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Abstract: We consider two strictly related models: a solid on solid interface growth
model and the weakly asymmetric exclusion process, both on the one dimensional lattice.
It has been proven that, in the diffusive scaling limit, the density field of the weakly
asymmetric exclusion process evolves according to the Burgers equation [8,13,18] and
the fluctuation field converges to a generalized Ornstein-Uhlenbeck process [8,10]. We
analyze instead the density fluctuations beyond the hydrodynamical scale and prove that
their limiting distribution solves the (non linear) Burgers equation with a random noise
on the density current. For the solid on solid model, we prove that the fluctuation field of
the interface profile, if suitably rescaled, converges to the Kardar-Parisi-Zhang equation.
This provides a microscopic justification of the so called kinetic roughening, i.e. the
non Gaussian fluctuations in some non-equilibrium processes. Our main tool is the
Cole-Hopf transformation and its microscopic version. We also develop a mathematical
theory for the macroscopic equations.

1. Introduction

The hydrodynamic behavior of physical systems is usually described by (non linear)
PDE's. This description is in most of the cases approximate and, to model various
neglected effects, a random forcing term can be added to the macroscopic equation. One
is particularly interested in scale invariant forces, of which the space-time white noise
is a typical example. This choice however introduces small scale singularities and poses
the problem of the existence of the stochastic dynamics even when the deterministic
equation is known to have good smoothing properties. Most rigorous results are restricted
to one space dimension and several substantial problems appear in higher dimensions,
see e.g. [1,16]. On the other side, the question whether non linear stochastic PDE's, at
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least when they are well defined, are faithful descriptions of the evolution of suitable
quantities defined on some particle dynamics is very natural. Moreover, by looking at
some particle models, one may hope to understand how to construct infinite dimensional
diffusions associated to some ill-posed stochastic PDE's. The aim of this paper is to
derive a stochastic version of the viscous Burgers equation and the Kardar-Parisi-Zhang
(KPZ) equation as scaling limits of microscopic particle models. We shall focus mainly
on the latter topic referring to Appendix B for a precise statement of our results on the
stochastic Burgers equation.

Consider a random growth model, as an example one may consider a Glauber
dynamics for a ferromagnetic model at low enough temperature with an external positive
magnetic field: if initially the system shows regions in which there is predominance of
plus spins (favoured phase) and others in which there is predominance of minus spin
(unfavoured phase), the favoured phase will expand, invading the regions occupied
by the unfavoured phase. The separation layer between the two regions is then called
interface; we refer to [20] for a more detailed introduction as well as an overview of
different models. We stress that, unless the temperature is zero, the interface cannot be
described microscopically as a separation line, because it has a thickness [20]. We are
however going to study an effective model in which the interface is sharp and we will
not face this problem.

The KPZ Eq.[17] has been proposed to describe the long scale behavior of the inter-
face fluctuations. In this theory, through a coarse groaning procedure, the fluctuations
of a d dimensional interface (embedded in Rd+l) are described, in a local coordinate
system, by a single valued function Rd 3 r »->• h(r) which represents the interface
height and evolves according to the (ill-posed) non linear stochastic PDE,

^ Wi, (1.1)

where V is the space gradient, A the Laplacian and Wt is the space-time white noise,
i.e.

E (Wt(r) Wt(r')) = S(jt - *') S(r - r'). (1.2)
A striking feature of growth processes is the roughness of the cluster surface, the

so-called kinetic roughening. This is reflected by the presence of large and non Gaussian
fluctuations, i.e. in the non-linearity of (1.1). The KPZ Eq.( 1.1) is heuristically motivated
within the renormalization group ideas: a general local dependence on the gradient Vft
is assumed, but the only non irrelevant term is the second order one. Accordingly, it
is believed to be universal, i.e. independent, within a certain class, of the particular
microscopic model.

We consider here only the one dimensional case, d = 1. We note that even in this
case the mathematical interpretation of (1.1) is not obvious. This is best seen by trying
to solve (1.1) as a perturbation of the associated Ornstein-Uhlenbeck process, defined
by the same equation with the non linear term missing. The typical realizations of that
process are in fact continuous in r, but not differentiate: the interpretation of the non
linearity becomes then a non trivial point. Through a limiting procedure and a Wick
renormalization of the non-linearity, see [1,16] for the somehow analogous problem of
the stochastic quantization of P(<f>)2, we shall characterize uniquely a process associated
to the Eq. (1.1). On the other hand we will not prove that it is the solution of a limiting
equation. In fact we are not even able to write a meaningful version of (1.1).

We are going to focus on the derivation of the stochastically perturbedhydrodynamic
Eq.( 1.1), as a scaling limit of a microscopic interface model. Therefore proving, in a very
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particular case, the universality hypothesis of the KPZ model. The conventional picture
in the hydrodynamic limit [27] presents the deterministic equation as a law of large
numbers for the density fields and the fluctuations around the hydrodynamic behavior
as a central limit theorem. The fluctuations are thereby described by a Gaussian process
(generalized Ornstein-Uhlenbeck process). We stress that such a process is the solution
of a linear stochastic PDE, precisely the linearization of the hydrodynamic PDE, to
which a random force term is added. To see the randomness and the non-linearity in
the limiting process, as in (1.1), one is thus forced to analyze the fluctuations fields
beyond the hydrodynamic scale. This possibility has been successfully pursued for one
dimensional (non equilibrium) critical fluctuations in a local mean field theory [4, 12]
and for other one dimensional long range models [25].

More precisely, in this paper we prove that Eq. (1.1) can be derived as the scaling
limit of the fluctuation field for a microscopic growth model, the weakly asymmetric
single step solid on solid process (SOS), which can be roughly described as follows.
It is a model in which the microscopic interface is given as a single valued function
C : Z »-* Z. It furthermore obeys the single step constraint \C(x +1) — C(x)\ = !• The

random dynamics is then specified by the following growth rules: local minima become
maxima with rate 1/2 + yfe whereas local maxima become minima with rate 1/2. This
occurs independently at each site, no other transition is allowed. This process models
a local evaporation/deposition and establishes a growth direction. We stress that, for
future convenience, we have denoted by yfe the strength of the asymmetry. We finally
mention that this model can be obtained from the Metropolis dynamics for a two-dimen-
sional Ising model in the limit in which the external magnetic field and the temperature
converge to zero but their ratio is fixed and given by y/e, see [20].

To explain the scaling we shall consider, let us first recall the hydrodynamic limit
and the Gaussian hydrodynamic fluctuations for this model. These results follow from
the fact that SOS can be easily represented, as we shall see, in terms of the weakly
asymmetric exclusion process (WASEP) for which the analogous results are proven in
[8,10,13,18].

Let us introduce a macroscopic coordinate q = y/e x such that the strength of the
asymmetry coincides with the scaling parameter. In this coordinate system the interface
position is given by

where £(x) is defined by linear interpolation for non integer x. Above we scaled the
microscopic coordinate x9 the interface height £ and the microscopic time t diffusively,
namely x ~ C ~ £~ly'2» t ~ e~x. Assuming that mg converges, as e —»• 0, to a
differentiate fiinction mo, then (see [8, 13, 18] for a precise statement) rn€8 converges
in probability to a function ms = m8(q) which solves

dsm8 = ^Ams + I [1 - (Vm,)2] (1.4)

in which the Laplacian is due to the symmetric part of the evolution and the other term
to the asymmetric drift, which is of order one in this time scale since the force is ~ e1/2.

In order to understand the structure of the (random) forcing term which describes
the corrections to (1.4) for non zero £, one introduces the interface fluctuations as

Yf(q) = e~1/4 [e1'2 <£-u(e-l/2q) - m.fo)] (1.5)
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in which e~1/4 is the usual (CLT) normalization. In [8, 10] the central limit theorem
associated to the law of large numbers (1.4) is proven. It states that Y€ converges in
distribution to a process Ys = Ys(q) which solves the linear stochastic PDE

1
38YS = ^AYs- Vm, VYS + y/l - (Vm,)2 W., (1.6)

in which the deterministic function m8 is given and it is precisely the solution of (1.4).
As we mentioned above we shall consider the fluctuation field for SOS beyond the

first non trivial hydrodynamic scaling, which is here the diffusive scaling q = e1/2 x,
s - e t. To this end let us note that, according to (1.3), (1.4) the evolution of an
homogenous flat interface Co = const, is given by Ct = Co + (1/2) e1^. We shall
consider a e1/2 perturbation which varies on the (longer) scale r = e x. Set ZQ(T) :=
exl2 ((o(e~lr) — Co)'* we therefore assume there exists a function (it may be random)
ho G C(R) with at most linear growth for r —> ±oo such that

W = Mr) + o(D, (1.7)

where o(l) is infinitesimal as e -> 0.
We then look at the interface height on the diffusive scaling r = e x , r = e2<. Recall

in fact that the asymmetry is e1/2, so that this new scaling is different from the previous
one. Set Ze

T(r) := exl2 (Ce^Ae'lr) - (e-2T)\ we shall prove that

Z*(r) = M r ) + o(D, (1.8)

where hT = hT (r) is the solution of the KPZ equation (1.1) with initial condition ho.
The KPZ equation is then to be interpreted as describing the long scale behavior

of small fluctuations around a flat interface. We note in fact that in [17] is introduced
a small gradient assumption. In our setting it is precisely formulated as the condition
(1.7) on the initial profile. We also note that such a condition is quite natural in the
analysis beyond the hydrodynamic scale. It is what has been called, in the context of the
derivation of the Navier-Stokes equation as next order correction to the Euler Eq.[l 1],
the incompressible limit condition. We finally mention that the (informal) statement
(1.8) is not completely correct: in our analysis we shall find a contribution from the
fluctuations to the deterministic growth of the homogeneous profile. In particular the
function Ct has to include a lower order correction, i.e. Ct = Co +1/2 e1/21 — 1/24 £3/21.

