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Abstract: We construct in this work a Markov process which describes a clustering
mechanism through which equivalence classel ane progressively lumped together.
This clustering process gives a new description of Ruelle’s continuous probability cas-
cades. It also enables to introduce an abstract cavity method, which mimicks certain
features of the cavity method developed by physicists in the context of the Sherrington
Kirkpatrick model.

0. Introduction

We construct in this article a continuous time Markov procdsg).[>o, with state space

the setE’ of equivalence relations di. We call it the “clustering process”; it describes
an evolution in whichg-equivalence classes are “lumped together” to form at a later
time u the collection ofl",,-equivalence classes. The trace of the clustering process on
the setF; of equivalence relations of an arbitrary finite subseff N, is a pure jump
process with generator:

(L' HI) = arr f(I) = (N = DF(T), for T € By, 0.1)
r,

wherear 1+ is 0 unlesd™ is obtained by collapsing > 2 of the N distinct equivalence
classes of" into a single class, in which casg = 1/ [(N — 1)(1,:{:22)} . The precise
mechanism of clustering is described in Sect. 1 below.

This process is instrumental for the abstract cavity method we develop in this work.
It offers a concrete representation of the “continuous probability cascades” constructed
by Ruelle in [10]. It also provides an example of a coalescent Markov process, in the
spirit of Kingman [1, 2]. For further developments around the clustering process, see
also Pitman [9].
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Let us briefly recall what the “probability cascades” are.£ar (0, 1), we denote by
P, the law of the Poisson point process on4®), with intensityzn~*~1dn. If M,, stands
for the set of simple pure point Radon measures on«( the lawP, is concentrated
on:

M ={m e M,;m((0,1]) = oo, and |m| < o0}, where (02)

ml= [ ndm 03)
(0,00)
Eachm € M can uniquely be written in the form

m = Z dn.m), Where n,(m), ¢ > 0, is a strictly decreasing
>0 (0.4)
sequence which tends to 0 atends tocc.
The probability cascades come as follows. For any finite sequence:
O<oy <" <ag <1 (0.5)

one considers a collection of random variabl;@%__yik), i1,...,9 > 0,k € [1, K],
such that the sequences

(7751,.‘.,@,_1,;')"7 >0), fork € [1, K], i1,...,ix_1 > 0, are independent

0.6
and respectively distributed ag;(m));>o underP,, . 06)
Then the random weights
7T7./17~~--,7;K :T]’}l"'n{f,...,i}(7 (07)
are a.s. summable:
C= Y g <oo, as, (0.8)
i1y..50 5 >0
and one can recursively define the
(Tivs Tiryigs s Tinysyine insonyine >0, ViA (0.9)

ﬁil,n-,iK = T, iK/Cv and ﬁil .... ie_1 — Z ﬁil,m,’ik—l,j s for k € [1,K]
Jj=>0
(0.10)

Ruelle introduces in [8] “unordered families”, for which one only keeps track of the
“tree structure of the labels” in (0.8). He shows a consistency property of the resulting
distributions askK and the finite sequence; < --- < xx vary. The “continuous
probability cascades” are then constructed in [10] by means of an abstract projective
limit argument.

Itturns outthatthe clustering obtained by looking backwards from the last component
of (0.9), clumping together points which have common ancestor on Iévell, then
on level K — 2 etc., has a Markovian structure. In fact, it is the discrete skeleton of
a continuous time Markov process, which is a time change of the clustering process
essentially defined by (0.1). It is therefore possible to define the continuous cascades
directly from the clustering process. The precise connection with Ruelle’s cascades is
presented in Sect. 2, Theorem 2.2. Other links of the Ruelle’s cascades with continuous
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branching processes have also been discussed in Neveu [7]. The clustering process
enables to introduce the variables

7o =inf{u>0,(,¢) €Ty}, ¢,¢ >0, (0.11)

which represent the time at whi¢rand¢’ are “lumped together”.

For an initial distribution concentrated on the “trivial” equality relationnthe
variablesry . naturally define a random ultrametric distanceNyrsee (1.32) below. In
fact whent # ¢, 7, o are standard exponential variables.

A second goal of the present article is to develop an “abstract cavity method”,
which mimicks features of the cavity method for the Sherrington—Kirkpatrick model,
as presented in Chapter 5 oflgard—Parisi—Virasoro [6]. Quite a number of quantities,
which appear in the physicists’ prediction of the lafyebehavior of the SK model,
naturally arise in our context.

The basic ingredients for the abstract cavity method are:

ne(m)

a sequence of normalized random weights ET ¢ >0, (0.12)
wherem is P, -distributed for a giverx ), € (0, 1),

an independent standard clustering prodess (0.13)

a collectiony(z), « € [0, ], ¢ > 0, of stochastic processes (0.14)

which conditional on the normalized weights and the clustering process are centered
Gaussian with covariance:

cov(y (), 5" (@) = q(w A2’ A Xop), m,2" €[0,20], 6,0 >0, (0.15)
whereq(:) : [0, za;] — [0, qas] is an increasing’*-diffeomorphism, and
Xop =xppe” 00 0,0 >0, (0.16)

a functiony) : R — R in the clas<C}. (0.17)

In the language of Mzard—Parisi—Virasoro [6], the coefficiemtsmimick the Gibb-
sian weights in decreasing order of the “pure states”, whereas the clustering process
I"., with the help of the variableX, ,» induces an “ultrametric structure” on the “pure
states”, and thg*(z /), play the role of the “mean cavity field” inside the “pure state”
with weightv,, i.e. up to relabelling thé vy variables of [6], p. 67.

In the Mézard—Parisi—Virasoro picture, the addition of a new spin variabiduces
a changery’(z /) of the Hamiltonian in “pure state’. Summing on this spin variable,
the added energy i8(y*(x2r)), wherey(z) = log cosh(z), 3 being the inverse tem-
perature. Of crucial importance for the cavity method is the effect of this energy change
on the Gibbsian weights of the countably many pure states. This effect can be described
in an abstract setup, where for technical reasons, we assumgithlounded. Reshuf-
fling occurs as one multiplies the individual weighisby a factore?® @), thereby
changing the relative rank of importance of the weights. One thus introduces a random
permutation ofN, o(-), with inverseo(-), such that fo¥ > 0:

(= 5(0) is the rank ofiu, = vy exp{v(y*(xar))}, among

, (0.18)
the collectiony = vy exp{v(y® (zar))}, ¢ > 0.
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The reshuffling operation is the replacemen(()fg), (Xe,0r), (y‘f(-))> by

«“%(g?)@@o»wmmm@@z&

//[/ -~ ~
B 2Oy oy () = e
g > b XM' Xo@®.o@y Y () =y 0) (0.19)
L

In other words, the relative importance of the weights is changed, but the initial ultra-

metric structure and marking procesgég are carried along the reshuffling operation.
Our main result Theorem 4.2 describes the effect of reshuffling. It shows that the

joint law of the normalized weights and of the ultrametric structure is left invariant by

this operation. On the other hand, the conditional law om}g() ¢ > 0, still preserves

the tree structure, but is not Gaussian anymore. For instance, the conditional law of a
componeny(-), can be represented as that of a time changed proggssz € [0, 2],
wherez,, solves the SDE:

dzq = qu +z(q) m(q, Zq) dg, 0<q <qum,

0.20
0 =0, (0.20)

with z(-) the inverse of the functiog(-), B. a Brownian motion aneh(q, y) = 9, f(q, ),
for f(q,y) the uniqueOlf’2 solution of

0,0+ 020+ ™D 0,17 =0 on @aw) xR flaw) =00, (021)

Expressions like (0.20), (0.21) can for instance be found in [6], p. 45 or in Parisi [8],
see [6], p. 163, as part of the prediction of the lafgdehavior of the SK model. The
boundedness assumption©f) in (0.17), though technically convenient, excludes the
natural choice)(-) = log(cosh-)), with 5 > 0the inverse temperature, in the context of
the SK model. In the case of a non-constant, symmetric fungtjeve can further define

n “abstract iteration” procedure, which ¢0) associates a neyt(.), see Theorem
5.4. The fixed point equatiafi’)(-) = ¢(-) corresponds to the so-called “selfconsistency
equation”, for the SK model, see [6] (111.63), p. 45.

