foo¢ and fo = f10¢. To see thai has

no discontinuities, note that jumps ¢fwould correspond to intervals whegeis
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constant. Bu cannot be constant on an interval, since by our choice of parametriza-
tion, f> is not constant on any interval. O

With this metric,¥, is complete, but, even for compast it is not compact. This
reflects the properties of the space of continuous functitie, 1], A).

2.2. Measures of curve roughnesket M (%, £) be the minimal number of seg-
ments needed for a partition of a curéanto segments of diameter no greater than
£. We call any bound o/ (%6, £) atortuosity boundIn particular, we are interested
in power bounds of the form

M(%,0) < K075, (2.3)

Optimization over the exponents yields the following dimension-like quantity.

Definition. For a given curvég,
(@) = inf {s > 01 £M(€,0) — o} (2.4)

is called thetortuosity exponent

There are a number of ways of dividing a curve into short segments that yield
comparable results. Of particular interest to us is the observation that the tortuosity
exponent can also be based @i, ¢), which we define as the maximal number of
points that can be placed on the curve so that successive points have distance at least
2. M(%, ) andM (¢, ¢) are comparable but have different continuity properties.

LEMMA 2.2 M (6, ¢) and M (6, ¢) are related by the inequalities

M(6,40) < M(€,0) <inf M(6.0~e). (2.5)

Furthermore M (%, £) is lower semicontinuous and (6, £) is upper semicontinuous
on the space of curves.

Proof. The first inequality holds because a segment of the curve of diameter at
least 4 certainly contains a point that has a distance of at le&sim both endpoints.
The second inequality holds because no segment of diameter les&¢harcontain
two points of distancé or more. The continuity properties follow easily from the
fact thatM was defined through minimization ad through maximization of cut
points. O

It follows from Lemma 2.2 that the tortuosity exponent coincides with Richardson’s
exponentD ([34]; see also [29]); this was called the “divider dimension” in [17],
where it was pointed out thdd can take arbitrarily large values.

From a different perspective, the curve’s regularity may be expressed through the
degree ofHolder continuityachievable through reparametrization. One attempts to
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describe the curve by means of a continuous functiea {y (t)}o<: <1, satisfying
ly(t) —y ()| < Kolt1—12|* forall0<n <t <1, (2.6)

with some exponen& > 0. Greater values of the exponent correspond to higher
degrees of regularity, and thus one is interested in

a () = sup|a | 6 admits a parametrization satisfying (2.6) with exponeht
(2.7)

The tortuosity exponent may remind one of thgper box dimensigwhich has a
similar definition. LetN (¢, £) be the minimal number of sets of diameteneeded
to cover the curve. Then

dimp (€) := inf {s >0 EN (€6 —> o]. (2.8)

The two definitions are different, since a single set of diamétaay contain a large
number of segments of the curve. The box dimension can be calculated using only
coverings with boxes taken from subdivisions of a fixed grid.

A trivial relation between the three parameters is

dimp(€) < 7(€) <a (@), (2.9)
which follows immediately from

o

K 1/a
N(€,0) < M(€.0) < {7—‘ , (2.10)

where[x] denotes the smallest integer at least as large as

2.3. Tortuosity and Holder continuitylt turns out that the tortuosity exponent and
the optimal Holder exponent are directly related.

THEOREM 2.3 For any curve¢ in $pa,
7(6) = (@)L (2.11)

More explicitly, uniform continuity is equivalent to a uniform upper tortuosity
bound, as expressed in the following lemma.

LEMMA 2.4 If a curve® in R? admits a parametrization al/ ()}o<r<1 SO that
for all 71, t2 in the unit interval

Y (ly (1) —y (t2)]) < |li1—t2l, (2.12)

whereyr : (0, 1] — (0, 1] is a nondecreasing function, then for &lk 1,

M(6,0) < [ (2.13)

o
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Conversely, if
1
M€, ¢) < — (2.14)
V(0

for all £ < 1, then¢ can be parametrized &3 (¢)}o with a function satisfying

V(ly(t) —y)]) <l —ta, (2.15)
forall 0 <1 <1 <1, with
- w(/2)
O AL L.
2(logy(4/0))
Proof. The tortuosity bound in equation (2.13) follows from the uniform conti-
nuity condition in (2.12) with the definition oM (6, £), by partitioning the curve
into segments corresponding to time intervals of lengtld). To prove the reverse
implication, we need to construct a parametrization satisfying the uniform continu-
ity condition in (2.15), given that (2.14) holds for© ¢ < 1. Choose an auxiliary
parametrization of the curv@ = {y(s)} that is not constant on any interval. We
associate with each curve segm@gpt= y ([0, s]) thetime of travel
_ L+ DY ()M (s, )
Y+ D T2Y )M (6, L)
with ¢, = 27", Clearly,t is a strictly increasing continuous function o&nd hence
defines a reparametrization ‘6f The denominator satisfies

DD TP U)M@, L) <Y (n+D) <2 (2.18)

(2.16)

(2.17)

te(s) :

by assumption (2.14). Consider two pointés1) andy (s2) (with s1 < s2) that are
at leastAq apart, and letAt be the corresponding time difference. For largave
observe that

by < Ag = M (G, £,) — M (65, £,) > 1. (2.19)

It follows that

NI D CRE IR B L T (2.20)
nil,<Ag 2(|092(4/AQ))
as claimed in equation (2.15). O

2.4. Tortuosity and box dimensiorin view of Theorem 2.3 it is important for us
to have conditions implying finiteness of the tortuosity exponent. It is also of interest
to have efficient estimates of the exponent’s value. Both goals are accomplished here
through a criterion for the equality af(6) with the upper box dimension dig{¢),
which is relatively easier to estimate (and never exc@@dSome criterion is needed,
since in general the tortuosity exponent may exceed the upper box dimension and
may even be infinite (see [17]).
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Definition. (i) We say that a curvé& in R? exhibits ak-fold crossing of power
¢, at the scale < 1 if it traversesk times some spherical shdll(x; 71+, r) (in the
notation of equation (1.2)).

(ii) A curve has theempered crossing properif/for every 0 < € < 1, there are
k(e) < oo and O< r,(¢) < 1 such that on scales smaller thaiie), the curve has no
k(¢e)-fold crossing of powee.

Note that the condition places restrictions on crossings at arbitrarily small scales;
however, it is less restrictive at smaller scales since it rules out only crossings of
spherical shells with increasingly large aspect ratio.