The real issue behind this result is whether a profile satisfying (1.7) is stable under
the microscopic evolution. In other words we are asking what happens to a perturbation
of order e1^2 (varying on the space scale e~l) after a time e~2 and, to derive the non
linear Eq.(l.l), some propagation of chaos type result is needed. We note that for the
weakly asymmetric exclusion process the propagation of chaos has been proven in a
very strong form up to the hydrodynamic scale [8, 13], however those results do not
hold in our regime; for instance we are exactly at the time scale in which the analysis in
[9] breaks down.

Our results are obtained by using a non linear map, the Cole-Hopf transformation,
which reduces (1.1) to a linear equation with multiplicative noise. For the microscopic
process a similar transformation has been introduced in [ 13] and the transformed process
solves a semimartingale equation with a linear drift. This technique is peculiar of the
model introduced and the type of results we obtain do not seem to be, at the moment, in
the domain of application of more general tools.
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Outline of the paper. In the next section we explain the rigorous meaning of the KPZ
equation, define die microscopic processes and state our main result on the convergence
of the fluctuation fields to the solution of the KPZ equation. In Sect. 3 we introduce the
Cole-Hopf transformation which reduces (1.1) to a linear equation with a multiplicative
noise and the corresponding transformation for the microscopic process. At the end
of that section it is also shown how the results on the transformed process imply the
main result (convergence to the KPZ equation). The proof of the scaling limit for
the transformed process is carried out in Sect. 4. Finally in Sect. 5 we prove some
properties of the macroscopic Eqs.. The (equivalent) formulation of our results for the
stochastic Burgers equation and the weakly asymmetric exclusion process can be found
in Appendix B.

2. Notation and Main Results

Throughout all the paper the space of continuous functions on the real line C(R) is
equipped with the topology of uniform convergence over compact sets. As test functions
we use the space 2>(R), i.e. the function in CQ°(R) with the inductive limit topology; its
strong topological dual 2>'(R) is the space of distributions. For % a topological space
and T > 0, D([0, T};H) is the Skorohod space of % -valued functions with cadlag
trajectories [23]. Since the Skorohod topology relativized to C([0,T];?/) coincides
with the uniform topology [5], we may (and sometimes do) consider random functions
in C([0, T]; %) as elements of £>([0, T]; H).

The processes we are dealing with are to be considered over an arbitrary but fixed
macroscopic time interval [0, T]. We will be mainly concerned with the weak conver-
gence of sequences of stochastic processes; following the usual notation we denote this
convergence by the double arrow => stressing this notion of convergence depends upon
the topology used on the path space.

2.1 The KPZ equation. Before stating our main result on the convergence of the
fluctuation field of the microscopic interface model, we explain the rigorous meaning
oftheKPZEq.(l.l).

Let Wu t G [0, T], be the cylindrical Wiener process on L2(R, dr). It is canonically
realized as a distribution valued continuous process, i.e. the probability space is given
by (C([0, T];2>'(R)), A, V), here A is the <r-algebra generated by the cylindrical sets
and V is the Gaussian measure with covariance

f (2.1)

where ̂ i,^2 £ 2>(R), are test functions, a A& :=min{a,6}and(-, •) is the inner product
in I2(R, dr). We denote by A® the natural filtration of Wu i.e. the minimal cr-algebra
such that s •-> Ws is A°t measurable for all s e [0, t].

We shall characterize the solution of the KPZ equation through a limiting procedure.
Accordingly we introduce a mollified version of the cylindrical Wiener process which
will define a family of approximating problems. Let J £ C^(R) be an even positive
function such that Jdr J(r) = 1. Introduce, for K > 0, the mollifier <5*(r') := K J(/c(r -
r')) and define Wt

K(r) := Wt(6*); its covariance is

= t A s CK(r - r') , CK(r) := jdr1 <SrV)<J0 (2.2)
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We then write a mollified KPZ equation against test functions as

/i?)2 - 0,(0)] (*>)} + Wt*(p), (2.3)

where <p E X>(R). It is formally obtained from (1.1) integrating by parts. We have
also added the term CK(0) ~ /c"1, which corresponds to take the Wick product of the
non-linearity (VhK)2.

We assume the initial condition ho = ho(r) to be a random function in C(R) which
is independent of V and satisfies the following growth condition: for each p > 0 there
exists a = ap such that

sup e-a'rl E ( e - p M r ) ) < oo. (2.4)

We have thus assumed the initial datum to be a continuous trajectory Ao = ho(r) which
has for every r E R an exponential moment that grows at most exponentially in r. One
can obviously take ho to be a deterministic function with at most linear growth. We also
introduce the filtration At := <r{h0} V At = <r{h0, W8; s E [0, t]}.

The limit K —> oo in (2.3) can be taken according to the following strategy. When the
cutoff/c is finite Wt

K(r) is smooth so that (2.3) makes sense in the space of differentiable
functions; we thus obtain a processes hK in C([0, T]; C(R)) H C((0, T]; C^R)). Since a
limiting process will not be differentiable in space we have no hope to get a convergent
sequence in this space; however {/**}«>o does form a weak convergent family as
K -+ oo in the topology of C ([0, T]; C(R)). We have in fact the following result.

Theorem 2.1. Let ho be a random function in C(R) which satisfies the assumption
(2.4), then:

(i) For all K > 0, T > 0, there exists a process hf = h^(r) in C([0, T]\ C(R)) D
C((0, T]; C\R)), adapted to the filtration At, which solves almost surely (2.3) for
all <p E T>(R) and every t E [0, T], It is furthermore unique in the class of adapted
processes Xt = Xt(r) satisfying also the growth condition

sup sup e"a|r| idV e"2Xtir) < oo (2.5)
*G[0,T]reR J

for some a > 0.
(ii) Consider h$, t E [0, T] as a random element in C([0, T]; C(R))>' then the family

{hK} is weakly convergent as K —t oo. The limiting process is denoted by h, i.e.
hK=>hinC([0,T];C(R)).

Although this result characterizes uniquely the solution of the KPZ equation through
the approximating problems (2.3) it is not completely satisfactory since it avoids the
issue of showing that h satisfies a limiting equation. In particular we have not defined the
Wick product in (2.3) for the limiting process; to our knowledge this problem has been
solved only for infinite dimensional diffusions which are either Gaussian or constructed
as perturbations of Gaussian measures [1,16].

2.2 Solid on solidmodel of growing surfaces. We next define precisely the microscopic
interface model we shall consider. The weakly asymmetric single step solid on solid
process (SOS) is defined as follows.

On the state space
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Q := {< G Zz : V* G Z |<(* + 1) - C(*)| = 1} (2.6)

introduce the jump Markov process generated by

(«.O Lf<C + 24) - /« ) ] + c"(x,O t/(C - 2<U - /(C)]} , (2.7)

where £ > 0, / is a cylindrical function on Q, Sx E Zz is defined by ^(y) := S(x - y)
(the Kronecker symbol) and

/ 2 + 61/2 if C(* + l)
otherwise

- { otherwise.

The structure of the generator (2.7) preserves the single step constraint, C G X? in the
dynamic rules. The allowed transition are indeed either when local minima of CO) are
raised to local maxima, C(x)«-» C(*)+2, with rate 1/2+v/F or local maxima are lowered
to local minima, £(x) *-t £(x) — 2, with rate 1/2. In Sect. 2 we will introduce a mapping
from a certain exclusion process which will, in particular, establish the existence of the
dynamics we just introduced.

We shall consider £ as a continuous function by linear interpolation on its value on
the lattice Z, i.e. for r E R we define ((r) by

COO := C(M) + (r - M) («[r] + 1) - C(M», (2.9)
where [•] is the integer part. When viewed this way, the process Q,t E R+ is then a
random element in D(R+; C(R)).

Definition 22. The initial profile. The initial distribution for SOS is given by a family
{fie }e>o of probabilities on & which satisfies the following conditions:

(i) Set Ce (r) := y/e£(e~l r). There exists a randomfunction with trajectories ho = ho(r)
in C(R) such that

C^h0 (2.10)

as e —> 0 in the topology of C(R).
(ii) For each n E N there are a = an,c = cn > 0 such that

sup e~a£|a:| fdft£cxp{-nVeax)} < c (2.11)
xez J

for alls > 0 ;
(Hi) For each n E N there area! = a'n,c' = dn > 0 such that

J dfi£ ( v £ K W - C(2/)])2n < c' e«;* (I*»+W> (e|x - y|)n (2.12)

for every x,y £Z and all e > 0.



578 L. Bertini, G. Giacomin

Condition (2.11) entails that the random function ho defined by (2.10) satisfies the
assumption (2.4); the inequality (2.12) implies also ho is a.s. Holder continuous with
exponent less than 1/2. We remark that the moment conditions (2.11) and (2.12) can be
somewhat weakened. A careful reading of Sect. 4 shows we really need them only for
n< 10.