Let us now describe how the article is organized: In Sect. 1, we construct the clus-
tering process and derive some of its properties. Section 2 develops the connection
between the clustering process and Ruelle’s probability cascades. In Sect. 3, we prepare
the ground for Sect. 4 and investigate an approximate reshuffling operation. Section 4
contains the main result Theorem 2.2 of the abstract cavity method, which describes the
effect of reshuffling. In Sect. 5, we give some applications of the abstract cavity method,
to calculations on “single and double replicas”. This enables for a non-degenerate sym-
metric functiony(-) the definition of an iteration mechanism for the functigr), see
Theorem 5.4.

This work grew out of our efforts to decipher and unravel the probabilistic structure
underlying the prediction of the larg€ behavior of the SK model at low temperature,
as presented in the book ofédard—Parisi—Virasoro [6]. We wish to thank M. Aizenman
for helpful discussions in this matter, as well as J.F. Le Gall, J. Pitman, and D. Ruelle
for all their comments.
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1. The Clustering Process

In this section we shall construct the clustering process. It is a continuous time Markov
process with state space

E ={I ¢ N x N; T defines an equivalence relation Ni. (1.2)

The setF is endowed with the canonicatfield £ generated by all events of the form:
{T" € E;(a,b) € T'},fora,b € N. Remark thaE' can be viewed as a closed and therefore
compact subset d0, 1}, the latter being equipped with the product topology. When
1 is a non-empty subset &, it is convenient to consider the sif and thes-field &7,
which are defined analogously #6 and &£, with N replaced byl. The process we
shall introduce describes a “clustering mechanism”. Its trajectdrjes > 0, are non-
decreasingr-valued functions, (for the inclusion relation @?).

We keep the notations introduced in the Introduction. Thelggiof simple pure
point measures on (Bo) is endowed with its canonical-field M, generated by the
applicationsn € M,, — m(A4) € NU{oo} for A € B((0, 00)). The measurable subsets
M in (0.2), and

My ={m e M; |m| =1}, (1.2)
are endowed with the respective tracdéields M and M.

Forz € (0, 1), we shall denote b¥, the image on\/; of the Poisson lawP, under

the normalization map:

N DM — M, N( 3 5W(m)) = dum. (13)
£>0

>0 m]

We now define for each non-empfyC N, andu > 0, a probability kernelr!
on E;. Whenu = 0, R{(T", dI™) is simply the Dirac mass dt € E;. On the other
hand wheru > 0, andl" € E;, RL(T", dI) is defined as follows. We consider the at
most denumerable collectia@h of '-equivalence classes dnThe spacé//; x NCr is
endowed with the canonicaltfield and the probability

Qu=Fa(dm) e @ (D m(m)onyc)), wherez=e",  (14)

cecr  £>0

andyc, C € Cr, are the canonical coordinates Bi4r. In other words, conditional
tom = Y ,u00n.m) € M, the variableg)c, C € Cr, are independent - ¢ 0;-
distributed.™ B

We now “lump togetherT-equivalenceg’, which possess the same maik, and
obtain a random equivalence relatiBhon I. Formally, for (n, (yc, C € Cr)) € My x
NCr, the collection of subsets:

c=J c =0 (1.5)
yo=t

defines a partition of, which uniquely determines an equivalence relaliéro T, on
I, with equivalence classes the non-em@ty ¢ > 0. We then define

RI(T, dI’) = the law of theE-valued variabld™, underQ,.. (1.6)

WhenJ C I are non-empty subsets Bf we denote by; ; the measurable restriction
map fromE; to E;:

rr,y(0) =T NS xJ). 1.7)
When! = N, we simply writer ; in place ofr; ;.
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Proposition 1.1.
RI w > 0, is a Feller semigroup ot . (1.8)

For J C I non-empty subsets Bf v > O, " € E, one has the compatibility relation
RJ(rr.(),-) isthe image oRL(T, ) underr; ;. (2.9)
WhenCy, ..., Cy, arek > 2 distinctI'-equivalence classes dn

RI(T,{Cy,...,C}, areinthe samé&’-clasg) =

(k—1l—e(k—-—2—e")...1—e%) (1.10)
] , foru>0.

Proof. The compatibility relation (1.9) is a direct consequence of the definitiaR/of
andR;. Let us now prove thak!, u > 0, are Feller semigroups. Observe tidt, for
u > 0, preserves the space of continuous functiongZpnindeed, in view of Stone—
Weierstrass’ theorem it suffices to prove the continuity of the map

I € By — RI(I", A) €[0,1], for u >0, (1.112)

when A has the form .
A=({I" € Er; (a;,b;) € T'}, (1.12)

1

with a;,b; € I,fori =1 ... n.Forsuch am, we can apply (1.9) witl/ = {a;, b;,i =
1,...,n} C I.We are therefore reduced to the case of a finité sghere the continuity
of the map in (1.11) is obvious. As a consequence of (1.10),Avitl2, which is proven
below, R tends to the identity whehis finite andu tends to 0. By a similar argument
as above, it follows that for arbitraryand f continuous onEr, R. f tends uniformly
to f asu tends to O.

We now come to the proof of the semigroup property. For notational simplicity,
we assumd = N, although this plays no role in the proof. Givéne FE, u,v > 0,
we can construct the lai,, R, (T, -) on E, as follows. We consider on some auxiliary
space 2, A, P), (m1, (yc,C € Cr)) independent ofrt,, (Z¢, ¢ > 0)) such thatn, is
P,,-distributed withz; = e~*, conditionally onm,, the variableg, C € Cr, are i.i.d.
S0 2m) 5, distributed;ms is P,,-distributed withz, = e~*, conditionally onms,

[ma|

the variablesZ,, ¢ > 0, are i.i.d.Y",, ., 2472 5, -distributed.

[ma|

We can define variablg., for C € Cr, via:

Yo = Zye- (1.13)
The formula:
cp= |J ¢, for >0 (1.14)
CGCriy/C:E’

defines a partition of, which naturally determines an equivalence relafidnwhich
is preciselyR,, R, (T, -)-distributed.

We shall now construct a suitable random permutatiohN such that the variables
7(y;,), underP have the same joint distribution as the variahjesunder@, in (1.4),
with 2 = e~®*)_ This will complete the proof of the semigroup property. Condition-
ally onma, my, Zy,£ > 0, the variableg,, C € Cr, are independent with common
distribution:
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Plyg = 0'|my, ma, (Ze)e0] = Z n/ Z e, (1.15)
0:Z =t £>0

where we write for simplicityn,(m1) = n} andne (m2) = 2. Taking a closer look at
the numerator of the fraction in (1.15), we observe that conditionakgn

Y YZi=l}o,, 020, (1.16)
>0

are independent Poisson point processes onof0with respective intensities
(Z /Y p>om2) z1n~"*~tdn. Using scaling (i.e. (A.7) with a constant functigh we
see that conditional omo:

mt & Sz, =0} Sgays ¢ =0, with (117)
>0 ¢
’L
Co=(n2 /Y nt)"™, (1.18)
k>0

are i.i.d.IP,, -distributed. Coming back to (1.15p-a.s.
Plye = t'ma, ma, (Ze)exol = Ceflm”/(z Cklmk|)
k
= ()% ||/ (32 ) k), ¢ >0
k>0

From (A.2), we know tha} - 6( ,

2/
i.i.d. independent from the) )71, ¢ > 0, andE[|m" |***2] < oo, by (A.3), it follows
from (A.7) that

. isP,,,,-distributed. Since the.’’, ¢ > 0, are

)o1

def .= L
=N d 4 is P, .,-distributed 1.20
" <ez>o (n?) ™1 |mf’|) ’ (1.20)
The formula
r(¢) =5, onthe set{n;(m3) = (F)7 Im" |/ Y @) m*l}: (121)
k>0

P-a.s. defines a(ma1, mo, Z¢, ¢ > 0)-measurable permutation Bf We can thus con-
sider the variables
o =7(yp), for C e Cr. (1.22)
Considering (1.15), (1.19), we see that conditionatqQnm,, Z,, ¢ > 0,theyqs,C € Cr,
are i.i.d. with common distribution:
Plyc = jIm1,m2, Ze, £ > 0] = nj(ma), j > 0.