THEOREM 2.5, If a curve®€ has the tempered crossing property, then
7(@) = dimp €. (2.21)

In particular, ¢ admits Holder continuous parametrizations with every exposent
(dimp (€))L,

Proof. SinceM (%, ¢) < N(%,¢), it is always true that (€) > dimg ¢ (equation
(2.9)). To establish the opposite inequality, we first prove that if a cirfes no
k-fold crossings of powes at the scale, then

M(€,2¢) < kN (€, £1*). (2.22)

To prove (2.22) we recursively partition the curve into segments of diameter at
most Z. The segments are defined by a sequence of pejrasong the curve. We
start withx1 = y (0). After x1, ..., x, are determined, the next point.; is taken as
the site of the first exit, after,, of y from the ball of radiug aboutx,; if y does not
leave this ball, we terminate.

The number of stopping points produced by this algorithm is clearly an upper
bound forM (6, 2¢). To estimate this number, let us consider a coverirt§ bf balls
of diameter¢1*¢. Since there are nb-fold crossings of powes at the scale, no
such ball contains more thanof the stopping sites, and hence we have (2.22).

By the definition of the upper box dimension, for eack dimg % the number
N (%, ¢) of elements in a minimal covering satisfies

N(@,0) <K t™* (2.23)
for some constank; that depends on the curve. Therefore, for anydimp (6)
M(6,20) < kK e+ (2.24)

with some K (%) < co. Our assumptions imply that the exponent + &) can be

made arbitrarily close to digf€, and therefore (6) < dimg €. This concludes the

proof of (2.21). The assertion about the Holder regularity follows from Theorem 2.3.
O
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Remark. The proof of Theorem 2.5 shows that the tortuosity exponent can be
bounded by the box dimension under the weaker assumption that for some integer
ande > 0, the curve has nk-fold crossings of powes below some scale,. In this
case, inequality (2.24) implies the bound

dims € < 7(€) < (1+¢)dimz €. (2.25)

3. Regularity for curves in random systems. We now extend the discussion
from a single curve to systems of random curves, in the terminology presented in the
introduction. Our first goal is to prove Theorem 1.1. Following that, we discuss the
concept of the backbone and thus improve the bounds on the dimension of curves.

3.1. Proof of the main regularity resultAn essential step towards establishing
regularity of random curves consists of showing that under Hypothesig-ftild
crossings of spherical shells are rare in a sense that provides a probabilistic version of
the tempered crossing condition. For this purpose, let us define the random variables

o some shellD(x; r1te r), x € A, is traversed.
Fe.kss (@) = nf {O <r=1 ‘ by k distinct segments of curves #s(w) |’ (3.1)

if no such crossing occurs, we sgl.; = 1.

Lemma 3.1 Let & be a system of random curves with variable short-distance
cutoff in a compact regiom ¢ R?. Lete > 0, and assume that condition (1.3) of
Hypothesis H1 holds for sonte< co and A (k) large enough so that

el(k)—d > 0. (3.2)
Then the random variable ; (») is stochastically bounded away from zero, with
Proly (e k.5 (@) < u) < Const (e, k)u*® 4. (3.3)

Proof. We need to estimate the probability that there i&-#old crossing of
power ¢ at some scale < u. Any such crossing gives rise to a crossing in a
smaller spherical shell with discretized coordinai@ét ; 3r,}+8, rn/2) with r, =277,

x € (2r}re//d)z¢ (whereZ¢ is the integer lattice ifR?), andn chosen so that
rn < r < ry+1. Using Hypothesis H1 and adding the probabilities over the possible
placements of the discretized shells, we find

Proby <%(a)) exhibits a(k, &) crossing) - ( NZ] )d K, <3r,}+e>k<k> ”

at some scale € (ry,, ry+1] orlte Tu/2
< Const rS*0-A+e)d,

where the constant depends onlyign.(k), and the dimension. This bound decays
exponentially inz. Its sum over scales, (§ < r, < u) yields the claim. O
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Proof of Theorem 1.1.First let us note that the statement to be proven can be
reformulated as follows:

Let & be a system of random curves in a compact regioa R¢, with variable
short-distance cutof§ > 0, and assume that Hypothesis H1 is satisfied. Then for
anye > 0 there is a random variabl&,.s (), which stays stochastically bounded as
3 — 0, with which the following tortuosity bound applies simultaneously to all the
curves® € Fs(w):

M (6, £) < ke (o) (diam@) " D+el p=ld=2(D+e] (3.5)

In this formulation, the Hélder continuity estimate of equation (1.5) is replaced
by a tortuosity bound. The equivalence is based on Lemma 2.4, with the function
¥ (£) = Const£* for which the inverse function is the power law with= 1/«. The
logarithmic correction in equation (2.16) is absorbed through the “infinitesimal slack”
we have in the power law.

Now lete > 0. By Hypothesis H1, there exiskslarge enough so equation (3.2)
is satisfied. For such value &f we learn from Lemma 3.1 and Theorem 2.5 (more
specifically, (2.22)) that fof small enough (i.e < r; ¢ (w)),

M(6,20) < kN (€, €'). (3.6)
In the complementary range> r, x(w), we use that
M(6,20) < M(€,2r; (@) < kN (6, re k ()7). (3.7)
It follows that
M(€,20) < Ag :5()N (€, £479), (3.8)
where the random variable
¢ (1+e)d
Aa,k;é(w) = < ) (39)
ra,k(w)

remains stochastically bounded&s> 0 by Lemma 3.1.