The conditions in Definition 2.2 are satisfied if the increments C(x + 1) — £(ar) G
{1, — 1} are independent with marginals

fk€ id* + 0 - COO) = e- i [ m(ex) - m(e(x - 1)) ] (2.13)

in which m = m{r) is a a-Holder continuous function (a > 1/2) on R which satisfies
the following condition: there is a > 0 such that for every r G R, |m(r)| < a(l + |r|).
The initial datum for the KPZ equation is then the random function ho, taking values in
C(R), given by (in law) ho = m + 6, where m is the deterministic function in (2.13) and
6 = 6(r) is a bilateral Brownian motion on R, i.e. b\(r) := 6(r),r > 0and&2(r) := 6(-r) ,
r > 0 are independent Brownians on R.

Admissible initial data include however also deterministic profiles, i.e. the case in
which pLe is concentrated on a single configuration. For example take fie independent of
e and concentrated on the configuration Co such that £o(x + 1) - (Q(X) = 1 if x is even,

+ 1) - CoGO = - 1 if x is odd. This gives ho = 0.

2.3 The scaling limit. We may now state our main result on the convergence of the
fluctuation of SOS to the KPZ equation.

Theorem 23. Fort G [0, T], r G R, let

Z?(r) := y/i (Ce-2t(e-lr) - v£t) , (2.14)

where v€ := ^e"3 / 2 - ±e~1/2 and regard Ze as a random element in D ([0, T]; C(R)>
The family {Ze}€>o is weakly convergent as e -> 0; furthermore the weak limit is

concentrated on C ([0, T]; C(R)) and coincides with the process h defined in Theorem
2.1f i.e.

Z£ =>h (2.15)
in the topology ofD ([0, T]; C(R)>

We remark that the Wick counterterm, which has been introduced ad hoc in (2.3)
arises naturally in the scaling limit. This possibility was suggested, for the two di-
mensional Landau-Ginzburg equation with noise, in [15]; see also [6] for a related
discussion.

We also note that Theorem 2.3 gives a rather strong convergence as a process
in D([0, T]; C(R)) and not in a distribution space. This is due to the fact that the
microscopic process Ct(x) can be written as a function of the empirical average for a
particle system which will be introduced below. More directly it follows from the fact
that an elementary step of the dynamics changes Z€ by a factor of order e1/2 so that no
space averaging is needed.

In the physical literature, see e.g. [20], it is well-known that the one-dimensional
KPZ process has an invariant (but not reversible) state in which V/i is distributed ac-
cording to the white noise measure on V (R), which is also the invariant (and reversible)
state for the same equation without the non linear term. Once the KPZ process is rig-
orously constructed, the proof of this fact is a fairly simple computation; it is however
remarkable that in our setting it is a straightforward consequence of the invariance of the
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Bernoulli measure on Z under the asymmetric exclusion process. The precise statement
and proof are given, in Appendix B, as Proposition B.2.

2A The weakly asymmetric simple exclusion process. We conclude this section by
explaining the relationship between SOS and the weakly asymmetric simple exclusion
process, which will be the basic object in the proofs. Via the results in [22] on (infinite
volume) exclusion processes, this mapping will also build a version of the SOS process
and hence it will establish its existence.

For notation convenience, i.e. to have centered variables, we describe the particle
model in terms of spin variables. The state space of the microscopic process is thus
f? := {—1,1}Z, its elements (spin configurations) are denoted by a = {<r(x), x £ Z},
where a(x) = +1 (resp. — 1) is interpreted as the site in x being occupied (resp. empty).

The weakly asymmetric simple exclusion process (WASEP) is the process generated
by

~, (2.16)

where I * are the generators of the totally asymmetric exclusion processes, defined by

:= £
in which / is a cylindrical function over Q and given x, y £ Z

{ (T(X) if
<r(y) if
<r(z) ot{ z = y

<r(y) if z = x (2.18)
otherwise.We stress in (2.16) we adopted the (unusual) convention of an asymmetry y/e toward

the left. The details on the construction of the process can be found in Liggett [22]. We
consider the WASEP <ru t > 0 canonically realized on the Skorohod space D(R+; Q)
and denote by P ^ its law when the initial distribution is /ie, probability on (2. The
expectation with respect to P^r is denoted by E* #.

Let xQ
t be the position of the tagged particle for WASEP. We recall that the tagged

particle is the particle that at time zero was closest to the origin on the positive half-axis,
i.e. given <ro, x% is defined by x% := min{x £ Z : x > 0, <r(x) = +1} and x® is its
position at time t under the WASEP dynamics.

The generator of the joint Markov process (<rt, #?) on the state space {(<r, x) £
QxZ : <r(x) = 1} is

H£ := i (H+ + (1 +2 y/e)H") , (2.19)

where

1(1 - <T(X° ± 1)) [f(<T*>*±l, X° ± 1) - /(IT, X°)] (2.20)

and / is a cylindrical function.
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It is then a simple check to verify that a version of SOS is given by

<)-*? if x<x°t (2.21)

where crt is WASEP. We shall work with this version and assume the initial distribution
fi£ be such that the hypotheses in Definition 2.2 hold.

In the reverse direction, given Ct SOS , to obtain a version on WASEP it is enough
to look at the increments, i.e.

Ct(x - 1). (2.22)

3. Non-Linear Transformation Method

In this section we introduce the main tool in proving the stated results. We shall use a non
linear map, the so called Cole-Hopf transformation, which reduces the KPZ equation to
a linear equation with multiplicative noise.

The scaling limit of SOS is analyzed through a microscopic analogue of this trans-
formation, introduced by Gartner in [ 13]. In this case we do not get a linear equation, but
the process obtained is easier to handle and we shall prove that it converges to a linear
equation in the limit e —>- 0; taking the inverse map, this will imply the convergence to
the KPZ equation.

3.1 Cole-Hopf transformation. The heuristic observation is the following. Let ht be a
solution of the KPZ Eq.(l.l) and introduce the process 0t := exp{—ht}, it then solves
the linear equation

dOt = ^A0tdt - 0tdWt (3.1)

often called the stochastic heat equation.
The rigorous analysis starts by giving a meaning to the above equation when the

stochastic differential is interpreted in the Ito sense. We assume the initial datum #o =
#o(r) to be a random function in C(R) which is independent on V and satisfies the
following growth condition: for each p > 0 there exists a = ap such that

sup e~a | r | E (|0o(r)f) < oo. S (3.2)
rGR

In the application to the KPZ equation we shall consider 0o(r) = exp{—/io(r)}, where
ho satisfies the hypothesis (2.4).

Introduce the heat kernel

and formulate the stochastic heat equation in mild form as

0t=Gt*6o- f Gt-s*68dWs, (3.4)
Jo

where * denotes convolution in space and



Nonlinear SPDE's from Particle Systems 581

f Gt-9 * 98dWs (r) := j (G,-,(r - )0S, dW8) (3.5)

is the Ito integral with respect to the cylindrical Wiener process.
It is convenient to formulate this problem also for the mollified Wiener process, i.e.

flf = Gt * 0O - / Gt-8 * OtdW?. (3.6)
Jo

We finally introduce

C+(R) := {/ e C(R)) : Vr G R /(r) > 0} . (3.7)

Theorem 3.1. Under the assumption (3.2) on 0Q:
(i) For all /c> 0, T > 0, there exists a process 0? = 0$(r) in C([0, T]; C(R)), adapted

to the filtration At, which solves almost surely (3.6) for every t E [0, T]. It is
furthermore unique in the class of adapted processes Xt = Xt(r) satisfying also
the growth condition

sup supe-a'r' fdVXt(r)2<oo (3.8)
€[0,T] r€R Jp

t€[0,T]
for some a > 0.

(ii) For all p > 1, 0*(r) -^ 0t(r) m LP(J>) andV a.s.; the convergence is uniform for
(t, r) in compact subsets of [0, T] x R. The limiting process is the unique solution
of (3.4) in the class of At adapted processes satisfying (3.8).

(Hi) If 0o € C+(R) a.s. then 0 € C([0, T]; C+(R)) a.s.

Remark. In Sect. 4.3 we shall introduce an equivalent formulation of the stochastic heat
equation in the form of a martingale problem and we will use this new formulation to
identify the limit.

The existence and uniqueness result (when R is replaced by a bounded interval)
for the stochastic heat Eq. (3.1) goes back to Walsh [28]. Referring to the mollified
process Wt

K
9 the statement (i) is trivial. Point (II) is proven in [2] where a Feynman-Kac

formula for 0t is also given. In that paper the initial condition is assumed to be bounded,
but the extension to the exponential growth as in (3.2) is straightforward. The (for us
fundamental) positivity property (Hi) is due to Miiller [24].

We are now ready to give an equivalent definition, at this point the third (and last),
for the solution of the KPZ equation.

Theorem 3.2. Let & : C([0, T]; C+(R)) >-> C([0, T]; C(R)) be defined by ft(r) ^->
~~ l°g ft (r) <*nd 0 be the solution of the stochastic heat Eq. (3.4) with initial condition 0o =
exp{-Ao}. Theorem 3.1 entails that &(0) is a.s. well defined and in C ([0, T]; C(R)).
Then &(0) coincides (in law) with the process h defined in Theorem 2.1.

3.2 The Gartner transformation. Here we introduce the microscopic analog of the
Cole-Hopf transformation. A similar transformation has been used in [9, 10, 13]. In
our case it maps the problem of the convergence of the fluctuation field of SOS to the
KPZ equation into the problem of the convergence of the transformed process to the
stochastic heat equation above discussed.