This conditional distribution only depends ors. Thus conditional omnz, 3¢, C € Cr,
are i.i.d.,zj20 n;(ms) d;-distributed. Since the CO||eCti0Uc€cr§C:j C,j >0,
defines up to relabelling the same partitioMNofas (1.14), andhs is P, ..,-distributed,
we have proved thdt” is R+, (T, -)-distributed.

Let us finally prove (1.10). The left member of (1.10) equﬁf’s[zézo ny (A4
ﬁ (k—1-—12)...(1 — x), with z = ¢~*. This concludes the proof of Proposition
1.1. O
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The canonical space for the “clustering process” will be
T : the set of non-decreasing right continuduivalued,l'y,, u > 0. (2.23)

Observe thatf; is finite when[ is finite. Thus the right continuous non-decreasing
functionr ("), u > 0, is a step function, which only takes finitely many values.

We endowT" with the canonicab-field 7 generated by the canonical-valued
coordinates, and with the filtration:

Ty =0(,0< v <w), u>0. (1.24)

Theorem 1.2 (The Clustering Process)There is a unique collection of probabilities
Pron(T,7),T € E, suchtha(T, 7, (I'y)u>o0, (Zu)u>0, Pr) is @ Markov process with
semigroupR,,, u > 0.

Proof. Uniqueness is obvious, we shall thus only explain the construction aPthe
probabilities. As shown in Proposition 1.RZ, u > 0, is a strongly continuous semi-
group on the finite state spaék, when! # ) is finite. Thus for a givelr € F, with the

help of the compatibility relation (1.9), we can construct on some auxiliary probability
space asequent¥, v > 0, of right continuoug?;, -valued processes whép = [0, n],

such that:

I, u >0, is a Markov process with semigrodf~,« > 0, andr'y = ry, (I),
(1.25)
T1,.1,(T) =Ty, for m>n, u>0. (1.26)

We simply defind™;” = J,,~, ', foru > 0. Itis straightforward using (1.9) to see that
>« > 0, is a Markov process with semigrouy,. MoreoverlI'™™ is a (I, C) valued
random variable, and we defid& to beitslaw. O

As already mentioned in (0.11), it is convenient to introducd ahe variables:
o0 =inf{u>0,(,¢)eT,}, £, >0. (1.27)
It is immediate to check that fdf, ¢/, ¢”:
Tee =0, To.00 =T 4, Toor < MaAX{T0 00, Tr g7} (1.28)

The variablesy ,» are Pr-a.s. finite for an\i” € E, since either{, ¢') € T, in which
caser, ¢ = 0, Pr-a.s. or from (1.10)

Pr(roy >u)=e ™ u>0, when ¢,¢)¢T, (1.29)

i.e. 7 ¢ is a standard exponential variable. Observe alsolthat > 0, is a measurable
function of the variablesy 4, ¢, ¢’ > 0, since

. = {(, ) e N x N, Tee > U} (1.30)
WhenT is the equality relation ol, we shall simply writeP in place of P-. Note that
P-a.s.tp e, ¢, ¢ > 0, defines an ultrametric distance Nin (1.32)

We shall now close this section with a description of the pure jump process associated
to the semigroup®’, v > 0, for finite I. Although not explicitly needed for the sequel,
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this will provide further insights in the structure of the clustering process. We denote by
L' the generator of the semigrod], u > 0, so that forf a function onE:

L'f(r)= > atp f(I'), T €Ep (1.32)
I'ekE;

Proposition 1.3 ( finite). LetN > 1denote the number of distinct equivalence classes

of '€ Er. If N = 1all af [, = 0 (trivially), if N > 2, af , = OunlessI" is obtained

by lumping togethek > 2 distinct classes df', in which case:
I 1

ar = 7(]\7 — l)(lz\cszz) ) (1.33)

or I =T, in which case:
af-rm=1—N. (1.34)

Proof. One can compute the intensity of the second moments of the point proBesses
by the same technique as in Proposition 2.1 of [10], see also [6] p. 55, and see that

EF= |3 nfnd ] = o(w), asu — 0, witha = .
o

As aresultal. ., vanishes unlesE’ is obtained by lumping together one subcollection
of Cr. From (1.10), we deduce that whénc E; andCy,...,C) arek > 2 distinct
equivalence classes bf

1

I/I(:I-{C‘l,...,c‘;C are lumped togethea(r) = k_1 (1~35)
It follows from an “inclusion exclusion” argument that:
N—k 1 N —k
Ll(l{cl,...,ck. form an equivalence cla}sa(r) = Z ﬁ (_1)p ( )
p=0 B P P

1 N—k

/O ; (N;k) (—1) 527 = /01 521 — N —Fqy

(k- DIV — k+1) _
) FV) = o

I

This proves (1.33). As for (1.34), it follows immediately from the identh;S{r, =
- Zr/?/r a{',r" O

The pure jump process attachedp, « > 0, when/ is finite, is now easy to describe.
It has a finite number of jumptimes: @ n < M+ < - <7 +---+7), < o0.
If the initial conditionT” has N > 2 classes, them, is exponentially distributed with
expectation Iy — 1)1, At time 11, the process jumps to an equivalence reIaﬁ@rh)y
collapsingz; classes of", where the distribution af; is

N 1 2<k<N. (1.36)

P[xl:k]:m m, > h >
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Conditionally on{z1 = k}, I, is chosen uniformly among tl(é,j) possibilities. After

that,r, is chosen witl"; as the new starting element, etc. After a finite number of jumps,
the final state with one class is reached. It should also be remarked that the integer valued
process which counts the number of equivalence relations is Markovian as well, with
downwards jumps and transition kernel essentially described by (1.36).

There is in fact a simple explicit expression for the semigr&jp which we now
provide.

Proposition 1.4 ({ finite). If I" has N > 2 classes, and" is obtained by respective
clumpings ofny, mo, ..., my; > 1, classes of’, with Zj mj = N, then

RI(,T) = =1t e (b= f[ . (1) (1.37)
A ()] L1 m '
whereg; (u) = 1, and form > 2,
gmnw)=(m—-1—eY(m—-2—e")...(1—e"). (1.38)
Proof. Itis convenientto set = e =%, u > 0, andf,(s) = s%, for s > 0. If f{™ denotes

them™ derivative of f with respect tos then the right- hand side of (1.37) equals

(—1)N -k % % H Fma@) € R, ). (1.39)

This will be helpful in order to check the backward equation

iR’-L’RI

> 0. 1.40
d u ( )

Sinceﬁ{, is obviously the identity matrix, our claim (1.37) will follow. Observe that for
m > 1:

f(m)(l) ( z(10g s) fo(5))s=1

=xZ< 1y ()6 - v s

Using the identity: £(1) = £ (1) +¢ fO(1), we get

D py=y" -1y ( )(y CNAI) + o — ) F D)

g=t (1.41)

= N — "—1; (m—j+1)(1) _ (m)
2 T S @)

after regrouEing, and the above sum oyeas 0 if m = 1. We use this expression to
differentiateR’ (I", ") with respect ta:. We find:
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9 R, 1) = (N + DRI, )

Ju
A e D DD D
im;>2 £=2

5] 1 i+ .
(mi—gl W-1 = Flmi=t() 1;[ Fomi(1)
Y

= (—N + 1) EQIL(F, F) + Z i an,e (Trgt) (—1)N_k_£+1

im>2  0=2

o S IT £

J7
= Z al{~71—~// Ri(r”, F/),

/7. <I" <I”

(1.42)
where we have used the notation , = [(V — 1)(?:2?)]*1. This finishes the proof
of (1.37). O

2. Clustering Process and Ruelle’s Probability Cascades

We shall present in this section the precise connection between the clustering process
constructed in the previous section and Ruelle’s cascades as defined in [8]. We consider
a sequence

O<mi<ap<---<zg <1 K>1 aswellas (a)
= :L‘7K = xl = ‘CC*K =
uy = log (371) > up =log (x2> > > ug = log (mx) 0. (2.2)

The main object of this section is to give an alternative description of the laonE X
of (m, Ty, Tuge_ys - - -, Twy) UnderP,, x P. We first introduce some notations.