We now introduce some useful random variables which permit us to extract from
equation (3.8) bounds valid simultaneously for all curées %;(w). Referring to the
standard grid partition oA\, let

- the number of cubeB of diameter? that meet
Ns(r, ¢; ) := . . : (3.10)
a curvet € F;s(w) with diameter diant6) > r.
Its expectation value is &s(r, £)). Summing over scales, > ¢,, > §, with r, =
£, =27", we define

5 Narn i) -2 2
Ua(a))._’;SnE(NB(rn,em))(n—i—l) (m+1)~2. (3.11)
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This random variable stays stochastically bounded as 0, by the Chebysheff
inequality and the observation that the mean is independent of

00 2
E(Us) < {Z niz} . (3.12)
n=1

For the mean value a¥s(r, ¢; @), we find

3 B meets acurve& € &
Es(Ns(rtiw))= ) Proy (with diam(€) > r )
BCA;diam(B)=¢ B

¢/2\*Y
< > K(r/—2> (3.13)

BCA;diam(B)=¢

K/|A| 1 d*)»(l)
< — - .
=0 (z)

We now return to equation (3.8). For curves with di@n> r, we use

N 2\\ 2 2\\ 2 N
N(€,€) < Ns(r, £; w) < <I092 (Z)) (I092 (;)) Us(@)E(Ns(r,0))  (3.14)

(the last inequality based on definition (3.11)). Combining equations (3.8), (3.13),
and (3.14), we learn that

M(6,20) < [(1+6)°K'|A| Ag;5 (@) Us(@)]

2 2
8 (logy2/€)°(logy2/r) ¢~ A+ld—A 1

Ry (3.15)

The product of stochastically bounded variables is stochastically bounded, and the
logarithm can be absorbed by adjustinddence equation (3.15) implies the claimed
equation (3.5). O

3.2. Tortuosity of random systems and the backbone dimendiorsummarize
some of the results in a compact form, it may be useful to extend the notions of
tortuosity and dimensions to systems of random curves with varying cutoff.

Definition. For a systen# of curves in a compact seét ¢ R<:
(i) the upper tortuosity exponeni(%) is the infimum ofs > 0 for which the
random variable

sup{M (6, 0)¢* | 6 € Fs(w), diam(6) > r} (3.16)

remains stochastically bounded,d&s> 0 at fixed O< r < 1;
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(ii) similarly, the upper box dimensiodim (%) is defined through the bounded-
ness of the variables given by

SUp{N (6, 0)¢* | 6 € Fs(w), diam€ > r} (3.17)

with s, r as above.

The analysis carried above implies that if Hypothesis H1 holds, then the upper
tortuosity exponent (%) is finite, and furthermore

T(F) = dimp(F) <d —1(1). (3.18)

The dimension estimate, equation (3.18), reflects the fact that each point on a curve
% € F is connected a macroscopic distance away. It might seem that most points
on a curve are in fact at the endpointstab line segments of macroscopic length.
This suggests an improved upper bound, in whichi (1) is replaced by the smaller
d —A(2). However, one has to proceed here with caution.

There are two reasons for whiah- A(2) may not provide a valid upper bound for
the dimension.

() The unionU¢cg, (w): diame, € Mmay be dominated by the collection of the
endpointsof curves in& which are onlysingly connected macroscopic distance
away. For instance, that would occur if the connected clusters to which the curves
of Fs(w) are restricted have many short branches. (One could call thisrtieeoli
effect)

(ii) Certain curvesé € & may be rougher at their ends, where only one segment
is accommodated in the available space, than in their interior. We expect this to be
the case for some examples of self-avoiding paths. When that happens, it is not true
that most of the curve, as counted by covering boxes, consists of its interior.

Nevertheless, the proposed bound is obviously valid for the union of the interior
parts of the curves. By an “interior part of the curve” we mean a collection of points
on ¢ whose distance to the endpoints is at least same0, which remains fixed
asé — 0. The proof is by a direct adaptation of the argument used in the proof of
Theorem 1.1, making the suitable correction in equation (3.13).

A situation like that has been addressed in the percolation context through the
concept of thébackboneThe term is used to distinguish betweespanning cluster
(i.e., a cluster that connects two opposite faces of a macroscopic-size cube and typi-
cally contains manglangling endsand the smaller set of bonds that carry a current
between the faces (see [38]).

A mathematically appealing formulation is possible in the continuum limit (at
8 = 0), for which we define the backbof&(w) of the system of curve% (w) as the
union of all interior segments of curvése F(w).

For the backbone, the Hausdorff and box dimensions need not coincide. Since the
statement is closely related to the considerations of this section, we present it here,
even though it anticipates the construction better described in the next section.
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THEOREM 3.2 In the scaling limit (defined in the next section)
dimyg B(w) <d—1(2) (a.s.) (3.19)
whereas
dimpg F(w) <dimpB(w) <d—Ar(1) (a.s.) (3.20)

The last inequality can be saturated.

Proof. Equation (3.19) follows from the continuity of the Hausdorff dimension
under countable unions and from the previous observation on the dimension of the
sets defined with fixed macroscopic cutoffs. Equation (3.20) holds, since the box
dimension of a set equals that of its closure, which#dw) is the union of all curves
in %. O

4. Compactness, tightness, and scaling limitsWe now turn to the construction
of scaling limits for a random system of curves. Such a system is described by
a collection of probability measurgs; on the space of configurations of curves
Qa, which was defined in the introduction. We will see that the tortuosity bound,
equation (3.5) derived in Theorem 1.1, allows one to conclude the existence of limits
for us.

The proof of Theorem 1.2 rests on the relation of the space of curves with the space
of continuous functiong” ([0, 1], A) and the well-developed theory of probability
measures on the space of closed subsets of a complete separable metric space. We
recall some of this theory below. The first step is the following counterpart to the
Arzela-Ascoli theorem.

LemMAa 4.1 (Compactness iff). A closed subsét c ¥, of the space of curves
in a compactA ¢ R? is compact if and only if there exists a functign: (0, 1] —
(0, 1] so that for all¢ € I,

M(€,0) < i forall0<¢ <1 4.1
v (6)

Proof. We first show that if a closed s& C ¥, consists of curves satisfying
uniform tortuosity bounds, thetf is compact. It suffices here to show that each
sequence of curves it has an accumulation point i#i,. The limit will be in
becausé! is closed.

By Lemma 2.4, we can parametrize each curve in the sequence by a continu-
ous function satisfying the corresponding continuity condition, equation (2.15). That
yields an equicontinuous family of functions @&([0, 1], A). Applying the Arzela-

Ascoli theorem, we deduce the existence of a uniformly convergent subsequence. It
is easy to see that the curves defined by these functions also converge, with respect
to the metric ortf.
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In the converse direction (which we do not use in this work), we need to show
that if 3% is compact, thenM (€, £) is uniformly bounded on it. That follows from
Lemma 2.2, which shows that () (¢, £) is bounded above by (¢, ¢/4); (i) since
M(%,¢) is upper semicontinuous by Lemma 2.2, it achieves its supremum on the
compact seff. O

Standard arguments, such as those used’{g®, 1], R?), show that the space of
curves¥paq is a complete and separable metric space. The completeness and separabil-
ity of ¥ra are passed on @, . For this space, we get the following characterization
of compactness.