582 L. Bertini, G. Giacomin

The transformed process & = &(r), r G R is defined as

6(r) :=exp{-7 eG(r) + A,*}, (3.9)

where

^ h , X£ := 1 + £* - V l+2^5 (3.10)

and Ct(r), by linear interpolation on the values Ct(x), is SOS as constructed in (2.21).
As 7e = v ^ + O(e) the first term at the exponent in (3.9) is the fluctuation field so

that (3.9) is the microscopic analogue of the Cole-Hopf transformation. The other term
Xet has been added in order to obtain the convergence of the process & and takes into
account the homogeneous deterministic drift of the interface. The inverse map to SOS
is given by

C(r) = log6W + tg6W (3.11)
le le

and, for x G Z, to WASEP by

<rt{x) = - — flog&(*) - log&(* - 1)1. (3.12)
l e L Jle

For / : Z —>• R, let us define the discrete gradients as

and the discrete Laplacian as

:= v + V" fix) = f{x + 1) + / ( * - 1) - 2f(x).

Let Tt be the natural filtration of <rt, i.e. the <r-algebra generated by <rS9 s £ [0, t], A
direct computation [13] shows that <Jt(x), x G Z, satisfies the semimartingale equation

<%(*) = 5 c7' A fox) dt + dMe(x), (3.13)

where the Tt martingales Mt(x) have brackets

(3.14)

= \&{x-v) (3.15)

[(1 -
In the scaling limit Eq. (3.13) converges to the stochastic heat quation. The precise

statement is the following.
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Theorem 3 3 . For t G [0,T], r 6 R, let # ( r ) := i€-2t(e'lr) and regard it as a
random element in D([0, T]; C(R)). The family {££ }€>o is weakly convergent ass —• 0;
furthermore the weak limit is concentrated on C ([0, T]; C(R)) and coincides with the
solution of the stochastic heat equation, i.e.

i€ => 0 (3.16)

in D ([0, T\\ C(R)). Here 0 is the solution of (3.4) with initial datum 0O = exp{-/io},
ho as in Definition 2.2.

3.3 The proof of Theorem 2.3. Here we show how Theorem 3.3, together with the
properties of the limit point 0, implies our main result.

Proof of Theorem 2.3. Bearing in mind (3.11), the process Z€ > as defined in (2.14), can
be rewritten in terms of the scaled transformed process ££ as

Zlir) = - ^ log (£(r)) + V? \^e~2 - vt] t. (3.17)
le lie J

Since l i m ^ o y/z/le = 1 and there is a constant c such that \(K/le)^~2 — v£ \ < c for
all e G (0,1), we are left with establishing the weak convergence of — log (£* (r)) to h.
In order to do this, we extend the map #\ as defined in Theorem 3.2, to the measurable
map £ : D([0, T]; C(R)) -+ D([0, T]; C(R)) defined by

- | otherwise

and clearly 9 (£(r)) = - log ( £ (
By Theorem 3.3, ££ => ^ in D([0, T]; C(R)). We next note that $ is continuous

on the open subset D([0, T]; C+(R)) C i^([0, T]; C(R)). Using Theorem 3.1, (iii") we
have V (0 G £>([0, T]; C+(R))) = 1, so that we can apply [5, Theorem 5.1] and conclude

=^ §(0) = &(0) a.s. By Theorem 3.2, &(0) = h (in law) and we are done. •

4. Convergence of the Transformed Process

In this section we prove the scaling limit for the transformed process £e. We first obtain,
in Sect. 4.1, some moments estimates that imply the Holder continuity of the process.
In Sect. 4.2 we then establish a key estimate on the decay of the correlations. In Sect.
4.3 we finally complete the proof of Theorem 3.3 by showing compactness of ££ and
that any weak limit solves the stochastic heat equation. We will use some properties of
the transition probability for a random walk in Z that are proven in Appendix A.

We have to introduce some more notation. Let pe (x) be the Green function associated
with the drift term in Eq. (3.13), i.e. the function which solves

= e

plix) = S{x). (4.1)
We note that it can be interpreted as the transition probability for a symmetric random
walk in continuum time over Z.
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The semimartingale Eq. (3.13) can then be rewritten as

*), (4.2)
where

ft ° & GO := £ P t ( x ~ 2/>&(</) (4.3)

and f or s < t

N$$(x) := f p*_T o dMr (x) = V f pf _T(* - t/) dMr(y). (4.4)

We note that for every fixed t > 0, AT*(ar), s < Hs a ^5 martingale with bracket

(JV'GO , tf *G0>, = J2 f' P€t-r(x - 2/)2 d(M(y), M(y»T. (4.5)

4.7 Moments estimates. In this section we estimate the moments of &(#)>
- £8(x). By Eq. (3.14) we have

jt(x))t<ceZt{x? (4.6)

for some constant c. This bound allows to close the equations for the moments. In fact
it is the only property of the martingale term in (3.13) we are going to use here.

Before starting we note that there is the following a priori bound:

&G0 < exp{27c|x?| +7 , |* | + A,*} , (4.7)
and for all n, e and t we can find b = be such that

E*. (exp{2n7f|x?| + n7 e |x | + nA^}) < 6. (4.8)

This follows directly from the fact that |x?| is stochastically dominated by a Poisson
random variable with mean 2t (since the jump rates for x° are bounded by 2). From the
definitions (2.21) and (3.9), we obtain that for every m there is c such that for all e > 0,

|&G0m - &-(*)m| < c£* &(*)'», (4.9)
and by using again the fact that the jump rates are bounded (by 2) we have also that

^(l6W-^-W|>0)=0 (4.10)
which, together with (4.7) and (4.8), implies that for all n, m,

We start by proving that the Lp (P^r) norm of &(#) is bounded uniformly in e.
Lemma 4.1. For any p> 1, T > 0 ffore are a, c > 0 such that

sup sup e-a£l*' |fcGO||LP/p. \ < c (4.12)
t£[0,s-2T] xeZ V M«7
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Proof. For s < t we have

n = E*. (pf o & (x))n + E*, fdr (dT
Jo

(4.13)
where we recall He is defined in (2.19), &(x) in (3.9) and we shall use the representation
(2.21) for Ct(«).

The first term on the right hand side of (4.13) can be bounded using the hypothesis
on the initial condition. Indeed

M O & (*)llL»(pe)

< c, eai£'x' 5^pJ(y)cflI*lyl < 2ci cflI*W exp {c2a?^} (4.14)
y

in which we used (2.11) and the fact that exp{Ax} is an eigenfunction of A with
eigenvalue 2(cosh A — 1).

Taking the limit s ^ tin (4.13) and expanding the power on the right hand side we
get

exp {nc2a\e2t}

dT Yl & + ̂ f i (p*-T{x ~ y^^iVi)) , (4.15)
where we used (4.11), to exchange the limit with the expectation, and (4.14).

We next observe that

= \ ««r { ̂ f^1 [e2 '̂ - 1 - n (e2 '̂ - l)]

. l}] 1
n. (4.16)

On the other hand, if we apply the generator to a product of £ computed at different
points, He obeys the Leibniz rule. That is if a?, ^ Xj for i ^ j ,

Hs K(*,) •

Recalling thatp^ solves (4.1), formulae (4.15), (4.16) and (4.17) imply

.̂ /"+c4 eE^. / dr ] T I J p?_T(i - y,)^T(j/,) (4.18)



586 L. Beitini, G. Giacomin

and by using Holder inequality the second term in the right hand side of (4.18) can be
bounded by

c4 e f dr Y, TiPt-Ax ~ Vi) [E*. (Uyi))n] » • (4.19)
*=1

For t <T,a = na\, define

f(t) := sup e~a£W E' (t€-2t(x)n), (4.20)

the bounds (4.18) and (4.19) yield
pe~2t

f(t)<c5+c6ej dr
t=l

It will be shown in Appendix A that for any T > 0 there is a constant c = c(T) such
that for all t e [0, e'2T], e > 0,

sup p£(z) < 1 A ct~l/2. (4.22)

By repeating the estimate done in (4.14) we then obtain

7 ( e - 2 f - r ) - * . (4-23)

Finally, (4.21) and (4.23) imply that for every n there exists eg > 0 such that

(4.24)

hence the estimate (4.12) follows from the singular generalized Gmnwall ys Lemma (see
[14, Lemma 6, p. 33]) which states that (4.24) implies that for all T there is a constant
C = C(T, c8) such that supt<T f(t) < C. •

We now state and prove an Holder estimate in x for the process &(s)-

Lemma4.2. Forallp> 1, T > 0, a < 1/2 therearea,c>0such that

sup \Ux) - 6(2/)||Lpfp. x < ce"(W^I> (e\x - y|)a (4.25)

/or any i , y E Z a/ẑ / a// e > 0.

Pwo/ Recall the decomposition (4.2) and set

R\{x, y) := N$(x) - N$(y) = ]T T rf_T(*, y; z)dMT(z) (4.26)

in which we have introduced

gf_T(ar, y; z) := pj_T(x - z) - pf_T(y - z). (4.27)
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We shall apply the Burkholder-Davis-Gundy (BDG) inequality to the martingale

where c\ = ci(n) is a universal constant and

(4-29)

is the quadratic variation of B?(x, y), since Rl{x, y) is a bounded variation martingale.
The sum over r stands for the sum over the jump times r, i.e. the (a.s. countably many)
times for which the term in the sum does not vanish. This form of the BDG inequality
can be found in [23, 6 E.3].

We observe that if we could replace the quadratic variation on the right hand side of
(4.28) with the bracket process

(B*(x, y), R\x, y))s = £ f tf_T(*, y; zf d(M(z), M(z))T, (4.30)

then the bound (4.25) would follow from Lemma 4.1 and the Holder property for p\ (x).
We thus first show that the bracket process and the quadratic variation are close.