We denote byZ;., for k > 1, the seiN* of multi-indicesi = (i1, . . . , i},) of lengthk.
As a convention we also defiflg = {(0}. If i € Zy,i’ € Iy, withk, kK’ > 0,7.7/, denotes
the concatenation afandi’. Furthermore, whek < k’, 7 < i’ means that’ extends,
whereas{]; stands for the truncation to ordkrof i’. We now introduce an auxiliary
probability spaceg, S, @), endowed with a family of (0>o)-valued random variables,
nki € I, 1 < k < K, satisfying (0.6). Foi € 7, 1 < k < K, it is convenient to
introduce the generalization of (0.7):

™ =0, g, -0, (Where of coursed], = ). (2.3)

The following lemma is actually part of the results proved in Sect. 3 of Ruelle [6].
Nevertheless its simple proof is included for the reader’s convenience.

Lemma 2.1.
w= Y b, isQ-as.M-valued and (2.4)

€Tk

w = N(w) is P, -distributed (see (1.3) for the notation) (2.5)
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Proof. We use induction ork. When K = 1, (2.4), (2.5) are immediate. Consider
K > 1. Conditional om?t, 2, ... n%~1,

> 6, pic» forie Iy, (2.6)

Jj=0

are independent Poisson point processes amofQ with respective intensities
7Kz ok ~Ldp. It also follows from (A.2) that the collection of variables

0=, i€ T, ke[ K - 1), 2.7)

satisfy (0.6) relative to the sequence:

~ T ~ {i) ~ TK-1
O<T1=—<2p=—"— < -~ <ITg_1= . (28)
TK TK TK

Defining 7; analogously to (2.3) in terms of thgvariables, the induction hypothesis
implies that
CEY a <o, Q-as. (2.9)

ITk-1

Coming back to (2.6), we see that conditionalign. . ., n* 1, the variablew is dis-
tributed as a Poisson point process omf) with intensityC x i n~*% ~1 dn. Using the
scaling relation (A.7) (wheg is constant), we see that

5= . . (2.10)
Ik

is P, . -distributed and independent¥, . .., n =1, It now follows thatw is Q-a.s.M-
valued andV(w) = N'(@) is P, -distributed. This concludes the proof of the induction
step. O

With the help of Lemma 2.1, we introduce on a set of fgdprobability a measurable
bijectioni(:) : N — Tg, such that;

mie) = ne(w), forl > 0. (2.11)

In other wordsr;(¢) has rank among the collection;, i € Zx. Furthermore, we consider
a decreasing sequencei@fvalued variables:

Fk = {(5,5/) eN; [Z(f)]k = [Z(f/)]k}, SO thatfl D) Fz DI FK. (212)
The connection between the clustering process and Ruelle’s cascades comes in the
following
Theorem 2.2.

(WN(m), Tyy,-..,y,) has the same distribution under

o _ (2.13)
P, x Pas(w,T'k,..., 1) underQ.

TK



Ruelle’s Probability Cascades and Abstract Cavity Method 259

Proof. With the help of (2.5) and the fact thBt,,, andT x both almost surely coincide
with the equality relation ob, we see that{/(m), I',,.) and (v, T k') have the same law.

In view of the Markov property asserted in Theorem 1.2, the claim (2.13) will follow
when we show that

R, —u,.)(Tr+1, -) is @ version of the conditional

. _ — (2.14)
law of I',. given (0, 'k, ..., [e), forr € [1, K — 1].
The argument used in the proof of Lemma 2.1 shows that
c ¥ d it <oo, Q-as, (2.15)
Z,
and conditional te;, ... 7",
wi= Y 0 -x ., foried, (2.16)
V€T prii! > i

L+l
[

are independent Poisson point processes oroj@vith respective intensitie§ — 7
zr+11 "1 dn. If we now define the point procegson (0, 0o) x Z,.:

= ) 2.17
H Z (© T my [i7],) @17)

V€L 41
we see that conditionally ont, ..., 7"

1 1s a Poisson point process with intensity

a1 ot 2.18
T O @Y o é;, and (2.18)
I,
- > 6 1 isindependentofy’,...,n", P, ,—distributed (2.19)
C Pr+l oy

V€L

Analogously to (2.11), we introduceza.s. defined measurable bijectigm (1) : N —
Z,+1, such that:

niW) = C mam ), for j>0. (2.20)

We further introduce variableg’, k € [1, K — 7], i € T:
m; =n;W), for jeN=1I, (2.21)
Tvr i) = Moo Gy 107 k€ 2K =11, (r, i) €T (222)

Thevariableg?, ..., 7%~ ", areindependentaf, . ..,n", 1, and coming backto (2.17),
conditionally o, ....n", 7%, ..., 75",
theZ,-valued variablesif..+1(j)], j > 0, are i.i.d.,
. i (2.23)
with common law ).
2. o
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It is plain that the variables satisfy (0.6) relative to the sequence:
T1=Tp1 < - <TK_p =TK.

Defining7;, fori € Zy, k € [1, K —r], in analogy with (2.3), we can introduce&aa.s.
defined measurable bijection N — Zx _,., such that:

o= Y bx)=C (), for £20. (2.24)
IK*’V‘
We now find that-a.s., fork € [r + 1, K]:
Ty = {(6,0) € N x N; [i(O1s—r = [i(¢ )1} (2.25)
whereas fok = r,
T, = {(t.¢') € N x N; [ia([i(D]0)]r = [irsa (i ()10 }- (2.26)
In other words thé",.-equivalence classes are the
cr = U C5*t, for i €Z,, where
liral]=i (2.27)

Crt={leN; [i(O)L =4}, for j >0,

are the variousl,.1-equivalence classes. Observe that (2.25) expressed the
k € [r+1,K], interms of theg" ", k € [r + 1, K], and thatw = N(>_;,  07,).
Furthermore, it follows from (A.2) and (2.9) (whet = r), that

e ) is Pep  -distri ith X = p—(wr—um)) _
/\/’(IZ 8o ) is P=:_-distributed (W|th e 1) (2.28)

Tr+1

If we now recall (2.27) and (2.23), it is now routine to deduce (2.14). This concludes
our proof of (2.13). O

As an application of Theorem 2.2, we can consider the process of “mass coagulation”,
Ty, u > 0, defined oV x T', as the random pure point measure o{0):

My = > 05 iy (2.29)
C'.I',-equivalence classes rcc
UnderP, ® P, for z € (0, 1), its law is in fact concentrated av; as follows from the

Corollary 2.3. B _
UnderP, ® P, m, isP,.-.-distributed (2.30)

Proof. We chooseK’ = 2,21 = ze™™ < x2 = z. From Theorem 22N (m),To,Ty)
has same law undér, ® P as (o, ', I'1) under@. It follows that the law ofm,, is the

same as that of
m=N (Z o5 n(zjﬁjl)). (2.31)

j=0  j/>0
As a consequence of (A.7),; 6,1 is P,,-distributed, if
J
1
¢ = Z n(zj,j/)/EP’[|m|“] o,
J'=0

where EF=[|m|*] < oo, by (A.3). Coming back to (2.32), we see thatis P,,-
distributed. This proves our claim. [
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_ With the help of Theorem 1.2, it is straightforward to see that « > O, under
P, ® P, with z € (0, 1), is a simple Markov process with semigroup:

Ry(m, ") = law of m,, unders,, ® P. (2.32)

3. Approximate Reshuffling

The main goal of this section is to prepare the ground for the next section, where we
shall derive the effect of the true reshuffling operation. We first need to introduce some
notations. We suppose we are givery € (0,1), gqi € (0,1], and a non-decreasing
functiong(-) such that:

q(-) is aC*-diffeomorphism between [@ ;] and [0, qas], ¢(z) = qur,

for x € [zar,1]. 31)

We derlotg b~yc(~): [0, ga] — [0, z /] the inverse ofy(-). We consider the probability
space &, B, Q), where N
Y =M x T x Co(R+, R)Y, (3.2)

B is the canonical product-field, and under the lawQ, the canonical coordinates
m, (Ty,u > 0), w'("), £ > 0, on X, are independent, respectivély,,, P, and V-
distributed, withi?” the Wiener measure ath(R+, R).