LeEmMMa 4.2 (Compactness if24). A closed subset of Q, is compact if and only
if there exists somé¢ : (0, 1] — (0, 1] for which each configuratiof € A consists
exclusively of curves satisfying a bound of the form given in equation (4.1).

Proof. The claim follows from the basic property of the Hausdorff metric, under
which the closed subsets of a compact metric space form a compact spacel

The scaling limit we are interested in is taken in the space of probability measures
on Q, for compactA ¢ R?. Our discussion now makes use of a number of useful
general concepts and results, which we briefly list here. A thorough treatment can be
found in [9].

A family of probability measuregu,,} is said to bdight if there exists for every
a compact sef so thatu,(A) > 1—e.

The sequencg,, is said toconverge tqu if Iimn_moff du, = ff du for every
continuous functiory : 2 — R. If the distance function is uniformly bounded, as is
the case for measures &) with compactj, this convergence statement is equivalent
to the existence of a coupling as described in the introduction, below the statement
of Theorem 1.2.

A collection of measures is said to belatively compacif every sequence has
a convergent subsequence. Tightness and compactness are equivalent in this general
setting, as shown in the following theorem.

THEOREM (Prohorov [33]; see also [Q]) A family of probability measures on a
complete separable metric space is relatively compact if and only if it is tight.

Thus, to prove Theorem 1.2, we need to show that for eacl®, up to remainders
of probability < ¢, the measurefus} are supported on a common compact subset of
Q A, which may depend oa.

Proof of Theorem 1.2.By Theorem 1.1 and point (ii) of the remark following it,
for eachs > d, all curves in the random configuratiéf{w) drawn with the probability
measureus can be parametrized Hélder continuously with exponeand Holder
constant.s, as in equation (1.5). By Lemma 2.4, this implies that

M(6,¢) < Ke™* for all curves€ € Fs(w), (4.2)
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except for a collection of configurations whose total probability is less than or equal
toe. By Lemma 4.2, the set, (K, s) C Q2,4 of all configurations consisting only of
curves that satisfy equation (4.2) is compact. In other words, finite upper tortuosity of
% implies that upon truncation of small remainders, the measusese supported
in the compact sets of the formhy, (K, s). (Note thatKk < oo needs to be adjusted
depending ore and the choice of.) This proves that the familys is tight. By
Prohorov’'s theorem, that is equivalent to compactness.

To see that the limiting measure is supported on curves that can be parametrized
Holder continuously with any exponent less thal— A (1)), consider the collections
) of curves of diameter at least The above argument shows that the measure
restricted to this collection is almost supported4R(K (r), s) for anys > d —A(1)
andK (r) large enough. By Prohorov’s theorem, the limiting measure is supported on
Uk-0AA(K,s), which proves the claim by Lemma 2.4. O

Let us remark that the notion of convergence we use here (technically it is called
weak convergenoan the space of measuresQn) is quite strong, due to our choice
of topology on2 . As equation (1.13) makes clear, fotarge typical configurations
of &;, are close to typical configurations of the scaling limit—close in the sense
of the Hausdorff metric induced on the space of configurati@psby the uniform
metric in the space of curve$,. This sense of convergence is stronger than that
defined through the joint probability distributions of finite collections of macroscopic
crossing events. In this respect, the notion of convergence used here is reminiscent
of the sense in which Brownian motion is proven to approximate random walks in
Donsker’s theorem [16].

5. Lower bounds for the Hausdorff dimension of curves. Our next goal and the
third theme of this work is to prove the statement of Theorem 1.3—that in a system
satisfying Hypothesis H2, almost surely none of the curves that appear in the scaling
limit are of Hausdorff dimension lower than somgi, > 1.

The proof is split into two parts. The first part, carried out in this section, con-
sists of measure-theoretic analysis based on the assumption that a certain auxiliary
deterministic condition is satisfied for a given curve. In the next section the proof is
completed with a probabilistic argument showing that in a system of random curves
satisfying Hypothesis H2, the auxiliary condition is met almost surely.

5.1. Straight runs. Standard examples of curves of dimension greater than 1 are
curves whose segments deviate from straight lines proportionally on all scales. How-
ever, for random systems (and other setups) that criterion is too restrictive, since
one may expect exceptions to any rule to occur on many scales. The criterion that
we develop here is thgparsity of straight runswhich is an abbreviated expression
for the absence of sequences of nested straight runs occurring over an excessively
dense collection of scales. The concept is defined with a macroscopidssale a
shrinkage factop > 1 used to specify a sequence of length scales
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L=y~ *L 5.1
k= V 0> ( . )
and an integek, used to allow exceptions above a certain scale.

Definition. A curve inR? is said to exhibit atraight runat scalel. (= L for some
k) if it traverses some cylinder of length and cross-sectional diameted/,/y )L
in the “length” direction, joining the centers of the corresponding faces. Two straight
runs arenestedif one of the defining cylinders contains the other.

We say that straight runs aKe, k,)-sparse down to the scalé, if ¢ does not
exhibit any nested collection of straight runs on a sequence of stgles--- > Ly
with Ly, > ¢ and

n?

1
n> > maxk,, k,}. (5.2)

The deterministic result follows, stated here only in the continutm ¢ = 0).
For systems of random curves, we make use of the more detailed information in the
proof (see (5.22)).

THeOREM 5.1 If the straight runs of a given curvé are (y, k,)-sparse, then
dimg € > s, with s given by

y'=ym(m+1), (5.3)
andm an integer strictly smaller thany.

Clearly, if for some integem the above condition is met for all > m, then the
bound becomes

In (l+ (1/m))
2Inm '

We prove Theorem 5.1 by cutting the given cuf¢énto a hierarchical family of
subsegments at different scales, with segments at the same scale separated by a certain
minimal distance. This family defines a Cantor-like (i.e., closed, perfect, and totally
disconnected) subsetof €. If ¢ contains no straight runs at all, a scaling argument
easily shows that the dimension @ and hence the dimension & exceeds 1.