To do this, we take advantage of the fact that the quadratic variation minus the bracket
process is a martingale [23] and apply the BDG inequality also to this martingale. Let
us introduce

£><(*, y) := [#(*, y), # (* , y)]s - (#(x, y), # ( * , y)># (4.31)

which quadratic variation is

' , y), £>*(*, y)], = ^ ( /^(x,y)- i?T.(x,y))4

EE-^'^^^W-^-W]4, (4.32)

since (/£*(#, y), -R^x, y))5 is continuous and of bounded variation.
Partition[0, t]intosubintervalsX, := [i, i+l] fori = 0 , . . . , [t]-1 andl[t] :=

Using (4.9) we get

It] _

. (4.33)

Calling Qi the number of exchanges between the sites z and z +1 in the interval 2,,
we have

)4 Qi (1 + cy/efQt e4A* (4.34)
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as it follows from (2.21), (3.9) and (4.9). But the jump rates are bounded above by 2
and so by the fact that (4.34) is monotone in Q, and that the random variable Qi is
stochastically dominated by a Poisson random variable with mean 2 we obtain

exp {2(1 + cy/e)4n/n} exp(4Ac) < c4 eae^ (4.35)

in which c€(n) is the n**1 moment of a Poisson random variable with mean 2(1 +cy/e)4n.
The last inequality is then a consequence of Lemma 4.1 and C4 = C4(n) is independent
on e E (0,1).

From (4.33) and (4.35) we get
It)

[t]
\_,{x, zf) + sup (pj_,(y, ^)4) ca*l*'. (4.36)

5 6Ji J

From (A.5) we have that for all x9 z and all i = 0 , . . . , [t] and £ sufficiently small
ei-ste**) < 2ep€t_i(x,z). Using the inequality exp(ae\y\) < exp(aey) +

exp(—aey), the fact that cxp(aey) is an eigenfunction of A with eigenvalue 2(cosh(ae)—
1) and (4.22) we finally obtain, since t < e~2T,

ft j
C6c e 1 — - Tj3^«« v. egg: e , VH.J/;

where 6 > 0 can be arbitrarily chosen.
By using (4.6), (4.26), (4.28), (4.30), (4.32) and (4.37), we have

y ; fdTqUT(x,y;z)2ea£W, (4.38)

where we used again Lemma 4.1.
As indicated in Appendix A, for any T > 0, /? < 1/2 there is a constant c = c(/?, T)

such that for all t € [0, e~2T] and any x, y 6 Z,

sup |^r(ar, y; z)| = sup |pj(ar - z) - p\(y - z)\ < c -L |a' ~J^\ (4.39)
Z Z /t *P
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Let us now take the limit s 1 1 in (4.38) keeping in mind that lim^tt \N$(x) - Nf(x)\ = 0
PJ,# -a.s. (and that the same quantity is bounded by cy/e^t 0*0, for which all the moments
exist). Choose /? = a < 1/2 in (4.39) and 6 < 1/2. We get

+ (e|* - t/|)a) . (4.40)

On the other hand, because of our hypothesis (2.12) on the initial measure /ic, we
have

^pjj (^-yl)*, (4.41)

which used together with (4.40) in (4.2), yields (4.25). •

An analogous Holder estimate holds in the time variable t.

Lemma 4 3 . Forallb>0,p> 1, T > 0, a < 1/A there are a,c> 0 such that

W . \ <c [ ( £ 2 | * - * | )%£H (4.42)

, 5 e [0,5"2T] a/u/ a// e > 0.

Let ft > 0, in order to analyze the martingale term in (4.2) we write

*£*(*) - *t(*) = Wthix) - ^+A(ar)] + [AT^(x) - N*(x)]. (4.43)

In Appendix A we verify that for all /? < 1 there is c such that for all* e [0, £~2T],
0,

• (4.44)

By repeating the same steps of the previous lemma and choosing /? = 2a < 1/2 in the
above inequality, we obtain

/ <*r [pf,*.^* - y) - p?_T(x - y)]2 \\U

+c3 ea£^» / i2 a e [ dr(t- T)~ X*-la < c4 eaeW [(e2h)2a + 52"26] , (4.45)
Jo

where we used Lemma 4.1.
By the same argument
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e2"26 +
t+h

(4.46)

in which we used Lemma 4.1 and the bound (4.22).
Hence the bound (4.42) is implied by (4.45), (4.46) and the following estimate on

the initial datum £o

- V\

which is a direct consequence of (2.12). •

The next step is to obtain uniform Holder estimates from the lemmata we just proved.
We will use Kolmogorov Theorem as stated in [26, Th 2.1]. In our notation it becomes

Proposition 4.4. Let K be a compact subset ofRd and let {Xz }Z£K be a real valued
process for which there exist three strictly positive constants a\, a.2 and a^ such that

E(\Xz-X2,r)<a2\z-z'\d+a3 (4.47)

for all z,z' G K. Then there exists a modification X of X such that for every a £
[0,0*3/0*1), there is a constant c > 0 for which

<*!-,
(4.48)

Since we are interested only in the distribution of £ we shall not distinguish between
£ and the modification in the above proposition. The additional problem comes from
the fact that for e > 0, £t(x) is not continuous in t, so that^4.47) cannot be satisfied.
This problem will be overcome by defining a new process £t(x\ which is simply the
interpolation of the values of the previous process at integer times, and by estimating
the distance of £ and £ uniformly in space and time.

We start by establishing the uniform Holder estimate in the space variable for fixed
time.

Lemma 4.5. For any p > 1, T > 0, b < 1/2 and any compact set K C R there is
c> 0 such that

sup
*€[0,T]

sup . _ r'\*>
<c (4.49)

\LP[

for alls > 0.



Nonlinear SPDE's from Particle Systems 591

Proof. From the definitions (2.21) and (3.9) we get

6(r) = 6 ( W ) {cosh(7,(r - [r])) - crt([r] + l)sinh(7e(r - [r]))} . (4.50)

It is then straightforward to verify for each b' G (0,1/2) there is constant c\ such for all
n , r 2 G Rands G (0,1),

The p-moment of first term (resp. the second) on the right hand side can bounded by
using Lemma 4.2 (resp. Lemma 4.1). We then obtain that for all p > 0 there is a constant
C2 such that for all r,rf G K we have

e~V)V) " &-*«<*-Mr) < ci\rf - rf*. (4.52)

Choose p and 6' such that b' = 6 + (1/p) < 1/2 and apply Proposition 4.4 with a\ = p,
c*2 = C2 and ai^b'p — d = bd to get the result. D

Let us consider now the time dependence. To this purpose we introduce a new
process £t(r), t G R+, r G R, which is defined as

&00 := (W + 1 - t)fr](r) + 0 - lt]H[tW(r). (4.53)

Lemma 4.6. For an>? p > 1, T > 0, 6 < 1/4 a/u/ any compact set K C R
c > 0 swc/i that

sup H ( £ T . ' C " t ; V ) | I <c (4-54)
foralls>0.

Proof. It is very similar to the proof of Lemma 4.5. In fact

Chooser 6 (6,1/4) and note that £ > ) < ^](r)+^1 + 1 and?t(r) <
The result (4.54) follows then by using the bound (4.51) (and the analogous one for the
time dependence) to estimate the right hand side of (4.55) and by applying Lemmata
4.1,4.2,4.3 and Proposition 4.4. •

We are left with proving that £ and £ are uniformly close, i.e. if A" is a compact
subset of R, T, <J > 0, we want the measure of the set

B(S) := I sup sup |?,-*t(e-!r) - e.-*»(g~1r)| > S1 (4.56)
[«e[0,T] r€K J

to be small, i.e. vanishing with e. We need only a statement in probability, but a stronger
statement is available too, see formula (4.60) in the proof below.
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Lemma 4.7. For any S > 0, T > 0 and any compact set K C R,

L.(B(*)) = 0.

, min \x - e'lr\ < 1}

P/»o/ Define / C Z+ x Z as follows

/:={(»,*) : n = 0,...[

(4.57)

(4.58)

and observe that the cardinality of / is bounded by CK,T£~3> where CK,T < oo for
every T € (0, oo) and any compact set K. We claim that for b £ (0,1/4) there is c such
that for all (n,x)E /,

sup sup \tt(r) - (4.59)

If (4.59) is granted, (4.57) follows because for all p > 0,

E*. I sup ̂  sup |?«-*«(e~Ir) - 4-^(e"1»')|P i

< CK,T£~ sup E' sup
t6[n,n+l]

(4.60)

Choose then p > 3/b and apply the Chebyshev inequality to obtain (4.57).
We are left with the proof of (4.59). Let us fix (n, x) and start by observing that for

s e [n, n + 1] and r e[xyx+ 1],

»=o,i

by using Lemma 4.3 we thus get

sup sup
*€[n,n+l]

sup
[

(4.62)

In order to bound the second term in the right hand side of formula (4.62) we recall
that the jump rates are bounded by 2 so that if m = [p] + 1, we obtain

J,. ( sup \Ux + f) - tt(x + 0|m ) < EJ,# (U*
\ t € [ l ] / X

(4.63)
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in which Q is the number of jumps involving site x + i in the time interval [n, n + 1].
We have dominated Q (in the stochastic sense) by the number of jumps which occur in
a Poisson process with rate 2 in a unit time. The last inequality is finally a consequence
of Lemma 4.1 and what follows. Given N E N we have

^ V ^ ) " ± < 2 m + 1 2 > (4.64)

Choose then iV = | loge| and e < e(< 1), so that cNy/e < 1. Elementary computations
and the fact that eA'(l + cy/e)q - 1 < exp(Ac + cqyfe) - 1 < lecqyfe for all q < N
yield that the right hand side of (4.64) is bounded by

(leers™'2 J2 ̂ ^T- + ^ v T ~ CXp{2m " 2 } (4'65)

J9 O7p-2/,

By the choice of iV, the proof of (4.63) is completed. The claim (4.59) is then proven
by using (4.63) in (4.62). •

42 The key estimate. Up to now we did not fully exploit the content of the martingale
term in (3.13). In fact we only used the bound (4.6). In order to study the convergence of
it we have to show that, on the space-time scale we are considering, (M(x), M(x))t ->•
£&(x)2, and this will require some control over the decay in time of the correlations for
^. This is the key point in the proof of the scaling limit for &.

