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Abstract: We construct in this work a Markov process which describes a clustering
mechanism through which equivalence classes onN are progressively lumped together.
This clustering process gives a new description of Ruelle’s continuous probability cas-
cades. It also enables to introduce an abstract cavity method, which mimicks certain
features of the cavity method developed by physicists in the context of the Sherrington
Kirkpatrick model.

0. Introduction

We construct in this article a continuous time Markov process, (0u)u≥0, with state space
the setE of equivalence relations onN. We call it the “clustering process”; it describes
an evolution in which00-equivalence classes are “lumped together” to form at a later
timeu the collection of0u-equivalence classes. The trace of the clustering process on
the setEI of equivalence relations of an arbitrary finite subsetI of N, is a pure jump
process with generator:

(LI f )(0) =
∑
0′

a0,0′f (0′) − (N − 1)f (0), for 0 ∈ EI , (0.1)

wherea0,0′ is 0 unless0′ is obtained by collapsingk ≥ 2 of theN distinct equivalence

classes of0 into a single class, in which casea0,0′ = 1/
[
(N − 1)

(
N−2
k−2

)]
. The precise

mechanism of clustering is described in Sect. 1 below.
This process is instrumental for the abstract cavity method we develop in this work.

It offers a concrete representation of the “continuous probability cascades” constructed
by Ruelle in [10]. It also provides an example of a coalescent Markov process, in the
spirit of Kingman [1, 2]. For further developments around the clustering process, see
also Pitman [9].
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Let us briefly recall what the “probability cascades” are. Forx ∈ (0, 1), we denote by
Px the law of the Poisson point process on (0,∞), with intensityxη−x−1dη. If Mp stands
for the set of simple pure point Radon measures on (0,∞), the lawPx is concentrated
on:

M = {m ∈ Mp;m((0, 1]) = ∞, and |m| < ∞}, where (0.2)

|m| =
∫

(0,∞)
η dm(η). (0.3)

Eachm ∈ M can uniquely be written in the form

m =
∑
`≥0

δη`(m), where η`(m), ` ≥ 0, is a strictly decreasing

sequence which tends to 0 as` tends to∞.
(0.4)

The probability cascades come as follows. For any finite sequence:

0< x1 < · · · < xK < 1, (0.5)

one considers a collection of random variablesηk(i1,...,ik), i1, . . . , ik ≥ 0, k ∈ [1,K],
such that the sequences

(ηk(i1,...,ik−1,j), j ≥ 0), for k ∈ [1,K], i1, . . . , ik−1 ≥ 0, are independent

and respectively distributed as (ηj(m))j≥0 underPxk .
(0.6)

Then the random weights

πi1,...,iK = η1
i1 . . . η

K
i1,...,iK , (0.7)

are a.s. summable:
C =

∑
i1,...,iK≥0

πi1,...,iK < ∞, a.s., (0.8)

and one can recursively define the

(πi1, πi1,i2, . . . , πi1,...,iK )i1,...,iK≥0 , via (0.9)

πi1,...,iK = πi1,...,iK/C, and πi1,...,ik−1 =
∑
j≥0

πi1,...,ik−1,j , for k ∈ [1,K].

(0.10)
Ruelle introduces in [8] “unordered families”, for which one only keeps track of the
“tree structure of the labels” in (0.8). He shows a consistency property of the resulting
distributions asK and the finite sequencex1 < · · · < xK vary. The “continuous
probability cascades” are then constructed in [10] by means of an abstract projective
limit argument.

It turns out that the clustering obtained by looking backwards from the last component
of (0.9), clumping together points which have common ancestor on levelK − 1, then
on levelK − 2 etc., has a Markovian structure. In fact, it is the discrete skeleton of
a continuous time Markov process, which is a time change of the clustering process
essentially defined by (0.1). It is therefore possible to define the continuous cascades
directly from the clustering process. The precise connection with Ruelle’s cascades is
presented in Sect. 2, Theorem 2.2. Other links of the Ruelle’s cascades with continuous
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branching processes have also been discussed in Neveu [7]. The clustering process
enables to introduce the variables

τ`,`′ = inf{u ≥ 0, (`, `′) ∈ 0u}, `, `′ ≥ 0, (0.11)

which represent the time at which` and`′ are “lumped together”.
For an initial distribution concentrated on the “trivial” equality relation onN, the

variablesτ`,`′ naturally define a random ultrametric distance onN, see (1.32) below. In
fact wheǹ 6= `′, τ`,`′ are standard exponential variables.

A second goal of the present article is to develop an “abstract cavity method”,
which mimicks features of the cavity method for the Sherrington–Kirkpatrick model,
as presented in Chapter 5 of Mézard–Parisi–Virasoro [6]. Quite a number of quantities,
which appear in the physicists’ prediction of the largeN behavior of the SK model,
naturally arise in our context.

The basic ingredients for the abstract cavity method are:

a sequence of normalized random weightsν` =
η`(m)
|m| , ` ≥ 0, (0.12)

wherem is PxM -distributed for a givenxM ∈ (0, 1),

an independent standard clustering process0., (0.13)

a collectiony`(x), x ∈ [0, xM ], ` ≥ 0, of stochastic processes, (0.14)

which conditional on the normalized weights and the clustering process are centered
Gaussian with covariance:

cov(y`(x), y`
′
(x′)) = q(x ∧ x′ ∧X`,`′ ), x, x

′ ∈ [0, xM ], `, `′ ≥ 0, (0.15)

whereq(·) : [0, xM ] → [0, qM ] is an increasingC1-diffeomorphism, and

X`,`′ = xM e−τ`,`′ , `, `′ ≥ 0, (0.16)

a functionψ : R → R in the classC4
b . (0.17)

In the language of Ḿezard–Parisi–Virasoro [6], the coefficientsν` mimick the Gibb-
sian weights in decreasing order of the “pure states”, whereas the clustering process
0., with the help of the variablesX`,`′ induces an “ultrametric structure” on the “pure
states”, and they`(xM ), play the role of the “mean cavity field” inside the “pure state”
with weightν`, i.e. up to relabelling thehα(N ) variables of [6], p. 67.

In the Mézard–Parisi–Virasoro picture, the addition of a new spin variableσ induces
a changeσy`(xM ) of the Hamiltonian in “pure state”̀. Summing on this spin variable,
the added energy isψ(y`(xM )), whereψ(x) = log cosh(βx), β being the inverse tem-
perature. Of crucial importance for the cavity method is the effect of this energy change
on the Gibbsian weights of the countably many pure states. This effect can be described
in an abstract setup, where for technical reasons, we assume thatψ is bounded. Reshuf-
fling occurs as one multiplies the individual weightsν` by a factoreψ(y`(xM )), thereby
changing the relative rank of importance of the weights. One thus introduces a random
permutation ofN, σ̃(·), with inverseσ(·), such that for̀ ≥ 0:˜̀= σ̃(`) is the rank ofµ` = ν` exp{ψ(y`(xM ))}, among

the collectionµ`′ = ν`′ exp{ψ(y`
′
(xM ))}, `′ ≥ 0.

(0.18)
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The reshuffling operation is the replacement of
(

(ν`), (X`,`′ ), (y`(·))
)

by

((ν(R)˜̀ ), (X (R)˜̀,˜̀′ ), (y˜̀(R)(·))), where for˜̀, ˜̀′ ≥ 0:

ν(R)˜̀ =
µ
σ(˜̀)∑̀
µ`
, X (R)˜̀,˜̀′ = X

σ(˜̀),σ(˜̀′), y
˜̀
(R)(·) = yσ(˜̀)(·). (0.19)

In other words, the relative importance of the weights is changed, but the initial ultra-
metric structure and marking processesy(·) are carried along the reshuffling operation.

Our main result Theorem 4.2 describes the effect of reshuffling. It shows that the
joint law of the normalized weights and of the ultrametric structure is left invariant by

this operation. On the other hand, the conditional law of they˜̀(R)(·), ˜̀≥ 0, still preserves
the tree structure, but is not Gaussian anymore. For instance, the conditional law of a
componenty(·), can be represented as that of a time changed process:zq(x),x ∈ [0, xM ],
wherezq, solves the SDE:

dzq = dBq + x(q) m(q, zq) dq, 0 ≤ q ≤ qM ,

z0 = 0,
(0.20)

with x(·) the inverse of the functionq(·),B. a Brownian motion andm(q, y) = ∂y f (q, y),
for f (q, y) the uniqueC1,2

b solution of

∂qf + 1

2
∂2
yf +

x(q)
2

(∂yf )2 = 0, on (0, qM ) × R, f (qM , ·) = ψ(·). (0.21)

Expressions like (0.20), (0.21) can for instance be found in [6], p. 45 or in Parisi [8],
see [6], p. 163, as part of the prediction of the largeN behavior of the SK model. The
boundedness assumption onψ(·) in (0.17), though technically convenient, excludes the
natural choiceψ(·) = log(cosh(β·)), withβ > 0 the inverse temperature, in the context of
the SK model. In the case of a non-constant, symmetric functionψ, we can further define
an “abstract iteration” procedure, which toq(·) associates a newq(R)(·), see Theorem
5.4. The fixed point equationq(R)(·) = q(·) corresponds to the so-called “selfconsistency
equation”, for the SK model, see [6] (III.63), p. 45.

Let us now describe how the article is organized: In Sect. 1, we construct the clus-
tering process and derive some of its properties. Section 2 develops the connection
between the clustering process and Ruelle’s probability cascades. In Sect. 3, we prepare
the ground for Sect. 4 and investigate an approximate reshuffling operation. Section 4
contains the main result Theorem 2.2 of the abstract cavity method, which describes the
effect of reshuffling. In Sect. 5, we give some applications of the abstract cavity method,
to calculations on “single and double replicas”. This enables for a non-degenerate sym-
metric functionψ(·) the definition of an iteration mechanism for the functionq(·), see
Theorem 5.4.