We use capacity arguments to show that this holds also under the weaker condition
that straight runs are sparse. For the construction of the family of subsegments that
defines the fractal subs&, we modify the exit-point algorithm from the proof of
Theorem 2.5.

dimy € > 1+ (5.4)

5.2. Construction of fractal subsetd.et y > 1 be a positive numbet; an integer
in [y/2,y], andkmax @ positive integer. By an iterative procedure, we construct for
a given curveé a nested sequendg, ..., I't,,, Of collections of segments & at
scales

Lk:V_kLoa k=0,..., kmax (5.5)
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FIGURE 4. The algorithm used for marking the pointg in the construction of";

with L, = diam%, having the following properties:
(i) eachI; is a collection of segments of diameter at lebgt
(i) in each generation (as defined by distinct segments are at distances at least
eLy withe = (y/m)—1;
(iii) each segment of; (k > 1) is contained in one of the segmentdf 1, with
the number of immediatdescendantthus contained in a given element of
['x—1 at leastn and very frequently at least + 1.
To define6 let ¢, be the union of the segmentsIiy. Then% = Nik<kmax] k- IN the
construction, we find it convenient to use #ganof a curve, which we define to be
the distance between the curve’s endpoints, in place of the diameter.

LeEmMA 5.2 (Construction of¢). There is an algorithmic construction for each
curve that yields a sequence of collections of segments with properties (i)—(iii) and
with the further property that unless a segment I'; exhibits a straight run of scale
Ly, the number of its descendants is at least 1.

Proof. We may assume (by trimming) that the sparéafqualsL,. LetT", consist
of only one element: a segment that starts at one end of the curve and stops upon the
first exit from a ball of radius diaii®). Oncel'; has been constructed, we foiifp, 1
by selecting for each elemente I'; a collection of descendantis, ..., ny, which
are subsegments gf cut by two sequences of points andy;, strung along it in
the ordery; < x1 < y2 < x2 < ---. The cutting points are selected by the following
procedure (see Figure 4).

We let y; be the starting point andy be the first exit ofy from the ball of radius
Ly+1 = Ly /y centered ap1. Then, recursively, we choosg as the first point om
having distance at least, /m from the already constructed subsegments. ., n,_1,
and terminating if no such point can be found. The poipis selected as the last
entrance, prior ta;,, into the ball of radiud.;1 centered at,,.

It can be verified that the sequence of subsegmgpts = 1,..., N, with the
endpoints{x,, v, } has the following properties:
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(i) eachn, spans distanc€.1;
(ii) the distance of each point ap, to the union of the segments - -- 7,1 lies
betweereL; 1 andL;/m; while

(iii) the distance fromy, to the starting point is at most:Ly_1/m.

We need to estimate the number of segments generated by the above procedure. It
is easy to construct from the collection of segments a polygon with step size at most
Lix—1/m that connects the endpoints pf Choose the pointy as the vertex before
the last. For any given vertex i), (n > 1), select the preceding one from some
with i < n so that the resulting leg has length at mbgfm; if n = 1, terminate and
usey; as the initial point. Clearly, the polygon has at leasinterior vertices, and
hence the numbe¥ of subsegments is at least

Assume now thaty) does not exhibit a straight run at scdlg. We claim that
the numberN of descendants is at least+ 1 (see Figure 5). By construction,
at least one of the segmenis has a distance of less thdn /m from the lateral
boundary of the cylinder of width Q/y defining a straight run from to y. If that
segment contributes a vertex to the polygon, then this vertex must lie outside the
cylinder of width(9/,/y —4/m)Ly > (2/5/m)Li. Then the polygon has length at
leasty/1+4/mL; > (1+1/m) Ly, and hence contains at least- 1 interior vertices,
coming from distinct subsegments. On the other hand, if some subsegment does not
contribute a vertex to the polygon, we also haVe- m. This completes the proof of
the lemma. O

One may think of the elements of. ' as vertices of a graded tree, with the root in
I',, and edges joining each segment to its immediate descendants. For any two points
x,y € ¢ that are not in the same elementIgf ..

lx—y| > ELk(x,y)’ (56)

wherek(x, y) is the index of the first generation at which the two points are separated.
The next section contains two general results that we use to estimate the dimension
of €.

5.3. Energy estimatesFor a metric spacel and? > 0O, let Coy(A) denote the
collection of coverings ot by sets of diameter not smaller thanBy the definition
of the Hausdorff dimension, a lower bound on gdim means that for some> 0 the
guantity

> (diamB;)’ (5.7)

inf
{Bj}eCov(A)

does not tend to zeras¢ — 0 (in which case dim A > s). It is difficult to use this
definition directly to find lower bounds on the Hausdorff dimension. We therefore
make use of the relation of Hausdorff measures with capacities and deduce a lower
bound on dimension from an upper bound on émergyof a judiciously chosen
probability measurecharge distributiop supported on the set.
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FiGUure 5. The subdivision of an element bf, into I'x1-1. Unless there is a straight

run in a cylinder positioned as indicated, the number of elements increases at a
higher rate than the factor by which the radius shrinKs Under Hypothesis H2,
straight runs are sparse in a sense that permits us to derive a lower bound on the
Hausdorff dimension based on this picture.

Lemma 5.3 Fors > 0and¢ > 0, let the capacityCap.,A of a subset oR‘ be

defined by
1 inf // _p(dx) n(dy) (5.8)
Cap A =0 du=1) Jaxa max(|x—yl. €}

Then, for every collection of se{8;} coveringA, with min; diam(B;) > ¢,

> (diamB;)’ > Cap,A. (5.9)

J

(The casel = 0 can be found in Falconer [19]. The statement is related to the
theorem of Erds and Gillis [18] that the-dimensional Hausdorff measure afis
infinite whenever Cap, is positive.)

Proof. By monotonicity, it clearly suffices to prove equation (5.9) for any covering
by disjoint sets. Let{B;} be such a collection, and lgt be a probability measure
supported om. Then

// _p(dx) p(dy) Z// wu(dx) p(dy)
Axa Maxjx —yl, €5 ~ +.yes; max{diamB;, £}’
2
w(B;)
S N 5.10
; (diamB;)’ (5.10)
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We also have

>ou()| = Z(“L’) > (diams,)’ (5.12)

diamB;)

(by the Schwarz inequality). Combining the last two relations, we learn that

" (diamB;) (// pdx) p(dy) )21 (5.12)
Axa MaX{|x —yl, £}

for any probability measure supported of1 and any covering ofA by sets with
diameters> ¢. Minimizing over i, one obtains the relation claimed in (5.9). O

j

LEMMA 5.4 LetA be a compact subset Bf. Assume there is a sequerieg . . .,
Timex OF (NONEmpty) collections of closed disjoint subset®&éfsuch that for each
k=1,..., kmax(< 00):

(i) each element df} is contained in some elementif_1, and each element
of I'r,_1 contains at least one such “descendant”;

(i) any two distinct sets i, are a distance at leastL; apart, whereL; =

y %, L, with someL, >0,y > 1,and0< ¢ <y

(iif) for each elemeny C T'y: nNA # 0.