Lemma 4.8. For allT>0yS> 0, there area,e>0 such that

sup e"a£WE;f |E*# (v+&-*«(*)V~ &-**(*) | ^e-*,)| < c^"* (*-«)"* (4.66)

forallyfe< s < t <T and all e > 0.

The idea of the proof is to express the conditioned expectation in term of the process
£ until one obtains a closed scheme that can be iterated. It is however important to note
that the result does not reflect a scaling property: the statement of the lemma would be
false if in the left hand side of (4.66) we replace v + £ V~ € w ^ f V±Q2 anc^ ̂ e bound
we find (e3/2~s, not optimal) it is the result of a cancellation.

Proof. Let us introduce the notation

Kt(x) := V+K(*) V" P\{*)- (4.67)

For 0 < s\ < 82 < t> recalling (4.5), we have
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Kt-T(x ~ y) d(M(y), M(y))T Tix I . (4.68)
' J*x )

By using the decomposition

we thus get

+ V+Pt °{oW V~ N$(x) + S7+Nl(x) v~ Pt

where we considered the limit s2 t < using the fact that, as in (4.11),

E^. ( v + 6 - (*) V" &-(*) | ̂ ) = %. ( V + 6 W V" 6(«) | *".) •

The lemma will be proven by estimating the Ll (P^r) norm of the various terms in
the right hand side of (4.69).

We start by looking at the terms containing the intial datum £o>

K. (tv±Pt o&(*)]2) < Yl v±Pt(^ - y) v* pj(* - y')E*.

<c3ea£We-lt-i, (4.70)
where we used the hypothesis on fie, Cauchy-Schwarz inequality and the last inequality
follows from

EtV^Ctf)]2e"l»l < c H (4.71)
y

which is verified in Appendix A.
Now we control the martingale terms v ± ^ i - From (4.6) and (4.4) we get

, M(y))T

- «)"* (4.72)
y

in which we used Lemma 4.1 and (4.71).
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In order to estimate the last term in (4.69), we express (M(y), M(y))T as a function
of £t as in (3.15); keeping in mind (3.10) we obtain

/£,(*), (4.73)
L *• J

where

/ ^ . ( | ) (4.74)
y ^

IdTKt-^X ~ v)K. (v+Sr(y) v~ fr(
y Js

We start by estimating the easiest, which is i?,(x). By the definition of £t(x) we
have

) | < c 7 e ' 6 ( * ) , (4.75)

and, by Lemma 4.1, we then conclude

dT \K*~^X - y>\ K. (My?) <C9ea*M e*. (4.76)

To obtain a useful estimate of I}s{x) is more difficult: we have to exploit a hidden
cancellation which is revealed in Lemma A.I. As a consequence of that result l}tS(x)
can be rewritten as

dr/rt_T(*-y)E^(£T(y)2-«

+ E* Udx)2 I ̂ f ) V / dr KT(x - y). (4.77)
y Jt~s

By Lemma 4.1 the L1 (P^r) norm of the second term in the right hand side of (4.77)
is bounded by

dr r~i = 2 c
u

(4.78)
in which we used (4.71). But the L1 (P^) norm of the first term on the right hand side
of (4.77) is smaller than
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~ V)\

J2 f
y J>

fdr
y J>

e°e\y\ ^

where a < 1/4. The second inequality follows from Lemmata 4.2 and 4.3.
In order to estimate the right hand side of (4.79) we observe that, by (A.3),

fe~2T
Y, dr |vVr(y) v" P€T(y)\ eaeM (\y\

y Jo

re
< CU

~2T

y€Z

f£'2T
< ci5 dr ra 1A r~i < cX6 (4.80)

Keeping in mind that a < 1/4, the right hand side of (4.79) is thus bounded by
en eae\x\ ei~s. We have hence proven that, for some a G R+ and every S > 0,

(4.81)

Instead of estimating /t
3
 5, we note that it is of the same form of the left hand side

in (4.69). We have thus obtained a closed inequality. We next show it can be iterated
giving the bound (4.66). For y/e < s < t < T let us define

/.,,(*) := e-1 E^ |EJ, (v+£.-»*(*) V" &-*«(*) | ?.->.)]•
From (4.69), (4.70), (4.72), (4.73), (4.76) and (4.81) we obtain

[l+e* (t - a)"*] +£"2 (l +ei)

(af - j/)| /T,,(j/), (4.82)

and if we define
/«(*,«):= sup e - " W / M ( x ) ,

the inequality (4.82) implies

a£|a:| / a(r, s). (4.83)



Nonlinear SPDE's from Particle Systems 597

Because of the results stated in Lemmata A 3 and A.4, the above inequality can be
iterated, for e sufficiently small, and we obtain a convergent series. The estimate (4.66)
is thus proven. •

4.3 Proof of the scaling limit. In this section we prove the scaling limit for the process £
as stated in Theorem 3.3. We study the family of random variables £$ (r) = £e-it(e~l r),
e > 0 over D ([0, T]; C(R)) and we show that such a family is tight. We then prove that
the limit is concentrated on C ([0, T\\ C(R)). Taking the limit of £€ along a convergent
subsequence we show it satisfies a suitable martingale problem. By the existence of a
unique solution to the martingale problem, we finally conclude the proof.

The space C(R) is metrizable and a bounded metric which generates the topology
of uniform convergence over compact sets is

We recall that for a, b E R, a A b = min(a, b).

Proof of Theorem 3.3.
- Tightness and support properties

We use a tightness criterium due to Aldous and Kurtz [21, Th. 2.7], which in our
notation becomes

Proposition^. Let£€ € D([0,T];C(R)). Suppose that for each t 6 [0,T] thefamily
of random functions {tl}e>o is tight in C(R) and that for any S > 0 there exists a
process {A€(S)}e>o such that

K. {<?(&*.£)!*} < K. i^(S)\^} (4.85)
and

lim Tim E^ {A€(S)} = 0, (4.86)

then the family {£€ } e > 0 is tight in D ([0, T]; C(R)) and hencet by Prohorov's Theorem,
there is a sequence {£n}n=i,2,... such that(?n converges as n -> oo.

First of all observe that Lemma 4.1 and Lemma 4.5, together with [5, Theorem 8.2],
imply that {££}e>o is tight in C(R).

It is sufficient to choose

Ae(6)= sup * ( & , , # ) . (4.87)

The condition (4.85) is then obvious. We denote by 1B the characteristic function of the
event B(S) defined in (4.56) and we choose K = [-JV, N] in that definition. For any
<5, S1 > 0 and every JV G Z+ we have

\

J
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N

n=l

- ^ W l j J ,
hence, by Lemmata 4.6 and 4.7,

where a G (0,1/4). By the arbitrariety of 6' and JV we have verified also condition
(4.86) and this completes the proof of the tightness.

We observe that by Lemma 4.5 any limit point &(r) of f * (r) is a.s. a—holderian,
a e (0,1/2) in r for every t. By using Lemmata 4.6 and 4.7 it is straightforward to see
that£€C([0,T],C(R)) .

- Identification of the limit
In order to identify the limit of £€ we formulate the stochastic heat Eq. (3.1) as a

martingale problem which will be shown to be equivalent to the mild formulation (3.4).
In the following ft(r) denotes the canonical coordinate in C(R+, C(R)). Recall that 0o
is a random element in C(R) satisfying the growth condition (3.2).

Definition 4.10. The martingale problem. Let Q be a probability measure on C(R+,
C(R)) such that for all T > 0,

sup supe~alr| f ft(r)2dQ < oo (4.88)
t€[0,T]r€R J

for some a > 0 . The measure Q solves the martingale problem ifQ(fo G A) = P(#o G
A) for all Borel sets A C C(R) and for all (p G £>(R),

Mt(<p) := <Ju<p)-(Jo,<p)-\f d8<J9tVf'), (4.89)
^ Jo

ilt(p) := Mt(<p)2 - J ds Jdr fs(r?<p(r)2 (4.90)

are Q-local martingales.

The connection between the process 0 as defined in (3.4) and the martingale problem
in Definition 4.10 is made by the following proposition, which will be proven in Sect. 5.

Proposition 4.11. For every random function 9Q G C(R) satisfying (3.2), the martin-
gale problem has a unique solution Q. Moreover Q coincides with the law of the process
of the process 0 which solves (3.4).

By Lemma 4.1 and Fatou's Lemma, we obtain that any limit point £ of the family
{££}*>o satisfies

sup sup e-alrl E«, (6(r)2) < oo
te[0}T] r€R

so that the condition (4.88) is met.
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Since, by (2.10) and (3.9), £§ => 0O in C(R) the initial condition in the martingale
problem is also satisfied.
- Martingale relations.

In order to analyze the martingale structure of £€, we introduce the density field for
the transformed process. For all* G [0, T], <P € V(P0 let us define

Yt'(v) - e Y, Viex)^-2t(x). (4.91)
X

We also introduce

Mt
s(<p) := Yt'(fp) - Y0

£(p) -\e" f dse £ V 2 A&-».<*) ¥*«).