We also introduce the [Q:;,]-valued variables off’, (andf: as well):

X =xym eXp{—7ee}, €', 0 > 0, (see (1.27) for the notation)  (3.3)
In view of (1.30),I",,, u > 0, is a measurable function of t#& ./, ¢,¢' > 0, and
nggl > min(Xg,g//,Xgl/W), for é, El,éﬂ > 0. (34)

We then come to the construction of the conditionally Gaussian stochastic processes
announced in (0.14). We define by induction a sequéfide), = < [0, za], £ > 0, of
stochastic processes with:

Yoz) =w’qg(x)), =€[0,zy], andfor N >0,
YN+1(:E) = YL(x)a for z € [07XN+1,L]7

= wN*Y(g(z) — ¢(Xn+1,0)) +YE(Xn+1,1), for @ € [Xner, 2],
(3.5)
providedL € [0, N]is any integer such that:
XN+17L = max{XN+1,g; le [O7 N]} (36)

With the help of (3.4) and an induction argument, one readily checks that (3.5)—(3.6)
unambiguously definegV*1(.). In fact one has:

Yiz) =YY (x), for = €[0,Xp0], (3.7)

and unde@, conditional tom, T',, u > 0, theY*“(z), « € [0, ], £ > 0, are centered
Gaussian processes with covariance

E@[Y[(Jj) Ye,(xl) |ma Cyyu 2 0] = q(x/\m//\Xf,f')7 x?‘rl € [OaxM]a€7 v >0. (38)



262 E. Bolthausen, A.-S. Sznitman

We shall now introduce a sequencg(-), forn > 0, which approximates the processes
Y(-), asn tends to infinity through a discretization of,[0,;]. Forn > 0, k € [0, 2"],
we define:

Tk = m(zﬁn qM) (3.9

(see (3.1) for the notation), as well as far/, ¢/ > 0:

Z@' = Z Thkon l{ka <Xy < $k+1,n}7 with the conventiorcon g, = 1.
0<k<2n
(3.10)

The processe¥‘(-) are defined exactly as in (3.5)—(3.6), except that we replace
everywhere in the definitioX. . by X . Then in analogy to (3.8), conditional to
andl',, u > 0, theY’(z), = € [0, 2], £ > 0O, are centered Gaussian processes with
covariance

E@Kﬂﬂﬁﬂfﬂmfmuzm:q@AfAX&mxﬂﬁemwML620(3ﬂ)
It is plain that whem — oo:

Xiw T Xer, for £,0/ >0, (3.12)

Y(-) converges td *(-) uniformly on [0, z,,], for £ > 0. (3.13)

It is useful in view of the calculations on the effect of the approximate reshuffling
operation to give an alternate description of the joint lawi{X 7', )¢, >0, (V£ ()0,

for n fixed. To this end, we consider the situation of Sect. 2, Witk 2" andx, = xj »,

for k € [1, K]. We assume that on the auxiliary probability spafeq, Q), parallel

to the variables)®, i € Z, k € [1,2"], we also have mutually independent standard
Wiener processes; (+), i € Iy, k € [1,2"], which are also independent of thg
variables. Foi € Z;, k € [1,2"], « € [0, x ], we unambiguously define

V= Y (D) sty (a0 - B Do) e

2n 2"
1<k’ <ko

wherekg € [1, k] is such thatr € [xy,—1,n, Tk, n]- INthe case € Tk, (recall K stands
for 27), Y,(-) is thus a continuous process on4Q,]. We are now ready for

Lemma 3.1 @ > Oisfixed. (m, (X7, )ee>0, (Y,i()e=0) has the same law undep,
as(@, (X¢,0)e,0>0, (Yi(e))e>0) under@, withi(-) defined as in (2.11), and fdét ¢ > 0,

YM/ = sup{zk,n; k € [1, K] suchthat[i(0)], = [(¢)]x},

. (3.15)
and the conventioupf = 0.

Proof. We shall writez,, instead ofxy, ,,, for simplicity. It follows from (3.10) that
Q-a.s., fort, ¢’ > 0O:

X}'p =sup{xy, k €[1,K] suchthat (/') € Ty, },
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whereuy, is defined as in (2.2), and slp= 0, as in (3.15). Applying Theorem 2.2, we
thus see that:

(m, (X'4)e.0>0) has same law unde® as (7, (X¢.¢)¢,00) underQ.  (3.16)

Furthermore, conditional om{, (X},,)..:>0), the processes/(-) are centered Gaussian
processes with covariance as in (3.11). On the other hand, by inspection of (3.14), the
processe¥ ;(-), i € Zx, are independent of, (X, ¢)e.e>0,i(-)), centered Gaussian

with covariance

cov(Ys(2), Y (2)) = min(q(2), ¢(z"), sup{q(r); [ili = [i']}-

It follows that conditional ond, (X ,,¢)e,er>0, (")), the processe¥ ;i (-), £ > 0, are
centered Gaussian with covariance:

min(g(z), ¢(z'), ¢(X¢,e)) = e A2’ A Xopr), (3.17)

which is a measurable function ofX( ¢)¢ . >0. This proves that conditional on
(@, Xe.0')0.00>0), thEYi(g)(~), ¢ > 0, are centered Gaussian processes with covariance
as in (3.17). This concludes the proof of Lemma 3.1.

We shall now define the approximate reshuffling operation. To this end we consider
a function
¥(-) : R — R, bounded measurable (3.18)

The boundedness assumption is here for technical convenience, although it excludes the
natural choice)(x) = log(2 coshx)) in the context of [6]. For the time being, we keep

n > 0 fixed, and writer;, in place ofzy, ,. We introduce a sequence of functiaps,

k € [0,2"], via:

Y () =¢(), and

! (3.19)
Yrea() = - 10g Py [e](), 1<k <27,
k 2n
whereP;, t > 0, stands for the usual Brownian semigroup:
1 v —y)? o
Fihly) = - h hent>0
t h(y) / ot eXp{ % } (v')dy', when t > 0, (320

= h(y), fort =0,y € R, h bounded measurable

Functions closely related to thg, appear in I\Aazard-\ﬁrftsoro [4], p. 1299. We also
introduce a sequendéy, N > 0, of random variables oR:

Ho=exp{on o2+ > (o — o) (@)}, (321)

0<k<2n

and forN > 0,

Hyw = Hy exp{a:M PN M @n) = XFrg r YoV (X Rrae, 1))
+ ) (k- 2ke) ¢k(YnN+1($k))},

ko<k<2n
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whereL € [0, N]is such thatXy,; ;, = max{ Xy, ,, 0< ¢ < N}, andg(Xy., 1) =

ko
2n:

The approximate reshuffling operation comes as follows. On a set ofCfull
probability, the sequence
ve = ne(m) exp{v (Y, (@an)}, £ =0, (322)

has pairwise distinct terms, and is summable. We can thus introduce on a set of full
Q-probability a measurable permutatigp of N, with inverses,,, such that

¢ =5,(¢) is the rank of/, among thes,, ¢/ > 0. (3.23)
The approximate reshuffling corresponds to considering
my =N (Y 0 ), XL =X 5 YO = Y00, L7 =0, (324)
>0

in place ofm, X7',/, Yt(-), ¢, ¢ > 0, and the dependence orof the reshuffled objects

is omitted from the notation (3.24) for simplicity. Intuitively, one keeps the initial tree
structure and marking processes, but relabels according to the new relative importance
of the weights/,. The next result is crucial for the sequel:

Proposition 3.2. For N > 0, (my, (X)), (Yg)(-)) ) has same law unde® as

0<I<N
(m,(X™7), (YX(-))o<e<n) under the probabilityH v - Q.