This work grew out of our efforts to decipher and unravel the probabilistic structure
underlying the prediction of the largeN behavior of the SK model at low temperature,
as presented in the book of Mézard–Parisi–Virasoro [6]. We wish to thank M. Aizenman
for helpful discussions in this matter, as well as J.F. Le Gall, J. Pitman, and D. Ruelle
for all their comments.
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1. The Clustering Process

In this section we shall construct the clustering process. It is a continuous time Markov
process with state space

E = {0 ⊂ N × N; 0 defines an equivalence relation onN}. (1.1)

The setE is endowed with the canonicalσ-field E generated by all events of the form:
{0 ∈ E; (a, b) ∈ 0}, fora, b ∈ N. Remark thatE can be viewed as a closed and therefore
compact subset of{0, 1}N×N, the latter being equipped with the product topology. When
I is a non-empty subset ofN, it is convenient to consider the setEI and theσ-field EI ,
which are defined analogously toE and E , with N replaced byI. The process we
shall introduce describes a “clustering mechanism”. Its trajectories0u, u ≥ 0, are non-
decreasingE-valued functions, (for the inclusion relation onE).

We keep the notations introduced in the Introduction. The setMp of simple pure
point measures on (0,∞) is endowed with its canonicalσ-field Mp generated by the
applicationsm ∈ Mp → m(A) ∈ N∪{∞} forA ∈ B((0,∞)). The measurable subsets
M in (0.2), and

M1 = {m ∈ M ; |m| = 1}, (1.2)
are endowed with the respective traceσ-fieldsM andM1.

Forx ∈ (0, 1), we shall denote byPx the image onM1 of the Poisson lawPx under
the normalization map:

N : M → M1, N
( ∑
`≥0

δη`(m)

)
=

∑
`≥0

δ η` (m)
|m|

. (1.3)

We now define for each non-emptyI ⊆ N, andu ≥ 0, a probability kernelRIu
on EI . Whenu = 0, RI0(0, d0′) is simply the Dirac mass at0 ∈ EI . On the other
hand whenu > 0, and0 ∈ EI , RIu(0, d0′) is defined as follows. We consider the at
most denumerable collectionC0 of 0-equivalence classes onI. The spaceM1 × NC0 is
endowed with the canonicalσ-field and the probability

Qx = Px(dm) ⊗
⊗
C∈C0

( ∑
`≥0

η`(m) δ`(yC)
)
, where x = e−u, (1.4)

andyC , C ∈ C0, are the canonical coordinates onNC0 . In other words, conditional
to m =

∑
`≥0 δη`(m) ∈ M1, the variablesyC , C ∈ C0, are independent

∑
`≥0 η` δ`-

distributed.
We now “lump together”0-equivalencesC, which possess the same markyC , and

obtain a random equivalence relation0′ onI. Formally, for (m, (yC , C ∈ C0)) ∈ M1 ×
NC0 , the collection of subsets:

C ′
` =

⋃
yC=`

C, ` ≥ 0, (1.5)

defines a partition ofI, which uniquely determines an equivalence relation0′ ⊃ 0, on
I, with equivalence classes the non-emptyC ′

`, ` ≥ 0. We then define

RIu(0, d0′) = the law of theEI -valued variable0′, underQx. (1.6)

WhenJ ⊂ I are non-empty subsets ofN, we denote byrI,J the measurable restriction
map fromEI toEJ :

rI,J (0) = 0 ∩ (J × J). (1.7)
WhenI = N, we simply writerJ in place ofrI,J .
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Proposition 1.1.
RIu, u ≥ 0, is a Feller semigroup onEI . (1.8)

For J ⊂ I non-empty subsets ofN, u ≥ 0, 0 ∈ EI , one has the compatibility relation

RJu(rI,J (0), ·) is the image ofRIu(0, ·) underrI,J . (1.9)

WhenC1, . . . , Ck, arek ≥ 2 distinct0-equivalence classes onI:

RIu (0, {C1, . . . , Ck are in the same0′-class}) =

(k − 1 − e−u)(k − 2 − e−u) . . . (1 − e−u)
(k − 1)!

, for u > 0.
(1.10)

Proof. The compatibility relation (1.9) is a direct consequence of the definition ofRIu
andRJu . Let us now prove thatRIu, u ≥ 0, are Feller semigroups. Observe thatRIu, for
u ≥ 0, preserves the space of continuous functions onEI . Indeed, in view of Stone–
Weierstrass’ theorem it suffices to prove the continuity of the map

0 ∈ EI → RIu(0, A) ∈ [0, 1], for u ≥ 0, (1.11)

whenA has the form

A =
n⋂
1

{0′ ∈ EI ; (ai, bi) ∈ 0′}, (1.12)

with ai, bi ∈ I, for i = 1, . . . , n. For such anA, we can apply (1.9) withJ = {ai, bi, i =
1, . . . , n} ⊆ I. We are therefore reduced to the case of a finite setI, where the continuity
of the map in (1.11) is obvious. As a consequence of (1.10), withk = 2, which is proven
below,RIu tends to the identity whenI is finite andu tends to 0. By a similar argument
as above, it follows that for arbitraryI andf continuous onEI , RIu f tends uniformly
to f asu tends to 0.

We now come to the proof of the semigroup property. For notational simplicity,
we assumeI = N, although this plays no role in the proof. Given0 ∈ E, u, v > 0,
we can construct the lawRuRv(0, ·) onE, as follows. We consider on some auxiliary
space (�,A, P ), (m1, (yC , C ∈ C0)) independent of (m2, (Z`, ` ≥ 0)) such thatm1 is
Px1-distributed withx1 = e−u, conditionally onm1, the variablesyC , C ∈ C0, are i.i.d.∑
`≥0

η`(m1)
|m1| δ`-distributed;m2 is Px2-distributed withx2 = e−v, conditionally onm2,

the variablesZ`, ` ≥ 0, are i.i.d.
∑
`′≥0

η`′ (m2)
|m2| δ`′ -distributed.

We can define variabley′
C , for C ∈ C0, via:

y′
C = ZyC . (1.13)

The formula:
C ′′
`′ =

⋃
C∈C0:y′

C
=`′

C , for `′ ≥ 0, (1.14)

defines a partition onN, which naturally determines an equivalence relation0′′, which
is preciselyRuRv(0, ·)-distributed.

We shall now construct a suitable random permutationτ of N such that the variables
τ (y′

C), underP have the same joint distribution as the variablesyC , underQx in (1.4),
with x = e−(u+v). This will complete the proof of the semigroup property. Condition-
ally onm1,m2, Z`, ` ≥ 0, the variablesy′

C , C ∈ C0, are independent with common
distribution:
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P [y′
C = `′|m1,m2, (Z`)`≥0] =

∑
`:Z`=`′

η1
`/

∑
`≥0

η1
` , (1.15)

where we write for simplicityη`(m1) = η1
` andη`′ (m2) = η2

`′ . Taking a closer look at
the numerator of the fraction in (1.15), we observe that conditional onm2:∑

`≥0

1{Z` = `′} δη1
`
, `′ ≥ 0, (1.16)

are independent Poisson point processes on (0,∞) with respective intensities
(η2
`′/

∑
k≥0 η

2
k) x1 η

−x1−1dη. Using scaling (i.e. (A.7) with a constant functiong), we
see that conditional onm2:

m`′ def
=

∑
`≥0

1{Z` = `′} δC−1
`′ η1

`
, `′ ≥ 0, with (1.17)

C`′ =
(
η2
`′/

∑
k≥0

η2
k

) 1
x1 , (1.18)

are i.i.d.Px1-distributed. Coming back to (1.15),P -a.s.

P [y′
C = `′|m1,m2, (Z`)`≥0] = C`′ |m`′ |/

( ∑
k

Ck|mk|
)

= (η2
`′ )

1
x1 |m`′ |/

( ∑
k≥0

(η2
k)

1
x1 |mk|

)
, `′ ≥ 0.

(1.19)

From (A.2), we know that
∑
`′≥0 δ

(η2
`′ )

1
x1

isPx1x2-distributed. Since them`′ , `′ ≥ 0, are

i.i.d. independent from the (η2
`′ )

1
x1 , `′ ≥ 0, andE[|m`′ |x1x2] < ∞, by (A.3), it follows

from (A.7) that

m3
def
= N

( ∑
`′≥0

δ
(η2
`′ )

1
x1 |m`′ |

)
is Px1x2-distributed. (1.20)

The formula

τ (`′) = j, on the set
{
ηj(m3) = (η2

`′ )
1
x1 |m`′ |/

∑
k≥0

(η2
k)

1
x1 |mk|

}
; (1.21)

P-a.s. defines aσ(m1,m2, Z`, ` ≥ 0)-measurable permutation ofN. We can thus con-
sider the variables

ỹC = τ (y′
C), for C ∈ C0. (1.22)

Considering (1.15), (1.19), we see that conditional onm1,m2, Z`, ` ≥ 0, theỹC ,C ∈ C0,
are i.i.d. with common distribution:

P [ỹC = j |m1,m2, Z`, ` ≥ 0] = ηj(m3), j ≥ 0.

This conditional distribution only depends onm3. Thus conditional onm3, ỹC ,C ∈ C0,
are i.i.d.,

∑
j≥0 ηj(m3) δj-distributed. Since the collection

⋃
C∈C0,ỹC=j C, j ≥ 0,

defines up to relabelling the same partition ofN, as (1.14), andm3 is Px1x2-distributed,
we have proved that0′′ isRu+v(0, ·)-distributed.

Let us finally prove (1.10). The left member of (1.10) equalsEPx [
∑
`≥0 ηk` ]

(A.4)
=

1
(k−1)! (k − 1 − x) . . . (1 − x), with x = e−u. This concludes the proof of Proposition
1.1. �
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The canonical space for the “clustering process” will be

T : the set of non-decreasing right continuousE-valued,0u, u ≥ 0. (1.23)

Observe thatEI is finite whenI is finite. Thus the right continuous non-decreasing
functionrI (0u), u ≥ 0, is a step function, which only takes finitely many values.

We endowT with the canonicalσ-field T generated by the canonicalE-valued
coordinates, and with the filtration:

Tu = σ(0v, 0 ≤ v ≤ u), u ≥ 0. (1.24)

Theorem 1.2 (The Clustering Process).There is a unique collection of probabilities
P0 on (T, T ), 0 ∈ E, such that(T, T , (0u)u≥0, (Tu)u≥0, P0) is a Markov process with
semigroupRu, u ≥ 0.