For pointsx € Uyer, 7, letni(x) be the number of immediate descendants of the set
containingx within I';_;. Assume, furthermore,

(iv) there is somg > 1 such that

k

[[ni@) =85 forallk=ko..... kmax (5.13)
j=1

with some commok,, whenever € Uycr, 7.
Then fors > 0 such thaty® < g and for¢ = y ~*max:

-1
K sko 'B
Cag;EA > (eL,) |:)/ +mi| . (514)
Remark. It should be appreciated thaandkmax do not appear on the right-hand
side of (5.14). If straight runs are sparse on all scales (thatnis, = 00), then the
limit ¢ — 0 of (5.9) yields a bound on thedimensional Hausdorff measure 4f

Proof. For a bound on the capacity, it suffices to produce a single probability
measure supported ofiwith a correspondingly small “energy integral” (see (5.8)).
We construct the measuge so that for eachy € 'y the total measure oA Ny
is distributed evenly among its immediate descendants. This means that for each
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k=0,..., kmaxand eachy € I'y,

k
() =[Tnim™ (5.15)

where (forj < k), and the numbet; (1) is the constant value thaj (x) takes forx e
n. To specify the measure uniquely, we designate as its sSupRRA(n) | 7 € Tkl
where for eachy € Ty, the pointxmin(n) is the earliest point im with respect to
the lexicographic order dR.

If two pointsx, y € A are in separate elementsof, ., We letk(x, y) denote the
index of the level at which they separated. In estimating the energy integral we use
the bound

|X—Y| ZSLk(x,y) (516)

for points separated ifig,,,. Otherwise, we use m@ — y|, £} > £. Thus
p(dx) u(dy)
€)= f / PR
Axamax|x —y|, €}s
< eLk(r,y) 1 (dx) u(dy)
//k(x y)<kmax( ( y)) (517)

kmax// p(dx) p(dy).

”Er/\max
Splitting the first integral on the right according to the valueof, y) (separating
out the casé(x, y) < k,) and replacing.; by y ~*L, throughout, we obtain

kmax
() < (eLo) "y o+ Y (L) Y™ Y P+ Ly Y ).
k=k,+1 nelk_1 1€ kmax

(5.18)

Sincee < y, the last term on the right-hand side of (5.18) can be replaced there by
adding the ternt = kmax+1 to the preceding sum. Finally, we use assumption (5.13)
together with the definition of the measure in (5.15) and

> =1 (5.19)
nely
to see that
> = ]"[n,(n) Y um =gt (5.20)
nelk nely

This yields a geometric series bound for the sum aveér (5.18), which results in
the bound stated in (5.14). O
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Proof of Theorem 5.1.Let 6 be a curve where straight runs are, k,) sparse
down to scaleZ = y ~*max[,,. The hierarchical construction of Lemma 5.2 results in
a fractal subse® of 6. Since straight runs are sparse by assumptiosatisfies the
branching condition (5.13) of Lemma 5.4, with the valuggalefined by the relation

B=+vm@m+1). (5.21)

Thus, Lemma 5.4 implies that for anysuch thaty® < g,

-1
3 ko ﬂ .
CaR;ﬂ% > (¢L,)’ |:VS +m:| ; (5.22)
this inequality holds for alt e (y ~*max 1]. By Lemma 5.3, the same lower bound
holds for inf{B_,—}eCov[(%) ZJ- (diamB;)*. Since we may choosknmax as large as we

please, the-Hausdorff measure & is positive, and hence, the Hausdorff dimension
is at least. O

6. Lower bounds on curve dimensions in random systemsWe now combine
the previous deterministic results with a probabilistic estimate and prove Theorem 1.3.
The proof consists of showing that with high probability straight runs are sparse, and
then applying the results of the previous section.

LeMMA 6.1 (Sparsity of straight runs)Assume that a system of random curves in
a compact seh € R? satisfies the Hypothesis H2. For> 44, define a sequence of
length scaled.;, = y*. Then there are constan#,, K1 < oo, K» > 0, with which
for any fixed sequenda <k < --- < ky,

there is a nested sequence 2k (K1—K2/7)n
Proby (of straight runs at scaleby, , .. ., Lkn> < Kay=e . (6.1)

provided thaty %» > §.

Proof. If a curve traverses a cylinder of lengthand width(9/(,/¥) L, then it also
traverses a cylinder of widttil0/,/y)L and lengthL /2 centered at a line segment
joining discretized points iiL’Z¢, provided that.’ < L/y. The number of possible
positions of such a cylinder in a set of diametés bounded above bg¢/L")%. The
number of positions of nested cylinders at scalés,, ..., L, is thus bounded by

2dky | 2d (ko—k) . 2d(ky—

Kay®ty y kn-1) < K 5y 2kn, (6.2)

Fix now a sequencd;, i =1, ...,n of nested cylinders of lengthy, /2 and width
(10//¥) Ly, Let o be the aspect ratio for which Hypothesis H2 holds with some
p < 1. Cut each of the cylinders intg’y /(100) shorter cylinders of aspect ratig
and pick a maximal number of well-separated cylinders from this collection. Since
A;11 intersects at most two of the shorter cylinders obtained by subdividing
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the number of cylinders in a maximal collection is at lea§{/y/(200) — 2). The
probability of a curve traversing all of th&; is bounded above by the probability of
crossing the shorter cylinders. Applying Hypothesis H2 gives

..., Al are crosse (Ko—K3/¥)n_
Proly (by a curve inFs(w) = Kye (6.3)

Summing over the possible positions and adjusting the constants completes the proof.
O

Proof of Theorem 1.3.We first show that for each system of random curves in a
compact set\ ¢ R¢ satisfying Hypothesis H2, there exiat < oo andg < 1 such
that for everyy > m

. k
Prok (stralght runs arey, k@—spars? >1- q (6.4)

in A, down to scalé
in other words, the random variable given by
ko:s(w) =inf {k > 0| straight runs aréy, k,)-sparse down to scabd (6.5)
is stochastically bounded ds— 0. To see this, note that for specified
there exist a nested sequence k
Prob( )

k
of straight runs on scales < ( )Klmdee_KZﬁ"
ki<--<k,=kwithk>n=>k/2 n=k/2 n (6.6)
< Kl(zm)deef(Kz\/I%)k/z.
Choosingn large enough so that
qg= m2d o= (Kav/m/2) _ 1 (6.7)

and summing the geometric series okewe obtain equation (6.4).
As in the proof of Theorem 5.1, we use Lemmas 5.2 and 5.4 to conclude from
equation (6.5) that all curves in a given configuration satisfy the bound