Proof. We use Lemma 3.1, and recall tHatstands for 2. We introduce on a set of full
Q-probability a measurable bijectian: N — Z, such that:

TG exp{qﬁ(?T@(xM))} has rankl among the collection
T exp{y(Yi(ra))}, i € Ik.
It readily follows from Lemma 3.1 thatg, (X"), (YX(-))e>0, 7,) has same law under
Qas @, (X..), Yip())e>o, 7 1 oi) underQ, (where it should be observed that! o i

depends measurably ahand i) (zar))e>0)- As a result fu(,y, (X)), (Yg)(-))f[m)

(3.25)

has the same law undép as (5,,, (Y,(T_)), (?fr)(-))~ ) underQ, where

7>0
Oy = N(Z 5., exp{w(i(wm}) and for ¢, 7' > 0,
Ik
7";{7 = sup{y,; k € [1, K] such that £(O)]x = [7(0)]}, (3.26)

The key observation is that we can write fof Zg,
mi exp{v(Yi(zam))} = 77[1%‘]1 e n{f]K exp{vr (Yi(zar))} =

6’/10(0)7)[11_] 1/11(Z[L]1(QM)) o(0) ”,r][kz_]k Pr(Yi(zn— 1)+Z[1]k(qM)) PYr-1(Yi(zk 1)) (3.27)

Y i(z 1)tz (L)) — 2V i(ex—
77[Iz‘<]K eV YVilwx —1)+z (FE) v —1(Yilok 1))’
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and with the help of (A.7), and the definition (3.19), conditional todhalgebras:

G ot ¥, ie Ty, K < k), ke[1,K],

the collection of marked point processes onx) x Co(R+, R)

Z (S( X e{wk(?i(mk—lﬁzf/.j (%))*‘Pk—l(?i(mk—l))} k ())7 1 EIk—L (328)
520 T 5

are independent Poisson with respective intensities:

oyt dy @ il (d2), (3.29)
wherefit is the probability orCo(R+, R) defined by:
i

ﬁf(dz) - ewk{"/}k(?i(-"«'kfl)*'z( N=e—1(Yi(zr_1))} W(dz), (3.30)

whereW stands for the Wiener measure.

As a result of (3.28), we can find variablg, z¥, i € 7, k € [1, K], obtained by
successive relabellings of the variabtgs exp{v(Y(2x)) — Vi1V 01 (@r-1))}
2F(-), i € Iy, k € [1, K], such that:

n¥, i € I, k € [1, K], has same distributions &$, i € 7, k € [1, K], (3.31)
thez* variables are independent of thg variables (3.32)
conditional toGy, € @4, 2%, i € Ty, K < k), (3.33)

thez} (), i € Zy—1, j > 0, are independent, respectiv@ly-distributed, with
anm
L

ﬁf(dz) — ewk{wk(g(mk—l)"'z( ))*wk—l(i‘(xk—l))} W(dz)’ (334)

and theY;(-) are defined like th&;(-) in (3.14), with theZ variables in place of the

variables. Taking into account the fact thig(0) in (3.27) is constant, and plays no role
after normalization, we find that

ey =N (Z 6;_), (with obvious notations), and fof,Z’ >0:
Ik
X% = sup{y; ke [L K] [7O)x = FO)), (335)
=
Yy() = Y';(Z)(')7
where7(-) is the@-a.s. defined measurable bijection betwdeandZx, such that:

%;(5) has rank/ among the collectioft;, i € Tk . (3.36)
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As aresult, we see thab), (X(T)) Y(,)( )o<e<n) has same law undé} as @, (X .),

(Yi)(-))o<e<n) underH y Q, where

K
Ho = exp{ > wlve (Vi) — wkfl(yi(o)(xkfl))]}a and for N > 0,
1
Hywv=Hpy exp{ Z [V (Yiveny(or)) — wk—l(yi(Nﬂ)(xk—l))]}v
XN+, L<k<K
(3.37)
with L € [0, N] any number such thaX y.; . = Sup{YN+1,[7 0 < ¢ < N}. Thus with
the help of Lemma 3.1, and the identity in law above (3.26), Proposition 3.2 follows.
(Il

4. Reshuffling

The object of this section is to study the true reshuffling operation. The description of
the effect of this operation on the random weights, the clustering process, ayf@-}he
components will exhibit several quantities which arise in the prediction of the “limit
picture” for the Sherrington—Kirkpatrick model, se€&kard—Parisi—Virasoro [6], p. 45,
and [5]. In the light of these references, the operation of reshuffling, we introduce in
(4.4) and (4.24) below, can be seen as a kind of abstract cavity method. Supposedly in
the context of the Sherrington—Kirkpatrick model, the cavity method yields a description
of the disordered averaged SK-measuré\oand (V + 1) sites, wherV is large.

We keep the notations of Sect. 3, and assume from now on that

Y(-) belongs to CH(R). (4.1)
We define on £, B, Q) the sequence:
e = ne(m) exp{(Y(xar))}, £ > 0. (4.2)

By the same argumentasin (3.22), (3.23), we can introduce on a set@fﬁmdbability
a measurable permutatiof-) of N, with inverses(-) such that:

¢ = 5(¢) is the rank ofu, among the sequenge, ¢’ > 0. (4.3)

As in (3.24), we can then define the quantities:

) - YL (Y =y, 77
mm = (g b )s X=X G o YO =Y 00, LT 20, (44)

which describe the reshuffling operation. Our main objective is to find the law of the
random vector (4.4). To this end we introduce o 0, ¢ € [0, qus], ¥ € R:

In(q,y) =

k—1 k
|09{Pk P (O ER T [(D) WhenT g < g < on M
(4.5)

n

with the notations of (3.19).
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Lemma 4.1. Asn tends to infinity,f,, converges uniformly on compact set§diy ] x
R, to the unique solutiori(g, y) in C*([0, gas] x R) of

{%f+ 921+ 7D 0,17 =0 on @) xR @6
flanes y) = ¥(y).
Proof. It follows from (4.5) that on {2 qns, 2= qu] x R:

R N ! (4.7)

Differentiating twice in they variable, we find

Oy fr = Pl gyt €™m¥%) [ Py o (€7 ¥%), and (48)
833 fn+xk,n(ay fn)z = Pzin quq((az ¢k+mk n(ay 7/%)2) etk ¢k)/P2n am — q(eik)n(wk ))
4.9

From (4.8), we see recursively érthat:

SUp [y fn| < 1|8y Plco,

n,q,y

and then choosing = qum in (4.9), we see that:

2n

107 Y1+ Tr—1,0(By Yr—-1)]loc < 1031 + 20 (Dy 1) [l oo
+ (T — Th—1.n) |0y ¥]|%

which together with (4.9) easily implies that:

(4.10)

sup |02 fn| < oco.
n,q,y

Moreover, differentiating (4.7) in the variable and recalling tha®; is the Brownian
semigroup, we find that:

{aq fu+ 5 02 fu x”f) 0y fa)? =0, for q7 2’% o BEL2ZT] g9
fn(un y) = 1/1(9)7

with the notation:

mM)Zmn{%qmqé%w} (412)

If we write the relations analogous to (4.8) and (4.9) obtained for the third and fourth
derivative of f,, in the y variable, and derive analogous controls to (4.10), we easily
deduce that:
sup  sup @) fulg, y)| < oo (4.13)
n>0,0<5<4 q,y

Taking first and second derivatives of (4.11) in theariable, we see that

sup 1048 full Lo(o.qnxr) < 00 (4.14)
n>0, 0<j<2
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It then follows from (4.13), (4.14) and, (qas, ) = ¥(), that@i fnn0< 5 <2, are
relatively compact sequences for the topology of uniform convergence on compact sets
of [0, ¢as] x R. From any subsequence ff, we can extract a subsequence along which
Jfrs Oy frn, 02 fr converge uniformly on compact subsets afd(] x R respectively to

the bounded continuous functigi,, 9, f~. 85 fo. Coming back to (4.11) in integral
form, we see thaf., € Ci*([0, qar] x R), andf., satisfies (4.6).