Proof. Uniqueness is obvious, we shall thus only explain the construction of theP0

probabilities. As shown in Proposition 1.1,RIu, u ≥ 0, is a strongly continuous semi-
group on the finite state spaceEI , whenI 6= ∅ is finite. Thus for a given0 ∈ E, with the
help of the compatibility relation (1.9), we can construct on some auxiliary probability
space a sequence0nu,u ≥ 0, of right continuousEIn -valued processes whenIn = [0, n],
such that:

0nu, u ≥ 0, is a Markov process with semigroupRInu , u ≥ 0, and0n0 = rIn (0),
(1.25)

rIm,In (0mu ) = 0nu, for m ≥ n, u ≥ 0. (1.26)

We simply define0∞
u =

⋃
n≥0 0nu, for u ≥ 0. It is straightforward using (1.9) to see that

0∞
u , u ≥ 0, is a Markov process with semigroupRu. Moreover0∞

. is a (T, C) valued
random variable, and we defineP0 to be its law. �

As already mentioned in (0.11), it is convenient to introduce onT the variables:

τ`,`′ = inf{u ≥ 0, (`, `′) ∈ 0u} , `, `′ ≥ 0. (1.27)

It is immediate to check that for̀, `′, `′′:

τ`,` = 0, τ`,`′ = τ`′,`, τ`,`′′ ≤ max{τ`,`′ , τ`′,`′′}. (1.28)

The variablesτ`,`′ areP0-a.s. finite for any0 ∈ E, since either (̀, `′) ∈ 0, in which
caseτ`,`′ = 0,P0-a.s. or from (1.10)

P0(τ`,`′ > u) = e−u, u ≥ 0, when (̀ , `′) /∈ 0, (1.29)

i.e.τ`,`′ is a standard exponential variable. Observe also that0u, u ≥ 0, is a measurable
function of the variablesτ`,`′ , `, `′ ≥ 0, since

0u = {(`, `′) ∈ N × N, τ`,`′ ≥ u}. (1.30)

When0 is the equality relation onN, we shall simply writeP in place ofP0. Note that

P -a.s.τ`,`′ , `, `′ ≥ 0, defines an ultrametric distance onN. (1.31)

We shall now close this section with a description of the pure jump process associated
to the semigroupsRIu, u ≥ 0, for finiteI. Although not explicitly needed for the sequel,
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this will provide further insights in the structure of the clustering process. We denote by
LI the generator of the semigroupRIu, u ≥ 0, so that forf a function onEI :

LI f (0) =
∑

0′∈EI
aI0,0′ f (0′), 0 ∈ EI . (1.32)

Proposition 1.3 (I finite). LetN ≥ 1denote the number of distinct equivalence classes
of 0 ∈ EI . If N = 1 all aI0,0′ = 0 (trivially), if N ≥ 2, aI0,0′ = 0 unless0′ is obtained
by lumping togetherk ≥ 2 distinct classes of0, in which case:

aI0,0′ =
1

(N − 1)
(
N−2
k−2

) , (1.33)

or 0′ = 0, in which case:
aI0,0′ = 1−N. (1.34)

Proof. One can compute the intensity of the second moments of the point processesPx,
by the same technique as in Proposition 2.1 of [10], see also [6] p. 55, and see that

EPx
[ ∑
`6=`′

η2
` η

2
`′

]
= o(u), asu → 0, withx = e−u.

As a resultaI0,0′ vanishes unless0′ is obtained by lumping together one subcollection
of C0. From (1.10), we deduce that when0 ∈ EI andC1, . . . , Ck arek ≥ 2 distinct
equivalence classes of0:

LI (1{C1,...,Ck are lumped together})(0) =
1

k − 1
. (1.35)

It follows from an “inclusion exclusion” argument that:

LI (1{C1,...,Ck form an equivalence class})(0) =
N−k∑
p=0

1
k − 1 +p

(−1)p
(N − k

p

)
=

∫ 1

0

N−k∑
p=0

(N − k

p

)
(−1)p tk−2+pdt =

∫ 1

0
tk−2(1 − t)N−kdt

=
0(k − 1)0(N − k + 1)

0(N )
=

[
(N − 1)

(N − 2

k − 2

)]−1
.

This proves (1.33). As for (1.34), it follows immediately from the identityaI0,0′ =
−

∑
0′ 6=0 aI0,0′ . �

The pure jump process attached toRIu,u ≥ 0, whenI is finite, is now easy to describe.
It has a finite number of jump times: 0< τ1 < τ1 + τ2 < · · · < τ1 + · · · + τλ < ∞.
If the initial condition0 hasN ≥ 2 classes, thenτ1 is exponentially distributed with
expectation (N − 1)−1. At time τ1, the process jumps to an equivalence relation0̃1 by
collapsingx1 classes of0, where the distribution ofx1 is

P [x1 = k] =
N

N − 1
1

k(k − 1)
, 2 ≤ k ≤ N. (1.36)
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Conditionally on{x1 = k}, 0̃1 is chosen uniformly among the
(

N
k

)
possibilities. After

that,τ2 is chosen with̃01 as the new starting element, etc. After a finite number of jumps,
the final state with one class is reached. It should also be remarked that the integer valued
process which counts the number of equivalence relations is Markovian as well, with
downwards jumps and transition kernel essentially described by (1.36).

There is in fact a simple explicit expression for the semigroupRIu, which we now
provide.

Proposition 1.4 (I finite). If 0 hasN ≥ 2 classes, and0′ is obtained by respective
clumpings ofm1,m2, . . . ,mk ≥ 1, classes of0, with

∑
j mj = N , then

RIu(0,0′) =
(k − 1)!
(N − 1)!

e−(k−1)u
k∏
i=1

gmi (u), (1.37)

whereg1(u) = 1, and form ≥ 2,

gm(u) = (m− 1 − e−u)(m− 2 − e−u) . . . (1 − e−u). (1.38)

Proof. It is convenient to setx = e−u, u ≥ 0, andfx(s) = sx, for s > 0. If f (m)
x denotes

themth derivative off with respect tos, then the right-hand side of (1.37) equals

(−1)N−k (k − 1)!
(N − 1)!

1
x

k∏
j=1

f (mj )
x (1)

def
= R̃Iu(0,0′). (1.39)

This will be helpful in order to check the backward equation

d

du
R̃Iu = LI R̃Iu , u ≥ 0. (1.40)

SinceR̃I0 is obviously the identity matrix, our claim (1.37) will follow. Observe that for
m ≥ 1:

∂

∂u
f (m)
x (1) =

∂m

∂sm
(−x(logs) fx(s))|s=1

= x
m∑
j=1

(−1)j
(
m

j

)
(j − 1)! f (m−j)

x (1).

Using the identityx f (`)
x (1) = f (`+1)

x (1) + ` f (`)
x (1), we get

∂

∂u
f (m)
x (1) =

m∑
j=1

(−1)j
(
m

j

)
(j − 1)! [f (m−j+1)

x (1) + (m− j) f (m−j)
x (1)]

= m!
m∑
j=2

(−1)j−1 1
j(j − 1)(m− j)!

f (m−j+1)
x (1) −mf (m)

x (1),

(1.41)

after regrouping, and the above sum overj is 0 if m = 1. We use this expression to
differentiateR̃Iu(0,0′) with respect tou. We find:
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∂

∂u
R̃Iu(0,0′) = (−N + 1)R̃Iu(0,0′)

+ (−1)N−k (k − 1)!
(N − 1)!

∑
i:mi≥2

mi∑
`=2

(−1)`−1

mi!
(mi − `)! `(`− 1)

1
x
f (mi−`+1)
x (1)

∏
j 6=i

f (mj )
x (1)

= (−N + 1) R̃Iu(0,0) +
∑
i:mi≥2

mi∑
`=2

aN,`

(
mi

`

)
(−1)N−k−`+1

(k − 1)!
(N − `)!

1
x
f (mi−`+1)
x (1)

∏
j 6=i

f (mj )
x (1)

=
∑

0′′:0�0′′�0′
aI0,0′′ R̃Iu(0′′,0′),

(1.42)
where we have used the notationaN,` = [(N − 1)

(
N−2
`−2

)
]−1. This finishes the proof

of (1.37). �

2. Clustering Process and Ruelle’s Probability Cascades

We shall present in this section the precise connection between the clustering process
constructed in the previous section and Ruelle’s cascades as defined in [8]. We consider
a sequence

0< x1 < x2 < · · · < xK < 1, K ≥ 1, as well as (2.1)

u1 = log
(xK
x1

)
> u2 = log

(xK
x2

)
> · · · > uK = log

(xK
xK

)
= 0. (2.2)

The main object of this section is to give an alternative description of the law onM1×EK
of (m,0uK ,0uK−1, . . . ,0u1) underPxk × P . We first introduce some notations.

We denote byIk, for k ≥ 1, the setNk of multi-indicesi = (i1, . . . , ik) of lengthk.
As a convention we also defineI0 = {∅}. If i ∈ Ik, i′ ∈ Ik′ , with k, k′ ≥ 0, i.i′, denotes
the concatenation ofi andi′. Furthermore, whenk ≤ k′, i � i′ means thati′ extendsi,
whereas [i′]k stands for the truncation to orderk of i′. We now introduce an auxiliary
probability space (S,S, Q), endowed with a family of (0,∞)-valued random variables,
ηki , i ∈ Ik, 1 ≤ k ≤ K, satisfying (0.6). Fori ∈ Ik, 1 ≤ k ≤ K, it is convenient to
introduce the generalization of (0.7):

πi = η1
[i]1

· η2
[i]2
. . . ηk[i]k (where of course [i]k = i). (2.3)

The following lemma is actually part of the results proved in Sect. 3 of Ruelle [6].
Nevertheless its simple proof is included for the reader’s convenience.