-1
@) | ko @) P
Cap.; 6 > (ediam®) [yé 3@ l—ﬁlyx:| , (6.8)
with m andy as aboveg = /m(m + 1), ands small enough so that®* < 8. Choosing
y sufficiently close ton we may takes > 1, which proves the claim. O

APPENDIX: MODELS WITH RANDOM CURVES

In order to provide some context for the discussion of systems of random curves,
we present here a number of guiding examples. Familiarity with this material is not
necessary for reading the work; however, it does offer a better perspective both on the
motivation and on the choice of criteria employed here. We start with some systems
exhibiting the percolation transition.
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A.1. Percolation models Among the simplest examples to present (for a re-
view, see [39] and [21]) is the independent bond percolation model on the cubic
d-dimensional lattice, which we scale dowrs#, § <« 1. Bondsare pairsh = {x, y}
of neighboring lattice sites. Associated with them are independent and identically dis-
tributed random variables, (w) with values in{0, 1}. The one-parameter family of
probability measures is parametrized by

p = Proln, =1). (A1)

For a given realization, the bonds with(w) = 1 are referred to asccupied The lat-
tice decomposes into clusters of connected sites, with two sites regarded as connected
if there is a path of occupied bonds linking them.

For an intuitive grasp of the terminology, one may think of the example in which the
occupied bonds represent electrical conductors (ofssizel) embedded randomly in
an insulating medium. If a macroscopic piece of material with such characteristics is
placed between two conducting plates maintained at different potentials, the resulting
current is restricted to the macroscopic-scale clusters connecting the two plates (the
“spanning clusters”).

The model exhibits a phase transition. Its simplest manifestation is that the proba-
bility of there being arinfinite clusterchanges from zero fg < p. to 1 for p > p..
The transition is also noticeable in finite volumes of macroscopic sizg: foip. the
probability of observing @panning clustein [0, 1]¢ is vanishingly small, whereas
for p > p. this probability is extremely close to 1. In both cases the probabilities of
the unlikely events decay as eip const/§), whens — 0 at fixedp(# p.).

The generally believed picture in dimensions 2 < 6 is that forp in the vicinity
of the critical point (p — p.| = 0(8¥")), macroscopic clusters do occur but are
tenuous. Much of this is proven in two dimensions (see [35], [37], [23]), though gaps
in the proof remain fo > 2 (see [11], [1]). Typical configurations exhibit many
choke pointswhere the change of the occupation status of a single bond forces a
large-scale shift in the available connecting routes (see [35]) and possibly even breaks
a connected cluster into two large components, as indicated in Figure 1. The clusters
are “fractal” in the sense that they exhibit fluctuating structure on many scales (see
[29)]). This is the situation addressed in this work.

For a given configuration of the model, we {&}(w) stand for the collection of all
the self-avoiding paths along the occupied bonds (possibly restricted to a specified
subsetA ¢ R?). This random configuration of paths provides an explicit way of
keeping track of the possible connecting routes within a given bond configuration.

One of the goals of this work was to establish that the description of the model in
terms of a system of random curves (see [2]) remains meaningful even in the scaling
limit (§ — 0). It may be noted that the alternate (and more common) description of the
random configuration in terms of the collectionazinnected clusteris problematic
in that limit. Clusters are naturally viewed as elements of the space of closed subsets
of R?, with the distance provided by the Hausdorff metric. As long &s0, the two
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formulations of the model—as a system of random clusters or a system of random
curves—are equivalent. However, the ubiquity of choke points renders the random
cluster description insufficient for the scaling limit. (The Hausdorff metric is not
sensitive enough to pick up small differences, such as flips of individual bonds, which
may have a drastic effect on the available routes.)

It is expected that in the scaling limit the configurations of the connected paths in
the critical bond percolation model are hard to distinguish from those arising from a
number of other systems of different microscopic structure—for example, percolation
models where the conducting objects are randomly occupied sites of the édifice
(viewed as a subset &) or droplets of radiug randomly distributed irR¢. The
definition of %5 (w) for such models may require minor adjustments, one in the notion
of self-avoidance and the other in the selection of the polygonal approximation. For
the droplet model both are taken care of by restricting the attention to the polygonal
paths joining centers of intersecting droplets tthamnot re-enteany of the droplets.

We form the sets(w) as the collection of all such paths.

In two dimensions, our Hypotheses H1 and H2 are satisfied by the independent
bond, site, and droplet percolation models. khe 1 case of the bounds (1.3) with
A(1) > 0 and (1.15) are particular implications of the Russo-Seymour-Welsh theory
(see [35], [37], and [5]). The statemehtk) — oo follows by the van den Berg—
Kesten inequality [40], which implies that for independent systems the probability of
multiple crossings is dominated by the corresponding product of the probabilities of
single events. (More detailed analysis implies th@t) actually grows quadratically
in k; see [1], [36], and [13].) The conditions in Hypothesis H1 and H2 are expected
to hold also for other dimensionrk< 6, but not ford > 6 (see [1]).

Thus, our general results imply the following statement, which was outlined in [2].

THEOREM A.1l. In two dimensions, in each of the above-mentioned percolation
models, based on random bonds, random sites, or random droplets, at the critical
point all the nonrepeating paths supported on the connected clusters within the com-
pact region[0, 1]2 can be simultaneously parametrized by functipii®, 0 < ¢ < 1,
satisfying the Hoélder continuity condition given by equation (1.5). The continuity
constant,. s (w), which apply simultaneously to all curves[i 1), remain stochas-
tically bounded a$ — 0. (This holds for any > 0 as explained in Theorem 1.1).

Furthermore, for each of these critical models, the probability distribution of the
random collection of curve&;(w) has a limit (in the sense of Theorem 1.2), at least
for some sequence 6§ — 0. The limiting measure is supported on collections of
curves whose Hausdorff dimensions satisfy

dmin < dimg (€) <d—A(2), (A.2)
with some nonrandominin, > 1.

In fact, by similar reasoning we can also deduce the existence of a one-parameter
family of such limits, corresponding to valuespthat deviate fronp, by an amount
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scaled down to zero ais— 0 (in essensey(8; 1) = p.+181/7).