A\{<p) := Mf(^)2- /d 5 £ y;C-2 , (x ) 2 y»(^) 2 + iii(y) + «2(^), (4-92)

where

i?f(^):= f dseYi<p(ex)2

x \(s - (1 - e^-)2) te-2,(x? - \ e~l (1 - e^')26-a,(x) A ̂ -2,(»)j ,

J5(y>):= f dseYi<p(ex)2l;e-1

Jo * 2

(1 +e2^-) v " 6-*.(») V* &-*.(*)• (4-93)

The semimartingale Eq. (3.13) and (3.15) direcdy imply that M/(y>) e ylf (^) are
P^( -martingales. We are then left with studying the limit (along subsequences) of (4.92).
Let us first show that the error terms in (4.93) vanish in the limit e —> 0. From Lemma
4.1 and (4.75) it follows that for all <p € Z>(R) and all* € R+ there is c such that

K. (fl!(¥>)2) < ce1'2 , (4.94)

and so the i/2-norm of iif(vp) vanishes as e goes to zero. To prove the same for
we have to use the key Lemma 4.8. We have

h h
x B£. {v"^-^.'(x)V+6-a,

< c2 / ds f ds'
Jo Jo Xv

x K. Xt.-*A*?e-x |E«. (v"&-*.(0)V+e.-*.(0)| *"«-v) |} . (4-95)

since
* * (4-96)
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By Lemma 4.1 and the above inequality, we may assume sf > y/e. By Lemma 4.8
for every S > 0 there are C2, a > 0 such that for any x,t/GZ,/cG R+,

-2''(a:)2£-1 K. ( v - 6

Moreover by (4.96), Lemma 4.1 and the Cauchy-Schwarz inequality, there exists a
constant 03 such that for all x, y € Z, K G R+,

< c3 eM(l*Myb P^r (&-v<*) > #c) < c4 ea' *C|—1-Har|> ̂  ( 4 9 g )

where we used, in the last step, Chebyshev inequality and again Lemma 4.1.
By using the bounds (4.97) and (4.98) in (4.95), letting e -» 0 and then K -> oo we

have proven that
( 2 ) (4.99)

(4.100)

Fix (p e V(R) and rewrite M£(<p) as

W = Yt
€(<p) - Y^(v) ~\ I ds y/(^')

2 Jo
where i?|(^>) contains the errors coming from the approximations Aip(ex) ~ e2<p"(ex)
and e1* ~ 1. They are easily controlled.

For all N € Z+ let us define the stopping time rjsr on D([0, oo); C(R)) by

rN := inf{i : |Mt(^)| A \At(<p)\ > N}

with the standard convention that TN = +oo if |Mt(y>)| < N and |vlt(v?)| < N for all
t e R+. We denote by MTN (<p) (respectively ATN {<p)) the stopped martingale M.ATN (<p)
(respectively A.ATN(<p)).

Let Q£ the law of the canonical coordinate process over I>([0, T], C(R)) which
has the same law as £€. We have already proven the tightness of {Qe}€>o. For all 5, f,
0 < s < t < T, and every function F : JD([O, T]; C(R)) ->• R which is measurable
over D([0,«]; C(R)), continuous and bounded if restricted to C([0, T]; C(R)), we have
that for all converging subsequences Q€n => Q,

0 = UmfdQe» [M?»(<p) - MJ»(<p)] F = JdQ

0 = lim Jd<y» [AT
t»(<p) - AT

which follows from (4.92), (4.100), (4.94),(4.99) and [5, 5.2]. In fact [M?N(<p) -
MfN(<p)]F is continuous and bounded if restricted to C([0, T]\ C(R)). By the arbitra-
riety of F, s, t we conclude that M™(<p) and A™(<p) are Q-martingales. Moreover

lim TJV = +oo Q — a.s.,
N-+oo

which follows directly from the fact that any limit point Q is supported by C([0, T],
C(R)) for all T > 0. This implies that M(<p) and A((p) are Q-local martingales. •
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5. Properties of the Macroscopic Equations

In this section we characterize the solution of the KPZ equation as the weak limit
of the corresponding approximating problems. This is carried out by using the Cole-
Hopf transformation and the existence and uniqueness theorem for the stochastic heat
equation. We next prove the martingale formulation of the latter equation which has
been used in the identification of the limit for the transformed process.

Proof of Theorems 2.1 and 3.2. Fix K > 0 and let 0?(r) be the solution of (3.6). A
straightforward application of Ito calculus, see [3] for a similar computation, shows that
A*(r) := — log 0*(r) is a.s. differentiate and solves

where we recall CK is defined in (2.2). The renormalizing coefficient CK(0) arises from
the extra term in the Ito's calculus.

Since A*(r) is a.s. differentiable, Eq. (5.1) is equivalent to (2.3). To complete the
proof of (0 we need only to show (2.3) has a unique solution in the class of adapted
processes satisfying (2.5). Using the Cole-Hopf transformation this is equivalent to
the uniqueness of (3.6) under the growth condition (3.8), by Theorem 3.1, (i) we then
conclude.

Recall that the map # is defined in Theorem 3.2 and note that the weak conver-
gence of {h*}K>o in C ([0, T]; C(R)) is now equivalent to the weak convergence of
{P(0Kj}R>Q. The latter follows from the a.s. convergence, uniform in compact subsets
of R+ x R, of 0$(r) to 0t(r), Theorem 3.1 (ii) and from the a.s. positivity of 0t(r),
Theorem 3.1 (Hi).

This argument in fact proves Theorems 2.1, (ii) and 3.2 at the same time. •

Proof of Proposition 4.11. The existence result for the martingale problem may be easily
deduced from Theorem 3.1. However we do not need it since it follows, as shown in the
previous section, from the convergence (along subsequences) of ££.

We show next that we can extend the probability space to accommodate a suitable
Wiener process Wt together with the martingale solution ft: on this extended space ft
and Wt solve (3.4) (this is usually referred to as a Representation Theorem). By the
strong uniqueness of the stochastic heat equation, Theorem 3.1 (ii), we then conclude
that Q coincides with the law of 0. In particular this will prove that the martingale
problem has a unique solution.

To prove the Representation Theorem we follow the line of [19, Lemma 2.4]. By
Definition 4.10, there exists a sequence of stopping times {r/v} such that limjv-»oo T~N =
+oo (2-a.s., MTN (ip) is a square integrable martingale and ATN (<p) is a martingale. Let us
then consider the martingale measure, see [28, Ch.2], M(ds dr) associated to MTN (<p)
and notice that it is an orthogonal martingale measure, its quadratic variation measure
(M)(dsdx) is fs(r)2ds dr.

Possibly by extending the probability space (and consequently the filtration), we
introduce a cylindrical Wiener process Wt, independent of ft. Let us denote by Q! the
probability measure on the extended space. Set

(5.2)
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By direct computation one checks that Wf* = WfN, where Wt is a cylindrical Wiener
process, and that

/ (5.3)
Jo

so that
1 ptATff AtATjsj

> & - (/0, « = ~ / (/• > ^ ~ / (/^» rf^)' <5'4)
l Jo Jo

Q'-a.s.. By letting N go to infinity in (5.4) and using the hypothesis (4.88) one directly
shows that

f dQ' [(/,, <P)' (Gt * /o, <p) + jf (/,(Gt_5 • V) , dW#)] = 0 (5.5)
so that the quantity between square brackets is zero Q'-a-s.. By using a countable family
{(p) which separates points in C(R) we obtain that ft and Wt solve the stochastic heat
Eq. (3.4). •

A. Some Properties of the Transition Probability

We here state and prove some elementary properties of p\ (x), which is the probability
kernel for a symmetric random walk on Z defined in (4.1).

Let qt(x) be the transition probability kernel defined by

2
and let us express it in Fourier series

qt(x) = ^ - ^ dk eikx
 e-t{l-cosk\ (A.2)

Hence p£
t(x) = qey»t(x). By using (A.2) it is straightforward to verify the inequalities

(4.22), (4.39) and (4.44). In the same way one easily shows that there is c > 0 such that
f o r a l H > 0 , £ E (0,1),

sup ( v ^ t W l <c\At-* (A3)

and this implies (4.71).
Another useful representation for qtix) is

—tPn(x), (A.4)
n=0n!

where pn(x) is the probability that Sn = xy where {5n}n=o,i,2,... is a simple symmetric
random walk starting at 0. From this representation we immediately obtain that for any
0 < T\ < T2 and any x

sup qt(x) < exp(T2 - Tj) qTl(x). (A.5)
te[ThT2]
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Lemma A.l. Let Kt (x) be defined as in (4.67), then

J2 I dtKt(x) = O. (A.6)

Proof. It follows from a straightforward computation by using the representation of
p\ (x) in Fourier series (A.2). •

Lemma A.2. Let qt(x) be defined as in (A.1), then

J2 I dt |V+*GO V" qt(*)\ < 1. (A.7)

Proof. By Cauchy-Schwarz inequality

«*(«) V+ qt(x)\ <l^2 [v~<it(xj\21 | £ [v+g*(x)]21

and we stress that the inequality is strict because S?+qt(x) 4 SJ~qt(x).
By summing by parts and using (A.I), we obtain

Y, / dt [V^*)] = - / dtj\dt (qt(x)2) = 1,
*Jo Jo V

and (A.7) is proven. •

Lemma A3 . For each T > 0, a > 0, there exist eo>O and j3 < 1 such that

J2 dt\Kt(x)\ea*W<(3 (A.8)

for every e < eo-

Proof Let K > 0 and start by considering

(A.9)

By using (A.3) it can be bounded by

re~2Tf
<2ci /

JK

since

x
On the other side
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Vmfdt £ \Kt(x)\ ea'M = f & Yl I V+fc(*) V" fc<*)| (A.11)
X X

by the dominated convergence Theorem.
Choose K sufficiently large and then SQ small. Inequality (A.8) is then a consequence

of (A. 10) and Lemma A.2. •

Lemma A.4. For every T > 0, a > 0, there is c > 0 such that

fe~2T
V / dt \Kt(x)\ ea£W (T-eH) J < c (A.12)

xJ°
for every e > 0.