Lemma 2.1.
ω =

∑
i∈IK

δπi isQ-a.s.M -valued and (2.4)

ω = N (ω) is PxK -distributed (see (1.3) for the notation). (2.5)
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Proof. We use induction onK. WhenK = 1, (2.4), (2.5) are immediate. Consider
K > 1. Conditional onη1

. , η
2
. , . . . , η

K−1
. ,∑

j≥0

δπi ηKi·j , for i ∈ IK−1, (2.6)

are independent Poisson point processes on (0,∞), with respective intensities
πxKi xK η

−xK−1dη. It also follows from (A.2) that the collection of variables

η̃ki = (ηki )xK , i ∈ Ik, k ∈ [1,K − 1], (2.7)

satisfy (0.6) relative to the sequence:

0< x̃1 =
x1

xK
< x̃2 =

x2

xK
< · · · < x̃K−1 =

xK−1

xK
. (2.8)

Defining π̃i analogously to (2.3) in terms of thẽη variables, the induction hypothesis
implies that

C
def
=

∑
IK−1

πxKi < ∞, Q−a.s.. (2.9)

Coming back to (2.6), we see that conditional onη1
. , . . . , η

K−1
. , the variableω is dis-

tributed as a Poisson point process on (0,∞) with intensityC xK η−xK−1 dη. Using the
scaling relation (A.7) (wheng is constant), we see that

ω̃ =
∑
IK

δ
C

− 1
xK πi

(2.10)

is PxK -distributed and independent ofη1
. , . . . , η

K−1
. . It now follows thatω isQ-a.s.M -

valued andN (ω) = N (ω̃) is PxK -distributed. This concludes the proof of the induction
step. �

With the help of Lemma 2.1, we introduce on a set of fullQ-probability a measurable
bijectioni(·) : N → IK , such that:

πi(`) = η`(ω), for ` ≥ 0. (2.11)

In other wordsπi(`) has rank̀ among the collectionπi, i ∈ IK . Furthermore, we consider
a decreasing sequence ofE-valued variables:

0k = {(`, `′) ∈ N; [i(`)]k = [i(`′)]k}, so that 01 ⊇ 02 ⊇ · · · ⊇ 0K . (2.12)

The connection between the clustering process and Ruelle’s cascades comes in the
following

Theorem 2.2.

(N (m), 0uK , . . . ,0u1) has the same distribution under

PxK × P as(ω,0K , . . . ,01) underQ.
(2.13)
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Proof. With the help of (2.5) and the fact that0uK and0K both almost surely coincide
with the equality relation onN, we see that (N (m),0uK ) and (ω,0K) have the same law.
In view of the Markov property asserted in Theorem 1.2, the claim (2.13) will follow
when we show that

R(ur−ur+1)(0r+1, ·) is a version of the conditional

law of 0r given (ω,0K , . . . ,0r+1), for r ∈ [1,K − 1].
(2.14)

The argument used in the proof of Lemma 2.1 shows that

C
def
=

∑
Ir

πxr+1
i < ∞ , Q−a.s., (2.15)

and conditional toη1
. , . . . , η

r
. ,

ωi =
∑

i′∈Ir+1:i′�i
δ
C

− 1
xr+1 πi′

, for i ∈ Ir (2.16)

are independent Poisson point processes on (0,∞) with respective intensitiesC−1 πxr+1
i

xr+1 η
−xr+1−1dη. If we now define the point processµ on (0,∞) × Ir:

µ =
∑
i′∈Ir+1

δ
(C

− 1
xr+1 πi′ ,[i′]r)

, (2.17)

we see that conditionally onη1
. , . . . , η

r
.

µ is a Poisson point process with intensity

xr+1 η
−xr+1−1 dη ⊗

∑
Ir

πxr+1
i

C
δi , and (2.18)

ω′ def
=

∑
i′∈Ir+1

δ
C

− 1
xr+1 πi′

is independent ofη1
. , . . . , η

r
. , Pxr+1−distributed. (2.19)

Analogously to (2.11), we introduce aQ-a.s. defined measurable bijectionir+1(·) : N →
Ir+1, such that:

ηj(ω
′) = C− 1

xr+1 πir+1(j), for j ≥ 0. (2.20)

We further introduce variablesηki , k ∈ [1,K − r], i ∈ Ik:

η1
j = ηj(ω

′), for j ∈ N = I1, (2.21)

ηk(j1,...,jk) = ηr+k
ir+1(j1)·(j2,...,jk), for k ∈ [2,K − r], (j1, . . . , jk) ∈ Ik. (2.22)

The variablesη2
. , . . . , η

K−r
. , are independent ofη1

. , . . . , η
r
. , µ, and coming back to (2.17),

conditionally onη1
. , . . . , η

r
. , η

1
. , . . . , η

K−r,

theIr-valued variables [ir+1(j)]r, j ≥ 0, are i.i.d.,

with common law
∑
Ir

πxr+1
i

C
δi.

(2.23)
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It is plain that the variablesη satisfy (0.6) relative to the sequence:

x1 = xr+1 < · · · < xK−r = xK .

Definingπi, for i ∈ Ik, k ∈ [1,K− r], in analogy with (2.3), we can introduce aQ-a.s.
defined measurable bijection̄i : N → IK−r, such that:

πī(`) = η`
( ∑

IK−r

δπi

)
= C− 1

xr+1 η`(ω), for ` ≥ 0. (2.24)

We now find thatQ-a.s., fork ∈ [r + 1,K]:

0k = {(`, `′) ∈ N × N; [ ī(`)]k−r = [ī(`′)]k−r}, (2.25)

whereas fork = r,

0r = {(`, `′) ∈ N × N; [ir+1([ ī(`)]1)]r = [ir+1([ ī(`)]1)]r}. (2.26)

In other words the0r-equivalence classes are the

Cri =
⋃

j:[ir+1(j)]r=i
Cr+1
j , for i ∈ Ir, where

Cr+1
j = {` ∈ N; [ ī(`)]1 = j}, for j ≥ 0,

(2.27)

are the various0r+1-equivalence classes. Observe that (2.25) expresses the0k,
k ∈ [r + 1,K], in terms of theηk−r, k ∈ [r + 1,K], and thatω = N (

∑
IK−r δπi ).

Furthermore, it follows from (A.2) and (2.9) (whenK = r), that

N
( ∑

Ir
δπxr+1
i

)
is P xr

xr+1
-distributed,

(
with

xr
xr+1

= e−(ur−ur+1)
)
. (2.28)

If we now recall (2.27) and (2.23), it is now routine to deduce (2.14). This concludes
our proof of (2.13). �

As an application of Theorem 2.2, we can consider the process of “mass coagulation”,
mu, u ≥ 0, defined onM1 × T , as the random pure point measure on (0,∞):

mu =
∑

C:0u-equivalence classes

δ∑̀
∈C

η`(m). (2.29)

UnderPx ⊗ P , for x ∈ (0, 1), its law is in fact concentrated onM1 as follows from the

Corollary 2.3.
UnderPx ⊗ P , mu is Pxe−u -distributed. (2.30)

Proof. We chooseK = 2, x1 = xe−u < x2 = x. From Theorem 2.2, (N (m),00,0u)
has same law underPx ⊗ P as (ω,02,01) underQ. It follows that the law ofmu is the
same as that of

m = N
( ∑
j≥0

δ∑
j′≥0

η1
j
η2

(j,j′ )

)
. (2.31)

As a consequence of (A.7),
∑

δη1
j
cj is Px1-distributed, if

cj =
∑
j′≥0

η2
(j,j′)/E

Px [|m|x1]
1
x1 ,

whereEPx [|m|x1] < ∞, by (A.3). Coming back to (2.32), we see thatm is Px1-
distributed. This proves our claim. �



Ruelle’s Probability Cascades and Abstract Cavity Method 261

With the help of Theorem 1.2, it is straightforward to see thatmu, u ≥ 0, under
Px ⊗ P , with x ∈ (0, 1), is a simple Markov process with semigroup:

Ru(m, ·) = law ofmu underδm ⊗ P . (2.32)

3. Approximate Reshuffling

The main goal of this section is to prepare the ground for the next section, where we
shall derive the effect of the true reshuffling operation. We first need to introduce some
notations. We suppose we are givenxM ∈ (0, 1), qM ∈ (0, 1], and a non-decreasing
functionq(·) such that:

q(·) is aC1-diffeomorphism between [0, xM ] and [0, qM ], q(x) = qM ,
for x ∈ [xM , 1].

(3.1)

We denote byx(·): [0, qM ] → [0, xM ] the inverse ofq(·). We consider the probability
space (̃6, B̃, Q̃), where

6̃ = M × T × C0(R+,R)N, (3.2)

B̃ is the canonical productσ-field, and under the law̃Q, the canonical coordinates
m, (0u, u ≥ 0), w`(·), ` ≥ 0, on 6̃, are independent, respectivelyPxM , P , andW -
distributed, withW the Wiener measure onC0(R+,R).

We also introduce the [0, xM ]-valued variables onT , (and6̃ as well):

X`,`′ = xM exp{−τ`,`′}, `′, `′ ≥ 0, (see (1.27) for the notation). (3.3)

In view of (1.30),0u, u ≥ 0, is a measurable function of theX`,`′ , `, `′ ≥ 0, and

X`,`′ ≥ min(X`,`′′ , X`′′,`′ ), for `, `′, `′′ ≥ 0. (3.4)

We then come to the construction of the conditionally Gaussian stochastic processes
announced in (0.14). We define by induction a sequenceY `(x), x ∈ [0, xM ], ` ≥ 0, of
stochastic processes with:

Y 0(x) = w0(q(x)), x ∈ [0, xM ], and for N ≥ 0,

Y N+1(x) = Y L(x), for x ∈ [0, XN+1,L],

= wN+1(q(x) − q(XN+1,L)) + Y L(XN+1,L), for x ∈ [XN+1,L, xM ],
(3.5)

providedL ∈ [0, N ] is any integer such that:

XN+1,L = max{XN+1,` ; ` ∈ [0, N ]}. (3.6)

With the help of (3.4) and an induction argument, one readily checks that (3.5)–(3.6)
unambiguously definesY N+1(·). In fact one has:

Y `(x) = Y `
′
(x), for x ∈ [0, X`,`′ ], (3.7)

and under̃Q, conditional tom, 0u, u ≥ 0, theY `(x), x ∈ [0, xM ], ` ≥ 0, are centered
Gaussian processes with covariance

EQ̃[Y `(x) Y `
′
(x′) |m,0u, u ≥ 0] = q(x∧x′∧X`,`′ ), x, x

′ ∈ [0, xM ], `, `′ ≥ 0. (3.8)
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We shall now introduce a sequenceY `n (·), for n ≥ 0, which approximates the processes
Y `(·), asn tends to infinity through a discretization of [0, xM ]. Forn ≥ 0, k ∈ [0, 2n],
we define:

xk,n = x
( k

2n
qM

)
(3.9)

(see (3.1) for the notation), as well as forn, `, `′ ≥ 0:

Xn
`,`′ =

∑
0≤k≤2n

xk,n 1{xk,n ≤ X`,`′ < xk+1,n}, with the conventionx2n+1,n = 1.