Observe now that (4.6) has a unique solution. Indeeflaifd /’ are two solutions,
w=f— f € Cr?(0,qm] x R) satisfies

1 z(q) / _
{5qw+23§w+z(‘%f*f’yf)ayw‘o (4.15)

wlgnr,y) =0,
and the maximum principle, (see Theorem 8.1.4 of Krylov [3]), implies that 0,
(one could also give an argument based on an S.D.E. representatignTdfis shows

that f., is uniquely determined, and thiyfg converges uniformly on compact sets of
[0, ¢ar] X R to the solution of (4.6). O

We shall use the notation

m(q,y) =9y f(q,9), (¢,v) € [0,qum] X R, (4.16)

where f is the unique solution of (4.6). We can now introduce a sequence of random
variablesly, N > 0, onX:

To = exp{aay ¥(Y (ea) - /0 " Flata).Yo@)dr ). andfor N >0,

In+v=1In eXp{l’M VYN Yz pr) = Xnen, o 9V V(X v41,1)) (4.17)

- [ sy,

XN+,

whereL € [0, N], andX y+1 1, are as in (3.6). With the help of (3.7), this unambiguously
definesiy, N > 0. We can give an alternative expression fgr, if we notice that for
x1 € [0,2], £ > 0, Ito’s formula implies

o1 flg(ar), V() — / * ). Y (@))de = / " rm(g(@), V() dY'(x)
0 0

o [ a0, L) st V@) date)
0

[ et vy -3 [ e md. v @) o).
0 0
(4.18)
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As a result, we can write

Ip= exp{ /0 em(g(z), YO(z)) dY°(z)
-1 [ e, Vi) ), oo
In+v = 1IN eXp{ /MI zm(g(z), YV (2)) dY V() .

XN+1,L

S [ e, YY) o)

2 XN+, L

for N > 0. This gives a more transparent interpretation for fkevariables if one
keeps in mind the Girsanov formula. On the other hand (4.17) is better suited to the
approximation scheme.

Theorem 4.2. For N > 0, (mr), (X)), (Y(ﬁ:)()) ) has the same law unde®

as(m, (X..), (Y“())o<r<n) underly - Q.

0<I<N

Proof. We reintroduce the-dependence in the notatiom, (), XT}.’(T), Y, (), forthe

guantities defined in (3.24). As a result of (3.12), (3.13), on a set oﬁftprobability,
asn — oo,
My (r) — MYR), vVaguely on (Qoo), (4.20)

on(-) anda,(-) converge simply olN, respectively tas(-) anda(-). Therefore, when
n — oQ.

xe=xn L xW=x . _ for 0,0 >0,
0.0 on(€),0n(E") N a(£),0(¢')

YL y() = Yo O) = Y () = Y7O() uniformly on [0, 2], for £ > O.

If we endow)M,, x [0, zp/]"*N x C([0, zp/], R)™, with the canonical product topology,
and denote by a continuous bounded function in this space, it follows from these
convergences, Proposition 3.2 and Lemma 4.1, that:

EYF@mm, (XP), 0 Docion)]
= lim B S[F(my, gy, (X2, (V7 o<e<n)]
= lim  EY[F(m, (X"), ((No<e<n) Hx]
= EQ[F(m, (X..), (V'(Doze<n) In].

SinceN andF are arbitrary, this proves our claim. O

(4.21)

We can give a slightly different formulation of Theorem 4.2 by considering:
Y =M x T x C([0, za], R)Y, (4.22)

endowed with the natural produetalgebra3 and with the probabilityQ for which
the canonical coordinates and (,),>o are independent, respectivahy,,, and P
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distributed, and conditional ter, (T',).>o0, the y*(-), ¢ > 0, are centered Gaussian
processes with

EQ[ye(I) yE'(x/) | m, (FU)UZO] = q(LE A z' A X@,f’)a &£, ' € [07 l‘m], g? v > 0. (423)

Then we can define the reshuffling operation as the measubablg, — X, whereXg
has fullQ probability, and® is such that:

O(m, Tz, (1 (D) = (M (Z B pesistionn ) (EERTuzo (7O )

(4.24)
with 5(-) anda(-), as in (4.3), withY* replaced byy*. Furthermore, we can introduce
on X the Q-densities:

Iy =exp Y / Leern oy #mla(a), @) dy'(z)
>0 (4.25)
1

3 [ Lena 2. o' ) )

for N > 0, whereLy is any map of the forn®(ro,nj © Fmg(rM)) composition of the
restriction to [Q V] of I‘,Og(w) (a piecewise constant map), wishwhich tol" € Epo M

associates a selectigi{I") C [0, N] of representatives of thE-equivalence classes in
[0, N]. As a result of (4.23),/Jy is unambiguously defined up to null equivalence. The
key Theorem 4.2 can be reformulated as:

Theorem 4.3. If Hy is the o-algebra generated bym, (I',)u>0, (v°(-)o<e<n), for
N >0, then
DPoQ=Jy-Q on Hy. (426)

Proof. We only need to notice thdty in (4.19) can be rewritten as

In=exp{ Y / Lser iy 2mla(@), V() dY*(x)
£>0

1

3 e 2 e,y ) o)}

for a suitableL v (x), as after (4.25). O
Corollary 4.4. Letr be a permutation di0, N], N > 0, then under® o Q,

G = ((Xpe)o<e.o<n, @ (Do<e<n) and
G-,— = ((XT(Z),T(Z’)))0<Z <N (yT(e)('))o<g<N) have the same law

Proof. It is obvious that &, ¢)o<e,r<n and X -¢1))o<e,e<n have the same law
underP. Together with (4.23), this shows thatand G, have the same law undér.
Expressing/y as a measurable function 6f, we find thatG.- underJy - Q has the

same law a€' underJy - Q, with

Ty=exp{ Y / Loty (@), () dy' (@)
£>0

Y 2,2 ¢
[ Lt 7 )y @) o)}
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with Ly (2) = S(rjo,n7 © Dog(zazy), WhereS : Ejo xy — P([0, N]) is defined by:

S =771 (s( @ IY),

and associates 10 € Ejp n7 a selection of representatives of hequivalence classes.
As aresult/y = Jy, Q-a.s., and this proves our claim. O

5. Single and Double Replicas Calculations

We want to apply the results of the previous section to investigate the “single replica

distribution”:
ECDOQ [ E W 6’!;[(3?1%)} 9 (51)
>0

which is a probability orfiR, as well as the “double replicas distribution”:

E(DOQ { Z NeNe 1{X4,4/ e} 5y£(wM) & 5y5'(zM)} ) (5-2)
0>0

which is a probability on [0x ;] x R x R.

As a result whenp is symmetric non-constant, we shall define a transformation of
the functiong(-). The equation for fixed points of this transformation in the context of
the SK-model is the so-called “consistency equation”, see [6], p. 45.

It is useful to introduce the time inhomogeneous transition probability
(Rao,21)0<zo<m <z, Of the solution of the SDE

dy(z) = dM(x) + xm(q(x), y(x)) dg(x) (5.3)
with M (z) = w(q(x)), 0 < z < xpy, the time changed of the standard Brownian motion
w(-). More precisely, we denote by? , the law of(y +w(g(x) — q(xo))) S for

TOSTST

y € R, zg < 21 In [0, z ], and introduce

1

Raos ) = [ Hyto0) exp{ [ omla(o). y(o) dye)

xo

5 [ At v e} a0 o

= [ 1oty expas fates). o) ~ 2o ateo). y(oo)
- [ Hat@), s ds } apy, o).

where the second equality follows from Ito’s formula and (4.6), as in (4.18). Itis imme-
diate from the second line of (5.4) to check the composition rule:

Rxo,xl Rzl,zz = RIQ,CEQ7 for O S xo S T S ) é TN -
Lemma 5.1.