Proof Let us start by considering

e~2T
Y* f dt \Kt(x)\ ea€M {T-eHy1'

x Je-2T/2

which can be bounded by proceeding as in (A. 10). We obtain

/

e~2T 3 2 _ ,

_~2T/2 ~~
On the other side

fe~2T/2 ,
£ / dt |ff,<*)| e"M (T-e2t)"5

, pe-2T/2
< (T/2) 5 ] [ ] y dt \Kt{x)\ ea£l"l < c2. (A.13)

By Lemma A.3. •

B. Derivation of the Stochastic Burgers Equation as Scaling Limit of WASEP

The relation of the KPZ Eq. (1.1) with the (viscous) Burgers equation with conservative
noise it is rather well-known. The latter can be in fact obtained by introducing ut := Vht
and formally differentiating (1.1)

dtut = \&ut - \V (ti?) + VWt. (B.I)

The stochastic Burgers equation has been recently analyzed for the case of non
conservative noise, i.e. when the term VWt in (B.I) is replaced by Wu and in that case
it has been shown that the process has continuous (in time and space) trajectories [3,7].
Due to the extra spatial gradient in front of the stochastic term of (B.I) the natural state
space of the process is a distribution space. Thanks to the correspondence between SOS
and WASEP, see Sect.2.4, we have also a microscopic derivation of (B.I).
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In this case the macroscopic process u = ut is a distribution valued process on the
path space C ([0, T]; 2>'(R)) and it defined by

ut(<p) := ~ jdr ft, (r) <p'{r) = Jdr log0t(r) y/(r), (B.2)

where ht = ht(r) is the KPZ process and 6 = 0*(r) the solution of the stochastic heat
Eq. (3.4).

Theorem B.I. For <p G T>(R), t e [0, 21, introduce the fluctuation field for WASEP as

X£
t(<p) := V? Yl ̂ r ^ ) (B.3)

a/w/ regarc/ X£ = (Xf)te[o,T] <w a random element in D ([0,21; 2>'(R)).
Assume the initial distribution fi€ is such that the law offi£ ofCoO (defined in 2.21)

under fjt€ satisfies the hypotheses in Definition 2.2. Then

X£ => u (B.4)

in the topology of D ([0,21; 2>'(R)).

Sketch of the proof. It is analogous to Theorem 2.3. In fact it is easier to prove
the weak convergence in a finer (and metrizable) topology than in the natural topology
of D([0,21;2>'(R)). This will be possible because ut() is (a.s.) not worse than the
derivative of an Holder continuous function. Let

G := {X £ V'(R) : 3fx e C(R)

such that, Vy> £ 2>(R), X(<p) = - Jdr <p\r) / x ( r ) } , (B.5)

note that fx is unique up to a constant. Eliminate this ambiguity by requiring fx (0) = 1
and endow G with the metric

Qo(X,Y):=e(fxJY), (B.6)

where q is the metric in C(R) defined in (4.84).
Using the Cole-Hopf transformation as in Theorem 2.3, one shows X£ => u in the

topology of D ([0,21; G); the statement in Theorem B.I follows since the topology of
D ([0,21; 2>'(R)) is coarser. •

As an application we now show that the white noise is an invariant measure for the
stochastic Burgers equation.

Let v the white noise measure on £>'(R), i.e. the Gaussian measure with mean zero
and covariance

(ip i, (f2) (B.7)
J

with (pi e V(R).

Proposition B.2. The measure v is invariant for the process ut.
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Proof. We consider WASEP with initial distribution v\/2<> the Bernoulli measure on Q
with marginals 1/1/2 (tf"0*0 = ±1) = 1/2. Let F be a bounded and continuous function
on £>'(R), by [22, VIII 2.1], which characterizes the invariant measures for WASEP, we
have

Ki/2 (F(Xe
t))=Jdvl/2F(X£). (B.8)

Since

dv\ne% = e x P { — ^ (^) ^ ) r (B.9)

I 2 J
for all <f G X>(R), the right hand side of (B .8) converges to Jdi/ F and thus the invariance
of v follows from Theorem B.I. •

Acknowledgement. We are grateful to D.A. Dawson, G. Jona-Lasinio and E. Presutti for very fruitful discus-
sions. L.B. thanks for the warm hospitality the Courant Institute, where he benefitted from a very stimulating
atmosphere.

References

1. Albeverio, S., Rockner, M.: Stochastic differential equations in infinite dimension: Solutions via Dirich-
let forms. Probab. Theory Relat. Fields 89,347-386(1992)

2. Bertini, L., Cancrini, N.: The stochastic heat equation: Feynman-Kac formula and intermittence. J.
Stat. Phys. 78,1377-1401 (1995)

3. Bertini, L., Cancrini, N., Jona-Lasinio, G.: The stochastic Burgers equation. Commun. Math. Phys.
165,211-232(1994)

4. Bertini, L., Presutti, E., Riidiger, B., SaadaE.: Dynamicalfluctuationsatthe critical point: Convergence
to a non linear stochastic PDE. Theory Probab. Appl. 38,689-741 (1993)

5. Billingsley, P.: Convergence of probability measures. New York: Wiley 1968
6. Cassandro, M., Marra, R., Presutti, E.: Corrections to the critical temperature in 2d Ising systems with

Kac potentials. J. Stat. Phys. 78,1131-1138 (1995)
7. Da Prato, G., Debussche, A., Temam,R.: Stochastic Burgers equation. Nonlinear Differential Equations

Appl. 1,389-629(1994)
8. De Masi, A., Presutti, E., Scacciatelli E.: The weakly asymmetric exclusion process. Ann. Inst. Henri

Poincare\ Probab. et Stat. 25 1-38 (1989)
9. Dittrich, P.: Travelling waves and longtime behaviour of the weakly asymmetric exclusion process.

Probab. Theory Relat. Fields 86,443-455 (1990)
10. Dittrich, P., Gartner, J.: A central limit theorem for the weakly asymmetric simple exclusion process.

Math. Nachr. 151,75-93 (1991)
11. Esposito, R., Marra, R., Yau, H.T.: Diffusive limit of asymmetric simple exclusion; Rev. Math. Phys. 6,

1233-1267(1994).
12. Fritz, J., Riidiger, B. Time dependent critical fluctuations of a one dimensional local mean field model

Probab. Theory Relat. Fields 103,381^07 (1995)
13. Gartner, J.: Convergence towards Burgers equation and propagation of chaos for weakly asymmetric

exclusion process. Stoch. Processes Appl. 27,233-260(1988)
14. Haraux, A.: Nonlinear evolution equations - Global behavior of solutions. Lecture Notes in Mathematics

841, Berlin: Springer 1981
15. Jona-Lasinio, G.: Stochastic reaction diffusion equations and interacting particle systems. Ann. Inst.

Henri Poincare\ Phys. Theor. 55,751-758 (1991)
16. Jona-Lasinio, G., Mitter, P.K.: On the stochastic quantization of field theory. Commun. Math. Phys.

101,409-436(1985)
17. Kardar, M., Parisi, G., Zhang, Y.-C: Dynamical scaling of growing interfaces. Fhys. Rev. Lett. 56,

889-892(1986)
18. Kipnis, C , Olla, S., Varadhan, S.R.S.: Hydrodynamics and large deviations for simple exclusion process.

Commun. Pure Appl. Math. 42 115-137 (1989)



Nonlinear SPDE's from Particle Systems 607

19. Konno, N., Shiga, T.: Stochastic partial differential equations for some measure-valued diffusions.
Probab. Theory Relat Fields 79,201-225 (1988)

20. Krug, J., Spohn, H.: Kinetic roughening of growing surfaces. In: "Solids far from equilibrium: Growth,
morphology and defects". C. Godreche ed. Cambridge: Cambridge University Press, 1991

21. Kurtz, T.G.: Approximation of population processes. CBMS-NSF Reg. Conf. Series in Appl. Math. 36
(1981)

22. Liggett, T.M.: Interacting particles systems. Berlin: Springer, 1985.
23. Me"tivier, M.: Semimartingales: aA course on stochastic processes. Berlin New York: de Gruyter, 1982
24. Miiller, C: On the support of solutions to the heat equation with noise. Stochastics and Stochastics

Reports, 37,225-245 (1991)
25. Miiller, C, Tribe, R.: Stochastic p.d.e.*s arising from the long range contact an long range voter process.

Probab. Theory Relat. Fields 102,519-545 (1995)
26. Revuz, D., Yor, M.: Continuous martingales and Brownian motion. Berlin: Springer, 1991
27. Spohn, H.: Large scale dynamics of interacting particles. Berlin: Springer, 1991
28. Walsh: An introduction to stochastic partial differential equations. In: tcole d'tte de Probabilites de

Saint-Flour XIV, Lecture Notes in Mathematics n. 1180. Berlin: Springer, 1986

Communicated by J.L. Lebowitz