(3.10)
The processesY `n (·) are defined exactly as in (3.5)–(3.6), except that we replace

everywhere in the definitionX·,· by Xn
·,· . Then in analogy to (3.8), conditional tom

and0u, u ≥ 0, theY `n (x), x ∈ [0, xM ], ` ≥ 0, are centered Gaussian processes with
covariance

EQ̃[Y `n (x) Y `
′

n (x′) |m,0u, u ≥ 0] = q(x∧x′ ∧Xn
`,`′ ), x, x

′ ∈ [0, xM ], ` ≥ 0. (3.11)

It is plain that whenn → ∞:

Xn
`,`′ ↑ X`,`′ , for `, `′ ≥ 0, (3.12)

Y `n (·) converges toY `(·) uniformly on [0, xM ], for ` ≥ 0. (3.13)

It is useful in view of the calculations on the effect of the approximate reshuffling
operation to give an alternate description of the joint law ofm, (Xn

`,`′ )`,`′≥0, (Y `n (·))`≥0,
for n fixed. To this end, we consider the situation of Sect. 2, withK = 2n andxk = xk,n,
for k ∈ [1,K]. We assume that on the auxiliary probability space (S,S, Q), parallel
to the variablesηki , i ∈ Ik, k ∈ [1, 2n], we also have mutually independent standard
Wiener processes,zki (·), i ∈ Ik, k ∈ [1, 2n], which are also independent of theηki
variables. Fori ∈ Ik, k ∈ [1, 2n], x ∈ [0, xk,n], we unambiguously define

Y i(x) =
∑

1≤k′<k0

zk
′

[i]k′

(qM
2n

)
+ zk0

[i]k0

(
q(x) − (k0 − 1)

2n
qM

)
, (3.14)

wherek0 ∈ [1, k] is such thatx ∈ [xk0−1,n, xk0,n]. In the casei ∈ IK , (recallK stands
for 2n), Y i(·) is thus a continuous process on [0, xM ]. We are now ready for

Lemma 3.1 (n ≥ 0 is fixed). (m, (Xn
`,`′ )`,`′≥0, (Y `n (·))`≥0) has the same law under̃Q,

as(ω, (X`,`′ )`,`′≥0, (Y i(`))`≥0) underQ, with i(·) defined as in (2.11), and for`, `′ ≥ 0,

X`,`′ = sup{xk,n; k ∈ [1,K] such that [i(`)]k = [i(`′)]k},
and the conventionsup∅ = 0.

(3.15)

Proof. We shall writexk instead ofxk,n, for simplicity. It follows from (3.10) that
Q̃-a.s., for̀ , `′ ≥ 0:

Xn
`,`′ = sup{xk, k ∈ [1,K] such that (̀, `′) ∈ 0uk},
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whereuk is defined as in (2.2), and sup∅ = 0, as in (3.15). Applying Theorem 2.2, we
thus see that:

(m, (Xn
`,`′ )`,`′≥0) has same law under̃Q as (ω, (X`,`′ )`,`′≥0) underQ. (3.16)

Furthermore, conditional on (m, (Xn
`,`′ )`,`′≥0), the processesY `n (·) are centered Gaussian

processes with covariance as in (3.11). On the other hand, by inspection of (3.14), the
processesY i(·), i ∈ IK , are independent of (ω, (X`,`′ )`,`′≥0, i(·)), centered Gaussian
with covariance

cov(Y i(x), Y i′ (x
′)) = min(q(x), q(x′), sup{q(xk); [i]k = [i′]k}.

It follows that conditional on (ω, (X`,`′ )`,`′≥0, i(·)), the processesY i(`)(·), ` ≥ 0, are
centered Gaussian with covariance:

min(q(x), q(x′), q(X`,`′ )) = q(x ∧ x′ ∧X`,`′ ), (3.17)

which is a measurable function of (X`,`′ )`,`′≥0. This proves that conditional on
(ω, (X`,`′ )`,`′≥0), theY i(`)(·), ` ≥ 0, are centered Gaussian processes with covariance
as in (3.17). This concludes the proof of Lemma 3.1. �

We shall now define the approximate reshuffling operation. To this end we consider
a function

ψ(·) : R → R, bounded measurable. (3.18)

The boundedness assumption is here for technical convenience, although it excludes the
natural choiceψ(x) = log(2 cosh(βx)) in the context of [6]. For the time being, we keep
n ≥ 0 fixed, and writexk in place ofxk,n. We introduce a sequence of functionsψk,
k ∈ [0, 2n], via:

ψ2n (·) = ψ(·), and

ψk−1(·) =
1
xk

logP qM
2n

[exkψk ](·), 1 ≤ k ≤ 2n,
(3.19)

wherePt, t ≥ 0, stands for the usual Brownian semigroup:

Pt h(y) =
∫

1√
2πt

exp
{

− (y′ − y)2

2t

}
h(y′)dy′, when t > 0,

= h(y), for t = 0,y ∈ R, h bounded measurable.
(3.20)

Functions closely related to theψk appear in Ḿezard-Virasoro [4], p. 1299. We also
introduce a sequenceHN , N ≥ 0, of random variables oñ6:

H0 = exp
{
xM ψ(Y 0

n (xM )) +
∑

0≤k<2n

(xk − xk+1)ψk(Y 0
n (xk))

}
, (3.21)

and forN ≥ 0,

HN+1 = HN exp
{
xM ψ(Y N+1

n (xM )) −Xn
N+1,L ψk0(Y

N+1
n (Xn

N+1,L))

+
∑

k0≤k<2n

(xk − xk+1)ψk(Y N+1
n (xk))

}
,
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whereL ∈ [0, N ] is such thatXn
N+1,L = max{Xn

N+1,`, 0 ≤ ` ≤ N}, andq(Xn
N+1,L) =

k0
2n .

The approximate reshuffling operation comes as follows. On a set of fullQ̃-
probability, the sequence

ν` = η`(m) exp{ψ(Y `n (xM ))}, ` ≥ 0, (3.22)

has pairwise distinct terms, and is summable. We can thus introduce on a set of full
Q̃-probability a measurable permutationσ̃n of N, with inverseσn, such that˜̀= σ̃n(`) is the rank ofν` among theν`′ , `′ ≥ 0. (3.23)

The approximate reshuffling corresponds to considering

m(r) = N
( ∑
`≥0

δν`

)
, X (r)˜̀,˜̀′ = Xn

σn(˜̀),σn(˜̀′)
, Y ˜̀

(r)(·) = Y σn(˜̀)
n (·), ˜̀, ˜̀′ ≥ 0, (3.24)

in place ofm,Xn
`,`′ , Y

`
n (·), `, `′ ≥ 0, and the dependence onn of the reshuffled objects

is omitted from the notation (3.24) for simplicity. Intuitively, one keeps the initial tree
structure and marking processes, but relabels according to the new relative importance
of the weightsν`. The next result is crucial for the sequel:

Proposition 3.2. For N ≥ 0, (m(r), (X (r)
·,· ), (Y ˜̀

(r)(·))0≤˜̀≤N ) has same law under̃Q as

(m, (Xn
·,·), (Y `n (·))0≤`≤N ) under the probabilityHN · Q̃.

Proof. We use Lemma 3.1, and recall thatK stands for 2n. We introduce on a set of full
Q-probability a measurable bijectionτ : N → IK , such that:

π
τ (˜̀)

exp{ψ(Y
τ (˜̀)

(xM ))} has rank̃̀ among the collection

πi exp{ψ(Y i(xM ))}, i ∈ IK .
(3.25)

It readily follows from Lemma 3.1 that (m, (Xn
·,·), (Y `n (·))`≥0, σ̃n) has same law under

Q̃ as (ω, (X ·,·), Y i(`)(·))`≥0, τ−1 ◦ i) underQ, (where it should be observed thatτ−1 ◦ i
depends measurably onω and (Y i(`)(xM ))`≥0). As a result (m(r), (X (r)

·,· ), (Y ˜̀
(r)(·))˜̀≥0

)

has the same law under̃Q as (ω(r), (X
(r)
·,· ), (Y

˜̀
(r)(·))˜̀≥0

) underQ, where

ω(r) = N
( ∑

IK
δπi exp{ψ(Y i(xM )}

)
, and for ˜̀, ˜̀′ ≥ 0,

X
(r)˜̀,˜̀′ = sup{xk; k ∈ [1,K] such that [τ (˜̀)]k = [τ (˜̀′)]k},

Y
˜̀
(r)(·) = Y

τ (˜̀)
(·).