The apparent universality of critical behavior leads one to expect that the scal-
ing limits constructed here are common to the models listed above. If so, then the
limiting measures have the full rotation and reflection symmetf’ofand in two di-
mensions exhibit alsself-duality. Remarkably, there is evidence for an even higher
symmetry—conformal invariance (see [26], [14], [2], [8]) at the special ppiat p.,
thatis,r = O for the one-parameter family alluded to above. The mathematical deriva-
tion of such universality of the scaling limits and of the conformal invariance at the
critical point form outstanding open problems.

A.2. Random spanning treesl he regularity criteria presented here can also be
verified for a number of random spanning tree models in two dimensions (see [3]).
Each is a translation-invariant process describing a tree graph spanning a set of sites
in R? with neighboring sites spaced distances of oilet 1 apart.

Minimal spanning tree (MST)The underlying graph is the regular latti6&¢
R<, with edges connecting nearest neighbors. Associated with the édgés, y}
is a collection of independent randarall numberg(or edge lengthsu(b), with the
uniform probability distribution irf0, 1]. For a bounded region ¢ R?, the minimal
spanning tred's. 5 (w) is the tree spanning the s&iNsZ¢ minimizing thetotal edge
length(i.e., the sum of the call numbers).

Euclidean (minimal) spanning tree (ESTlhe vertices of the graph are generated
as a random collection of points, with the Poisson distribution of deAsityon A.

s A is the covering tree graph which minimizes the total (Euclidean) edge length.

Uniformly random spanning tree (USTPhe spanning treEs.  is drawn uniformly
at random from the set of trees spanning the verticea insZ¢ using the nearest
neighbor edges.

In each of the above cases, there is a well-defined limit

Cs(w) = lim T A (w), (A.3)
AR

wherex is increased through a sequence that exhdRét§The restrictions of s 4 to
compact subsetd c R¢ are monotone decreasing inonceA > A.) The limiting
spanning tree is independent of the sequence of volumes and is translational-invariant
in the stochastic sense.

In general, the limif"s(w) may be either a single tree or a collection of trees. For
two dimensions it is known that each of MST, EST, and UST almost surely consists
of a single tree with a single topological end, that is, a single route to infinity (see
[32], [22], [7], [4], [15], [5]). The structure of UST changes from a tree to a forest in
dimensionsd > 4 (see [32]), while MST and EST are expected to change similarly
for d > 8 (see [30] and [31]). (The transition may appear differently from the scaling
limit perspective; see [3].)

For eachn-tuple of pointsxy, ..., x, € R?, let Tx(l”) x, () be the tree subgraph of

.....
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I's(w) with vertices corresponding to the closessites inI's(w). Our methods can
be applied to the following question, analogous to Q1 in the introduction:

Q3. Is there a limiting distribution for these graphs &s> 0?

To control the limit forTx(f,)m,x” (w), one needs information on the curves supported

on I's(w). This collection of curves forms the s@1§2>(w> to which the analysis of
this work may be applied.

Random spanning trees provide striking examples of the phenomenon we encoun-
tered in critical percolation—that the formulation of the model in terms of random
clusters is inadequate for the description of the scaling limit. Here the Hausdorff dis-
tance between any two different realizations (as subseR’diis 8, and hence the
space of configurations seems to collapse to a single point. That can be resolved by
looking at the curves, as is done here. Let us add that the more complete description
of the spanning trees requires the consideration of all the embedded finite trees and
that defines the objecks(w) for those systems. However, their study can be based
on the analysis of the curves that provide the tree branches.

In contrast with independent percolation, spatially separated events are not inde-
pendent for stochastic trees. Moreovei,) = 0, since any two vertices are connected
with probability one. Nevertheless, Hypotheses H1 and H2 are valid (wi&h> 0)
for the three spanning tree processed iz 2 dimensions (see [3]). Instrumental in
the derivation are the relations of MST and EST with invasion percolation (studied in
[15]), and of UST with the loop-erased random walk via Yison algorithm[41].

The latter relation permits us also to draw nontrivial conclusions about the scaling
limit of the loop-erased random walk ih= 2 dimensions.

A.3. The frontier of Brownian motionYet another example of a random curve
is provided by thefrontier of the two-dimensionaBrownian motion({b(¢) | ¢ €
[0, 1], b(0) = 0}) (abbreviated here as FBM). The frontier of a sample path is defined
as the boundary of the unbounded connected component of the complement of the
path inR2.

For FBM, % (w) consists of a single curve. Its dimension has been considered in the
literature: it is conjectured that dim (FBM) 4/3 (almost surely) (see [20] and [29])
and the best rigorous bounds ar@15 < dim (FBM) < 1.475 (see [27] and [12]).

Our general results apply to this example. We do not derive here Hypotheses H1 and
H2. Let us note, however, that H2 is easy to establish by making use of the observation
that the event depicted in Figure 3 requires that the Brownian path should hit each
of the boxes but not traverse it in the width direction. Thus, the mechanism behind
our lower bound is similar in spirit to the earlier work of Bishop et al. [10], in its
reliance on the fact that Brownian paths move erratically. The resulting upper bound,
while not as tight an estimate of the dimension as that of Burdzy and Lawler [12],
is expressed as a bound on the tortuosity, and hence it can be used to establish that
FBM is parametrizable as a Holder continuous curve.
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A.4. The trail of three-dimensional Brownian motioffhe trail of Brownian mo-
tion is the set of all sites visited by the Brownian path for times 0< oco. In the
transient case] > 2, the trail almost surely forms a closed random set of Hausdorff
dimension 2. Can it support curves of dimension arbitrarily close to 1? In a recent
work of Lawler [28], this question was answered negatively for the interesting case
d = 3, through analysis involving a number of results concerning the Brownian mo-
tion intersection exponent. Let us note that a negative answer can also be deduced
from the general Theorem 1.3, since Hypothesis H2 is rather easy to establish (for
d > 2) within the setup relevant for this problem.

A.5. Contour lines of random functionsAs the last example of a system of random
lines, let us mention contour lines of a random function. Kondev and Henley [25] have
considered the distribution of the level sets of a family of random functions defined
on a lattice,ps(w) : §Z% — R. They present an interesting conjecture concerning
the scale invariance for the distribution of the loops bounding the connected regions
with ¢ (x) > ¢(0). It would be of interest to see an extension of our analysis to such
systems.
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