Ra 20 (0y )() = 0y fa(2), -) = mq(z), ), for = €[0,zp]. (5.5)
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Proof. We introduce a regularization by convolutign= f * ., andm. = 9y(f 1) =
m * ., wherey, = e 2 YP(2), with (¢, y) > 0, smooth, compactly supported and

/z/qudy =1. It follows from (4.6) that whed = [qo, g1] C (0, gas), for smalle:

Qyme+ 5 02m,+H =0 inl x R, with

. (5.6)
X

1=, ([ @, 7] « ve) =1y m d, m] « v

Letzg = z(qo0), 1 = x(q1) and Z,, x € [xo, xps], Stand for the exponential martingale
(underpP¥

O,QTM):

Ly = exp{/

zo

x

wma(w), s do) - § [ aP ). y(w) datw)}

Zo

Observe that by a similar calculation as in the second line of (%.4)s bounded. It
follows from Ito’s formula and (5.6) that

me(a(e), y(r2) = me(a(wo), y(wo)) + / "0, me(g(), y(@)) dya)
— /I1 H.(q(x), y(x)) dg(x), wheneis small

Letting e tend to O, we find

mlg@r). y(xn)) = mlg(zo, y(xo)) + / "9, (), y(@)) dN,, where

x

N, = y(z) — / um(q(u), y(u)) dq(u), x € [z, z1] iS a martingale
o
underZz,, - PY

T, TN "

(5.7)

If we take expectations of (5.7) with respect to the above probability and kend to
xpr andzg vary in (0 x,], we find our claim (5.5). O

Theorem 5.2. For h bounded measurable ang € [0, z /],

E%Q[Z 1e h(y (@) | = Roey, 1(O), (5.8)

>0

E(DOQ{ Z nene L Xee > wo) h(y*(zar)) h(ye,(mN[))}
oy G20 (5.9)
= / Roo(Rypy hY2(0)d + (1 — 201) oz, (h2)(O).

Proof. As aresult of Theorem 4.3y(),>0 and ¢(-))¢>0, are independent undéro Q,
therefore the left member of (5.8) equals:

> E*Cnd By ()],
>0
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and using Corollary 4.4 and Lemma 5.1, this equals:
E % [h(y°(@u)) Jol = Rojzy, h(0).
This proves (5.8). By similar considerations, the left-hand member of (5.9) equals:

Z EF=r[ngne] EC (1 x0. 5203 P2 (@ar)) Ry (@ ar)) Ji]
=

+ 3 B[] B [R3( () Jo].
>0

(5.10)

In view of (A.4) and (5.4), the last term of (5.10) equals{% ) Ro..,, h*(0).
As for the first term of (5.10), note th&fy ; is uniformly distributed on (Qzxs)
under@Q, see (1.30), (3.31), and thus:

E 1 X130} My°(xan)) h(yH (@) 1]

- & /ro Y e BC [P (@ n)) h(y* (@) J1 | Xoa = 2] (5.11)

1 e
= RO,x(Rx,xM h)z(O)da:,
TM Jao
by the definition ofJ; and (5.4). SinceZPeu [z memer] = s, this concludes the
proof of (5.9). O

Remark 5.3.In the special casé = J, v, whose special virtue is explained below,
Lemma 5.1 and Theorem 5.2 show that:

E®0 [ Z 1e Oy Qb(yg(mM))} =m(0,0), and (512)
£>0

E¥C 7 meme 10, 00 0y 000 (0a0) 0y 0ty (war)|
oag 7F 20 (5.13)
) / Ro(m(q(x), Y)(O)dzx + (L - 2ar) Ro.z., (3, 1)2)(0).

We now specialise to the case wherds symmetric and non-constant. As a re-
sult f(q, -) andm(q, -) are respectively symmetric and antisymmetric functions, so that
m(q, 0) = 0. In the context of the SK measure, a (very) non-rigorous cavity calculation
in the spirit of Chapter 5 of [6] leads to an “approximate identity”:

1
/ () do

Zo

N[ D0 gl > ¢ Do)} tanh(8y47) tanh(3y.)™ |

whereq™*)(.) stands for the overlap function on ¢ 1) spinsy(**V) are the weights of

the respective “states” in the decomposition of the SK measure érij spins,qgf;})

are the mutual overlapg!” are the respective cavity fieldg, denotes the disorder
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expectation, ang*(z,) is smaller than the maximum value gf**1)(-). Recall that
in this situationy(z) should be viewed as log(coghr).
In our abstract set up, this suggests defining an “inverse temperature”

B =10y ¥l € (0,00), (5.14)

and a reshuffled functiogf™(-) via:

1 d
(R) - _ = Y pooQ ) S
q(z) 3 dzg E [é;ong e W{Xe e > xo}
8yw(yé(xM))ayw(yW(xM))}‘ » (5.15)
TO=TAT M
(5.13)

372 Roane, (mla(z A zar), )?)(0), = € [0,1].

As we shall now seg;")(.) fulfills analogous properties to the functig).

Theorem 5.4. The functiony")(.) is continuous increasing, with values[i, 1], con-
stant on[xyy, 1],

¢"0) =0, ¢"(xrr) = 572 Rou,, (9, ¥)?)(0), and (516)

¢ (z) = 572 R (92 f(a(@), ))?) (0)- ¢'(x), for z € [0,zp]. (5.17)

Proof. The formula (5.15) clearly defines a continuous increasing function, constant on
[2ar, 1], for which (5.16) holds. The calculation in (5.7) shows that

m(q(e), y(o)) = /0 9, m(g(), y(v)) dN,, where

(5.18)
No= (@)= [ omlao). so) do. 2 € 0.0
defines a martingale, with increasing process:
| 0umla), v dute.
under the lawP e Lo Pj;ooyxlzm. Therefore for < zg < 21 < 7,
4P (1) — ¢ (o) = B2 EP[m2(g(e1), y(wr)) — m2(a(wo), y(wo))] 19)

= -2 / " BP0, mP(a(a), y(2))] da(a),

and our claim (5.17) readily follows. O

Remark 5.5.The above theorem suggests looking at iterations of the transformation
q() — ¢B(). The fixed point equation(:) = ¢/ (.) essentially corresponds to the
selfconsistency equation (111.63), p. 45 oBglard—Parisi—Virasoro [6], for the SK-model.

We thus see once again that several quantities related to the physical prediction of the
SK-model appear in the context of our abstract cavity method.
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Appendix

We shall collect in this appendix some useful results on the BwandP, which are
defined above (0.2) and (1.3), and are used throughout this article. We recalfthat
is the set of simple pure point Radon measures ond)Q and it is endowed with the
topology of vague convergence.

Proposition A.1.

n
For z € (0, 1), P, is the weak limit of the laws o/, ofz Oexpf L (X

—logn)}
1
whereX, ..., X, are standard i.i.d. exponential variables

(A.1)

For z; € (0,1) andziz; € (0, 1), P,,,, is the image oP,,
under the mapm — n®2 om, (le.m=> §,, = > 6( &) (A-2)

ne) 2
Ef2[|m|™] < co, if 0 <z1 <22 <1 (A.3)
= , Lk — x) k—1-2)...(1—2)
1), k > 1, EF- k)= =
Forz € (0,1),k > 1, [<m,n® >] N G-

(A.4)

Proof. For the proof of (A.1), observe that;" d(x,—iogn) CONverges in law to a Poisson
point process with intensity exp-z}dz. Indeed forf € C.(R),

Blew{ = swi—togm}] = ([ gy
i=1 0

= (l — /_o:)gn 1- e_f(r))% daz)n ey exp{ — /]R (1—e 7@y dm}.

Our claim (A.1) now follows once we notice that the image of the Poisson law with
intensitye™*dz on R under the continuous mapt € M,(R) — exp{-} om € M,

is the Poisson law with intensity exp} o (e"*dz) = xn~*"1dn. As for (A.2), itis an
immediate consequence of (A.1). Finally (A.3) and (A.4) can be found in Corollary 2.2 of
Ruelle [10]. O

We also want to look at the situation whétés the law ofm(dn dy), a Poisson point

process on (o) with marks inE a Polish space, with intensity)~*~*dn ® du, where
w1 is a probability onE. We consider a positive measurable functioon £, such that

/E 9(y)* du(y) < oo. (A.5)

We can then define a new random pure point measure,on)@ E through the formula

m(dn dy) — m(dndy) : fdm= F(ma(y),y) dm, (A.6)
(0,00)x E (0,00)X E

for f > 0 measurable.
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Proposition A.2.

m is a Poisson point process @, oo) x E with intensity

A7
wn~ "t © g(y)* dp(y)- (A1)

Proof. For f > 0 measurable on (6¢o) x E:

Elexpl- <./ >N = B [ep{ = [ flagt).yam}

(0,00)x E
= exp{ _ / (1— e*f(ng(y),y))xn*w*l dn dﬂ(y)}
(0,00)x E

= eXp{ - /(0700)@ 1 —eNan " tdngy)” dﬂ(y)}

This proves our claim. O
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