(3.26)

The key observation is that we can write fori ∈ IK ,

πi exp{ψ(Y i(xM ))} = η1
[i]1
. . . ηK[i]K exp{ψK(Y i(xM ))} =

eψ0(0) η1
[i]1

eψ1(z1
[i]1

(
qM
2n ))−ψ0(0) . . . ηk[i]k e

ψk(Y i(xk−1)+zk[i]k (
qM
2n ))−ψk−1(Y i(xk−1))

ηK[i]K eψK (Y i(xK−1)+zKi (
qM
2n ))−ψK−1(Y i(xK−1)),

(3.27)
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and with the help of (A.7), and the definition (3.19), conditional to theσ-algebras:

Gk
def
= σ(ηk

′
i , z

k′
i , i ∈ Ik′ , k′ < k), k ∈ [1,K],

the collection of marked point processes on (0,∞) × C0(R+,R)∑
j≥0

δ
(ηk
i·j e

{ψk (Y i (xk−1)+zk
i·j (

qM
2n

))−ψk−1(Y i (xk−1))}
, zk
i·j (·))

, i ∈ Ik−1, (3.28)

are independent Poisson with respective intensities:

xk η
−xk−1 dη ⊗ µki (dz), (3.29)

whereµki is the probability onC0(R+,R) defined by:

µki (dz) = exk{ψk(Y i(xk−1)+z(
qM
2n ))−ψk−1(Y i(xk−1))}W (dz), (3.30)

whereW stands for the Wiener measure.
As a result of (3.28), we can find variablesη̃ki , z̃ki , i ∈ Ik, k ∈ [1,K], obtained by

successive relabellings of the variablesηki exp{ψk(Y i(xk)) − ψk−1(Y [i]k−1(xk−1))},
zki (·), i ∈ Ik, k ∈ [1,K], such that:

η̃ki , i ∈ Ik, k ∈ [1,K], has same distributions asηki , i ∈ Ik, k ∈ [1,K], (3.31)

the z̃ki variables are independent of theη̃ki variables, (3.32)

conditional toG̃k
def
= σ(η̃k

′
i′ , z̃

k′
i′ , i′ ∈ Ik′ , k′ < k), (3.33)

the z̃ki·j(·), i ∈ Ik−1, j ≥ 0, are independent, respectivelyµ̃ki -distributed, with

µ̃ki (dz) = exk{ψk(Ỹi(xk−1)+z(
qM
2n ))−ψk−1(Ỹi(xk−1))}W (dz), (3.34)

and theỸi(·) are defined like theY i(·) in (3.14), with thez̃ variables in place of thez
variables. Taking into account the fact thatψ0(0) in (3.27) is constant, and plays no role
after normalization, we find that

ω(r) = N
( ∑

IK
δ
π̃i

)
, (with obvious notations), and for̀̃, ˜̀′ ≥ 0 :

X
(r)˜̀,˜̀′ = sup{xk; k ∈ [1,K], [τ̃ (˜̀)]k = [τ̃ (˜̀′)]k},

Y
˜̀
(r)(·) = Ỹ

τ̃ (˜̀)
(·),

(3.35)

whereτ̃ (·) is theQ-a.s. defined measurable bijection betweenN andIK , such that:

π̃
τ̃ (`) has rank̀ among the collectioñπi, i ∈ IK . (3.36)
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As a result, we see that (ω(r), (X
(r)
·,· ), Y

`

(r)(·))0≤`≤N ) has same law underQ as (ω, (X ·,·),
(Y i(`)(·))0≤`≤N ) underHN Q, where

H0 = exp
{ K∑

1

xk[ψk(Y i(0)(xk)) − ψk−1(Y i(0)(xk−1))]
}
, and for N ≥ 0,

HN+1 = HN exp
{ ∑
XN+1,L<k≤K

xk[ψk(Y i(N+1)(xk)) − ψk−1(Y i(N+1)(xk−1))]
}
,

(3.37)
with L ∈ [0, N ] any number such thatXN+1,L = sup{XN+1,`, 0 ≤ ` ≤ N}. Thus with
the help of Lemma 3.1, and the identity in law above (3.26), Proposition 3.2 follows.
�

4. Reshuffling

The object of this section is to study the true reshuffling operation. The description of
the effect of this operation on the random weights, the clustering process, and they`(·)
components will exhibit several quantities which arise in the prediction of the “limit
picture” for the Sherrington–Kirkpatrick model, see Mézard–Parisi–Virasoro [6], p. 45,
and [5]. In the light of these references, the operation of reshuffling, we introduce in
(4.4) and (4.24) below, can be seen as a kind of abstract cavity method. Supposedly in
the context of the Sherrington–Kirkpatrick model, the cavity method yields a description
of the disordered averaged SK-measure onN and (N + 1) sites, whenN is large.

We keep the notations of Sect. 3, and assume from now on that

ψ(·) belongs toC4
b (R). (4.1)

We define on (̃6, B̃, Q̃) the sequence:

µ` = η`(m) exp{ψ(Y `(xM ))} , ` ≥ 0. (4.2)

By the same argument as in (3.22), (3.23), we can introduce on a set of fullQ̃-probability
a measurable permutatioñσ(·) of N, with inverseσ(·) such that:

˜̀= σ̃(`) is the rank ofµ` among the sequenceµ`′ , `′ ≥ 0. (4.3)

As in (3.24), we can then define the quantities:

m(R) = N
( ∑
`≥0

δµ`

)
, X (R)˜̀,˜̀′ = X

σ(˜̀),σ(˜̀′), Y
˜̀

(R)(·) = Y σ(˜̀)(·), ˜̀, ˜̀′ ≥ 0, (4.4)

which describe the reshuffling operation. Our main objective is to find the law of the
random vector (4.4). To this end we introduce forn ≥ 0, q ∈ [0, qM ], y ∈ R:

fn(q, y) =
1
xk,n

log{P k
2n qM−q(exp{xk,n ψk})(y)}, when

k − 1
2n

qM ≤ q ≤ k

2n
qM ,

(4.5)
with the notations of (3.19).
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Lemma 4.1. Asn tends to infinity,fn converges uniformly on compact sets of[0, qM ] ×
R, to the unique solutionf (q, y) in C1,2

b ([0, qM ] × R) of{
∂q f + 1

2
∂2
y f +

x(q)
2

(∂y f )2 = 0, on (0, qM ) × R,
f (qM , y) = ψ(y).

(4.6)

Proof. It follows from (4.5) that on [k−1
2n qM ,

k
2n qM ] × R:

exk,n fn = P k
2n qM−q(e

xk,nψk ). (4.7)

Differentiating twice in they variable, we find

∂y fn = P k
2n qM−q(∂y ψk e

xk,nψk ) /P k
2n qM−q(e

xk,n ψk ), and (4.8)

∂2
y fn+xk,n(∂y fn)2 = P k

2n qM−q((∂
2
y ψk+xk,n(∂y ψk)2) exk,n ψk )/P k

2n qM−q(e
xk,n ψk ).

(4.9)
From (4.8), we see recursively onk that:

sup
n,q,y

|∂y fn| ≤ ‖∂y ψ‖∞,

and then choosingq = k−1
2n qM in (4.9), we see that:

‖∂2
y ψk−1 + xk−1,n(∂y ψk−1)2‖∞ ≤ ‖∂2

y ψk + xk,n(∂y ψk)2‖∞
+ (xk,n − xk−1,n) ‖∂y ψ‖2

∞,
(4.10)

which together with (4.9) easily implies that:

sup
n,q,y

|∂2
y fn| < ∞.

Moreover, differentiating (4.7) in theq variable and recalling thatPt is the Brownian
semigroup, we find that:{

∂q fn + 1

2
∂2
y fn +

xn(q)
2

(∂y fn)2 = 0, for q 6= k

2n
qM , k ∈ [1, 2n]

fn(qM , y) = ψ(y),
(4.11)

with the notation:

xn(q) =
2n∑
1

xk,n 1
{k − 1

2n
qM < q ≤ k

2n
qM

}
. (4.12)

If we write the relations analogous to (4.8) and (4.9) obtained for the third and fourth
derivative offn in the y variable, and derive analogous controls to (4.10), we easily
deduce that:

sup
n≥0, 0≤j≤4

sup
q,y

|∂jy fn(q, y)| < ∞. (4.13)

Taking first and second derivatives of (4.11) in they variable, we see that

sup
n≥0, 0≤j≤2

‖∂q ∂jy fn‖L∞([0,qM ]×R) < ∞. (4.14)
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It then follows from (4.13), (4.14) andfn(qM , ·) = ψ(·), that∂jy fn, 0 ≤ j ≤ 2, are
relatively compact sequences for the topology of uniform convergence on compact sets
of [0, qM ] ×R. From any subsequence offn, we can extract a subsequence along which
fn, ∂y fn, ∂2

y fn converge uniformly on compact subsets of [0, qM ] × R respectively to
the bounded continuous functionf∞, ∂y f∞, ∂2

y f∞. Coming back to (4.11) in integral

form, we see thatf∞ ∈ C1,2
b ([0, qM ] × R), andf∞ satisfies (4.6).

Observe now that (4.6) has a unique solution. Indeed, iff andf ′ are two solutions,
w = f − f ′ ∈ C1,2

b ([0, qM ] × R) satisfies

{
∂q w + 1

2
∂2
y w +

x(q)
2

(∂y f + ∂y f
′) ∂y w = 0

w(qM , y) = 0,
(4.15)

and the maximum principle, (see Theorem 8.1.4 of Krylov [3]), implies thatw = 0,
(one could also give an argument based on an S.D.E. representation ofw). This shows
thatf∞ is uniquely determined, and thusfn converges uniformly on compact sets of
[0, qM ] × R to the solution of (4.6). �

We shall use the notation

m(q, y) = ∂y f (q, y), (q, y) ∈ [0, qM ] × R, (4.16)

wheref is the unique solution of (4.6). We can now introduce a sequence of random
variablesIN ,N ≥ 0, on6̃:

I0 = exp
{
xM ψ(Y 0(xM )) −

∫ xM

0
f (q(x), Y 0(x))dx

}
, and for N ≥ 0,

IN+1 = IN exp
{
xM ψ(Y N+1(xM )) −XN+1,L ψ(Y N+1(XN+1,L))

−
∫ xM

XN+1,L

f (q(x), Y N+1(x))dx
}
,

(4.17)

whereL ∈ [0, N ], andXN+1,L are as in (3.6). With the help of (3.7), this unambiguously
definesIN , N ≥ 0. We can give an alternative expression forIN , if we notice that for
x1 ∈ [0, xM ], ` ≥ 0, Ito’s formula implies

x1 f (q(x1), Y `(x1)) −
∫ x1

0
f (q(x), Y `(x))dx =

∫ x1

0
xm(q(x), Y `(x)) dY `(x)

+
∫ x1

0
x(∂q + 1

2
∂2
y) f (q(x), Y `(x)) dq(x)

(4.6)
=∫ x1

0
xm(q(x), Y `(x))dY `(x) − 1

2

∫ x1

0
x2m2(q(x), Y `(x)) dq(x).

(4.18)
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As a result, we can write

I0 = exp
{ ∫ xM

0
xm(q(x), Y 0(x)) dY 0(x)

− 1

2

∫ xM

0
x2m2(q(x), Y 0(x)) dq(x)

}
,

IN+1 = IN exp
{ ∫ xM

XN+1,L

xm(q(x), Y N+1(x)) dY N+1(x)

− 1

2

∫ xM

XN+1,L

x2m2(q(x), Y N+1(x)) dq(x)
}
,

(4.19)

for N ≥ 0. This gives a more transparent interpretation for theIN -variables if one
keeps in mind the Girsanov formula. On the other hand (4.17) is better suited to the
approximation scheme.

Theorem 4.2. For N ≥ 0, (m(R), (X (R)
·,· ), (Y ˜̀

(R)(·))0≤˜̀≤N ) has the same law under̃Q
as(m, (X·,·), (Y `(·))0≤`≤N ) underIN · Q̃.

Proof. We reintroduce then-dependence in the notationmn,(r),X
n,(r)
·,· , Y ·

n,(r)(·), for the

quantities defined in (3.24). As a result of (3.12), (3.13), on a set of fullQ̃-probability,
asn → ∞,

mn,(r) → m(R), vaguely on (0,∞), (4.20)

σn(·) and σ̃n(·) converge simply onN, respectively toσ(·) and σ̃(·). Therefore, when
n → ∞:

Xn,(r)˜̀,˜̀′ = Xn

σn(˜̀),σn(˜̀′)
→ X (R)˜̀,˜̀′ = X

σ(˜̀),σ(˜̀′), for ˜̀, ˜̀′ ≥ 0,

Y ˜̀
n,(r)(·) = Y σn(˜̀)

n (·) → Y ˜̀
(R)(·) = Y σ(˜̀)(·) uniformly on [0, xM ], for ˜̀≥ 0.

If we endowMp× [0, xM ]N×N ×C([0, xM ],R)N , with the canonical product topology,
and denote byF a continuous bounded function in this space, it follows from these
convergences, Proposition 3.2 and Lemma 4.1, that:

E Q̃[F (m(R), (X (R)
·,· ), (Y ˜̀

(R)(·))0≤˜̀≤N )]

= lim
n
E Q̃[F (mn,(r), (X

n,(r)
·,· ), (Y ˜̀

n,(r))0≤`≤N )]

= lim
n→∞ E Q̃[F (m, (Xn

·,·), (Y `n (·))0≤`≤N )HN ]

= E Q̃[F (m, (X·,·), (Y `(·))0≤`≤N ) IN ].

(4.21)

SinceN andF are arbitrary, this proves our claim. �
We can give a slightly different formulation of Theorem 4.2 by considering:

6 = M × T × C([0, xM ],R)N, (4.22)

endowed with the natural productσ-algebraB and with the probabilityQ for which
the canonical coordinatesm and (0u)u≥0 are independent, respectivelyPxM andP
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distributed, and conditional tom, (0u)u≥0, the y`(·), ` ≥ 0, are centered Gaussian
processes with

E Q[y`(x) y`
′
(x′) |m, (0u)u≥0] = q(x∧ x′ ∧X`,`′ ), x, x

′ ∈ [0, xm], `, `′ ≥ 0. (4.23)

Then we can define the reshuffling operation as the measurable8 : 60 → 6, where60
has fullQ probability, and8 is such that:

8(m, (0u)u≥0, (y`(·))`≥0) =
(
N

( ∑
`≥0

δ
η`e

ψ(y` (xM ))

)
, ((σ̃⊗σ̃)(0u))u≥0, (y

σ(˜̀)(·))˜̀≥0

)
,

(4.24)
with σ̃(·) andσ(·), as in (4.3), withY ` replaced byy`. Furthermore, we can introduce
on6 the Q-densities:

JN = exp
{ ∑
`≥0

∫ xM

0
1{`∈LN (x)} xm(q(x), y`(x)) dy`(x)

− 1

2

∫ xM

0
1{`∈LN (x)} x2m2(q(x), y`(m)) dq(x)

}
,

(4.25)

for N ≥ 0, whereLN is any map of the formS(r[0,N ] ◦ 0log(
xM
x )): composition of the

restriction to [0, N ] of 0log(
xM
x ) (a piecewise constant map), withS which to0 ∈ E[0,N ]

associates a selectionS(0) ⊆ [0, N ] of representatives of the0-equivalence classes in
[0, N ]. As a result of (4.23),JN is unambiguously defined up to null equivalence. The
key Theorem 4.2 can be reformulated as:

Theorem 4.3. If HN is the σ-algebra generated by(m, (0u)u≥0, (y`(·)0≤`≤N ), for
N ≥ 0, then

8 ◦ Q = JN · Q on HN . (4.26)

Proof. We only need to notice thatIN in (4.19) can be rewritten as

IN = exp
{ ∑
`≥0

∫ xM

0
1{`∈LN (x)} xm(q(x), Y `(x)) dY `(x)

− 1

2

∫ xM

0
1{`∈LN (x)} x2m2(q(x), Y `(m)) dq(x)

}
,

for a suitableLN (x), as after (4.25). �
Corollary 4.4. Let τ be a permutation of[0, N ],N ≥ 0, then under8 ◦ Q,

G = ((X`,`′ )0≤`,`′≤N , (y`(·))0≤`≤N ) and

Gτ = ((Xτ (`),τ (`′)))0≤`,`′≤N , (yτ (`)(·))0≤`≤N ) have the same law.

Proof. It is obvious that (X`,`′ )0≤`,`′≤N and (Xτ (`),τ (`′))0≤`,`′≤N have the same law
underP . Together with (4.23), this shows thatG andGτ have the same law underQ.
ExpressingJN as a measurable function ofGτ , we find thatGτ underJN · Q has the
same law asG underJ̃N · Q, with

J̃N = exp
{ ∑
`≥0

∫ xM

0
1{`∈L̃N (x)} xm(q(x), y`(x)) dy`(x)

− 1

2

∫ xM

0
1{`∈L̃N (x)} x

2m2(q(x), y`(x)) dq(x)
}
,
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with L̃N (x) = S̃(r[0,N ] ◦ 0log(
xM
x )), whereS̃ : E[0,N ] → P([0, N ]) is defined by:

S̃(0) = τ−1
(
S((τ ⊗ τ )(0))

)
,

and associates to0 ∈ E[0,N ] a selection of representatives of the0-equivalence classes.
As a resultJN = J̃N , Q-a.s., and this proves our claim. �

5. Single and Double Replicas Calculations

We want to apply the results of the previous section to investigate the “single replica
distribution”:

E8◦ Q
[ ∑
`≥0

η` δy`(xM )

]
, (5.1)

which is a probability onR, as well as the “double replicas distribution”:

E8◦ Q
[ ∑
`,`′≥0

η` η`′ 1{X`,`′ ε ·} δy`(xM ) ⊗ δy`′ (xM )

]
, (5.2)

which is a probability on [0, xM ] × R × R.
As a result whenψ is symmetric non-constant, we shall define a transformation of

the functionq(·). The equation for fixed points of this transformation in the context of
the SK-model is the so-called “consistency equation”, see [6], p. 45.

It is useful to introduce the time inhomogeneous transition probability
(Rx0,x1)0≤x0≤x1≤xM of the solution of the SDE

dy(x) = dM (x) + xm(q(x), y(x)) dq(x) (5.3)

withM (x) = w(q(x)), 0 ≤ x ≤ xM , the time changed of the standard Brownian motion

w(·). More precisely, we denote byP yx0,x1
the law of

(
y +w(q(x) − q(x0))

)
x0≤x≤x1

, for

y ∈ R, x0 ≤ x1 in [0, xM ], and introduce

Rx0,x1 h(y) =
∫

h(y(x1)) exp
{ ∫ x1

x0

xm(q(x), y(x)) dy(x)

− 1

2

∫ x1

x0

x2m(q(x), y(x)) dq(x)
}
dP yx0,x1

(y(·))

=
∫

h(y(x1)) exp
{
x1 f (q(x1), y(x1)) − x0 f (q(x0), y(x0))

−
∫ x1

x0

f (q(x), y(x)) dx
}
dP yx0,x1

(y(·)),

(5.4)

where the second equality follows from Ito’s formula and (4.6), as in (4.18). It is imme-
diate from the second line of (5.4) to check the composition rule:

Rx0,x1 Rx1,x2 = Rx0,x2, for 0 ≤ x0 ≤ x1 ≤ x2 ≤ xM .

Lemma 5.1.

Rx,xM (∂y ψ)(·) = ∂y f (q(x), ·) = m(q(x), ·), for x ∈ [0, xM ]. (5.5)
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Proof. We introduce a regularization by convolutionfε = f ∗ψε, andmε = ∂y(f ∗ψε) =
m ∗ ψε, whereψε = ε−2ψ( ·

ε ), with ψ(q, y) ≥ 0, smooth, compactly supported and∫
ψ dqdy = 1. It follows from (4.6) that whenI = [q0, q1] ⊂ (0, qM ), for smallε:

∂1mε + 1

2
∂2
ymε +Hε = 0 in I × R, with

Hε = ∂y
([x(·)

2
(∂y f )2

]
∗ ψε

)
= [x(·)m∂ym] ∗ ψε.

(5.6)

Let x0 = x(q0), x1 = x(q1) andZx, x ∈ [x0, xM ], stand for the exponential martingale
(underP yx0,xM ):

Zx = exp
{ ∫ x

x0

um(q(u), y(u)) dy(u) − 1

2

∫ x

x0

u2m2(q(u), y(u)) dq(u)
}
.

Observe that by a similar calculation as in the second line of (5.4),Z. is bounded. It
follows from Ito’s formula and (5.6) that

mε(q(x1), y(x1)) = mε(q(x0), y(x0)) +
∫ x1

x0

∂ymε(q(x), y(x)) dy(x)

−
∫ x1

x0

Hε(q(x), y(x)) dq(x), whenε is small.

Letting ε tend to 0, we find

m(q(x1), y(x1)) = m(q(x0, y(x0)) +
∫ x1

x0

∂ym(q(x), y(x)) dNx, where

Nx = y(x) −
∫ x

x0

um(q(u), y(u)) dq(u), x ∈ [x0, x1] is a martingale

underZx1 · P yx0,xM .

(5.7)

If we take expectations of (5.7) with respect to the above probability and letx1 tend to
xM andx0 vary in (0, xM ], we find our claim (5.5). �

Theorem 5.2. For h bounded measurable andx0 ∈ [0, xM ],

E8◦ Q
[ ∑
`≥0

η` h(y`(xM ))
]

= R0,xM h(0), (5.8)

E8◦ Q
[ ∑
`,`′≥0

η` η`′ 1(X`,`′ ≥ x0) h(y`(xM ))h(y`
′
(xM ))

]
=

∫ xM

x0

R0,x(Rx,xM h)2(0)dx + (1− xM )R0,xM (h2)(0).
(5.9)

Proof. As a result of Theorem 4.3, (η`)`≥0 and (y`(·))`≥0, are independent under8◦Q,
therefore the left member of (5.8) equals:∑

`≥0

E8◦ Q[η`] E
8◦ Q [h(y`(xM )],
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and using Corollary 4.4 and Lemma 5.1, this equals:

E Q [h(y0(xM )) J0] = R0,xM h(0).

This proves (5.8). By similar considerations, the left-hand member of (5.9) equals:∑
`6=`′

EPxM [η` η`′ ] E
Q [1{X0,1≥x0} h(y0(xM ))h(y1(xM )) J1]

+
∑
`≥0

EPxM [η2
` ] E

Q [h2(y0(xM ))J0].
(5.10)

In view of (A.4) and (5.4), the last term of (5.10) equals (1− xM )R0,xM h2(0).
As for the first term of (5.10), note thatX0,1 is uniformly distributed on (0, xM )

underQ, see (1.30), (3.31), and thus:

E Q [1{X0,1≥x0} h(y0(xM ))h(y1(xM )) J1]

=
1
xM

∫ xM

x0

dxE Q [h(y0(xM ))h(y1(xM )) J1 |X0,1 = x]

=
1
xM

∫ x1

x0

R0,x(Rx,xM h)2(0)dx,

(5.11)

by the definition ofJ1 and (5.4). SinceEPxM [
∑
`6=`′ η` η`′ ] = xM , this concludes the

proof of (5.9). �

Remark 5.3.In the special caseh = ∂y ψ, whose special virtue is explained below,
Lemma 5.1 and Theorem 5.2 show that:

E8◦ Q
[ ∑
`≥0

η` ∂y ψ(y`(xM ))
]

= m(0, 0), and (5.12)

E8◦ Q
[ ∑
`,`′≥0

η` η`′ 1{X`,`′ ≥x0} ∂y ψ(y`(xM )) ∂y ψ(y`
′
(xM ))

]
=

∫ xM

x0

R0,x(m(q(x), ·)2)(0)dx + (1− xM )R0,xM ((∂y ψ)2)(0).
(5.13)

We now specialise to the case whereψ is symmetric and non-constant. As a re-
sultf (q, ·) andm(q, ·) are respectively symmetric and antisymmetric functions, so that
m(q, 0) = 0. In the context of the SK measure, a (very) non-rigorous cavity calculation
in the spirit of Chapter 5 of [6] leads to an “approximate identity”:∫ 1

x0

q(n+1)(x) dx

“≈” E
[ ∑
α,α′

η(n+1)
α η(n+1)

α′ 1{q(n+1)
α,α′ ≥ q(n+1)(x0)} tanh

(
βy(n)

α

)
tanh(βyα′ )(n)

]
,

whereq(n+1)(·) stands for the overlap function on (n + 1) spins,η(n+1)
α are the weights of

the respective “states” in the decomposition of the SK measure on (n + 1) spins,q(n+1)
α,α′

are the mutual overlaps,y(n)
α are the respective cavity fields,E denotes the disorder
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expectation, andq(n+1)(x0) is smaller than the maximum value ofq(n+1)(·). Recall that
in this situationψ(x) should be viewed as log(coshβx).

In our abstract set up, this suggests defining an “inverse temperature”

β = ‖∂y ψ‖∞ ∈ (0,∞), (5.14)

and a reshuffled functionq(R)(·) via:

q(R)(x) = − 1
β2

d

dx0
E8◦ Q

[ ∑
`,`′≥0

η` η`′ 1{X`,`′ ≥ x0}

∂y ψ(y`(xM )) ∂y ψ(y`
′
(xM ))

]∣∣∣
x0=x∧xM

(5.13)
= β−2R0,x∧xM (m(q(x ∧ xM ), ·)2)(0), x ∈ [0, 1].

(5.15)

As we shall now see,q(R)(·) fulfills analogous properties to the functionq(·).

Theorem 5.4. The functionq(R)(·) is continuous increasing, with values in[0, 1], con-
stant on[xM , 1],

q(R)(0) = 0, q(R)(xM ) = β−2R0,xM ((∂y ψ)2)(0), and (5.16)

q(R)′ (x) = β−2R0,x
(
(∂2
y f (q(x), ·))2

)
(0) · q′(x), for x ∈ [0, xM ]. (5.17)

Proof. The formula (5.15) clearly defines a continuous increasing function, constant on
[xM , 1], for which (5.16) holds. The calculation in (5.7) shows that

m(q(x), y(x)) =
∫ x

0
∂ym(q(v), y(v)) dNv, where

Nx = y(x) −
∫ x

0
vm(q(v), y(v)) dv, x ∈ [0, xM ],

(5.18)

defines a martingale, with increasing process:∫ x

0
∂ym(q(v), y(v))2 dq(v),

under the lawP̃
def
= ZxM · P y=0

x0=0,x1=xM
. Therefore for 0≤ x0 < x1 ≤ xM ,

q(R)(x1) − q(R)(x0) = β−2EP̃ [m2(q(x1), y(x1)) −m2(q(x0), y(x0))]

= β−2

∫ x1

x0

EP̃ [(∂ym)2(q(x), y(x))] dq(x),
(5.19)

and our claim (5.17) readily follows. �

Remark 5.5.The above theorem suggests looking at iterations of the transformation
q(·) → q(R)(·). The fixed point equationq(·) = q(R)(·) essentially corresponds to the
selfconsistency equation (III.63), p. 45 of Mézard–Parisi–Virasoro [6], for the SK-model.
We thus see once again that several quantities related to the physical prediction of the
SK-model appear in the context of our abstract cavity method.
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Appendix

We shall collect in this appendix some useful results on the lawsPx andPx which are
defined above (0.2) and (1.3), and are used throughout this article. We recall thatMp

is the set of simple pure point Radon measures on (0,∞), and it is endowed with the
topology of vague convergence.

Proposition A.1.

For x ∈ (0, 1), Px is the weak limit of the laws onMp of
n∑
1

δexp{ 1
x (Xi−logn)}

whereX1, . . . , Xn are standard i.i.d. exponential variables.
(A.1)

For x1 ∈ (0, 1) andx1x2 ∈ (0, 1), Px1x2 is the image ofPx1

under the map:m → η
1
x2 ◦m, (i.e.m =

∑
δη` →

∑
δ

(η`)
1
x2

). (A.2)

EPx2 [|m|x1] < ∞, if 0 < x1 < x2 < 1. (A.3)

For x ∈ (0, 1), k ≥ 1, EPx [< m, ηk >] =
0(k − x)

0(1 − x)0(k)
=

(k − 1 − x) . . . (1 − x)
(k − 1)!

.

(A.4)

Proof. For the proof of (A.1), observe that
∑n

1 δ(Xi−logn) converges in law to a Poisson
point process with intensity exp{−z}dz. Indeed forf ∈ Cc(R),

E
[

exp
{

−
n∑
i=1

f (xi − logn)
}]

=
( ∫ ∞

0
e−f (z−logn)−zdz

)n
=

(
1 −

∫ ∞

− logn
(1 − e−f (x))

e−x

n
dx

)n n→∞−→ exp
{

−
∫

R
(1 − e−f (x)) e−x dx

}
.

Our claim (A.1) now follows once we notice that the image of the Poisson law with
intensitye−zdz on R under the continuous map:m ∈ Mp(R) → exp{ ·

x} ◦ m ∈ Mp,
is the Poisson law with intensity exp{ ·

x} ◦ (e−zdz) = xη−x−1dη. As for (A.2), it is an
immediate consequence of (A.1). Finally (A.3) and (A.4) can be found in Corollary 2.2 of
Ruelle [10]. �

We also want to look at the situation whereP is the law ofm(dη dy), a Poisson point
process on (0,∞) with marks inE a Polish space, with intensityxη−x−1dη⊗dµ, where
µ is a probability onE. We consider a positive measurable functiong onE, such that∫

E

g(y)x dµ(y) < ∞. (A.5)

We can then define a new random pure point measure on (0,∞)×E through the formula

m(dη dy) −→ m̃(dη dy) :
∫

(0,∞)×E
f dm̃ =

∫
(0,∞)×E

f (ηg(y), y) dm, (A.6)

for f ≥ 0 measurable.
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Proposition A.2.

m̃ is a Poisson point process on(0,∞) × E with intensity

xη−x−1dη ⊗ g(y)x dµ(y).
(A.7)

Proof. Forf ≥ 0 measurable on (0,∞) × E:

EP[exp{− < m̃, f >}] = EP
[

exp
{

−
∫

(0,∞)×E
f (ηg(y), y) dm

}]
= exp

{
−

∫
(0,∞)×E

(1 − e−f (ηg(y),y))xη−x−1 dη dµ(y)
}

= exp
{

−
∫

(0,∞)×E
(1 − e−f )xη−x−1 dη g(y)x dµ(y)

}
.

This proves our claim. �
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ematics, Providence, RI: A.M.S. Vol.12, 1996
4. Mezard, M., Virasoro, M.A.: The microstructure of ultrametricity. J. Physique46, 1293–1307 (1983)
5. Mezard, M., Parisi, G., Virasoro, M.A.: SK model: The replica solution without replicas. Europhysics

Lett. 1 (2), 77–82 (1986)
6. Mezard, M., Parisi, G., Virasoro, M.A.:Spin glass theory and beyond. Singapore: World Scientific, 1987
7. Neveu, J.: A continuous state branching process in relation with the GREM model of spin glasses theory.

Rapport interne no.267, Ecole Polytechnique, Juillet 1992
8. Parisi, G.: A sequence of approximated solutions of the SK model for spin glasses. J. Phys. A: Math.

Gen.13, L115–L121 (1980)
9. Pitman, J.: Coalescents with multiple collisions. Preprint

10. Ruelle, D.: A mathematical reformulation of Derrida’s REM and GREM. Commun. Math. Phys.108,
225–239 (1987)

Communicated by J. L. Lebowitz


