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Abstract: We study a certain random growth model in two dimensions closely related
to the one-dimensional totally asymmetric exclusion process. The results show that the
shape fluctuations, appropriately scaled, converges in distribution to the Tracy–Widom
largest eigenvalue distribution for the Gaussian Unitary Ensemble (GUE).

1. Introduction and Results

The shape and height fluctuations in many 2-d random growth models are expected to
be of orderNχ , with χ = 1/3, if the mean of the linear size of the shape or the height
is of orderN . See [KS] for a review and [NP] for rigorous bounds onχ in first-passage
percolation.

In this paper we will consider a specific model. It can be given several probabilistic
interpretations, as a randomly growing Young diagram, a totally asymmetric one di-
mensional exclusion process, a certain zero-temperature directed polymer in a random
environment or as a kind of first-passage site percolation model. The model has the
advantage that we can prove thatχ = 1/3 and also compute the asymptotic distribution
of the appropriately rescaled random variable. Interestingly, the limit distribution that
occurs is the same as that of the scaled largest eigenvalue of anN × N random matrix
from the Gaussian Unitary Ensemble (GUE) in the limitN → ∞. The model in this pa-
per has many similarities with the problem of the distribution of the length of the longest
increasing subsequence in a random permutation where the same limiting distribution
andχ = 1/3 was found in [BDJ].

To define the model letw(i, j), (i, j) ∈ Z
2+, be independent geometrically distributed

random variables,
P[w(i, j) = k] = (1 − q)qk, k ∈ N,

where 0< q < 1. Let5M,N be the set of all up/right pathsπ in Z
2+ from (1,1)

to (M,N), i.e. sequences(ik, jk), k = 1, . . . ,M + N − 1, of sites inZ
2+ such that
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(i1, j1) = (1,1), (iM+N−1, jM+N−1) = (M,N) and(ik+1, jk+1)− (ik, jk) = (1,0) or
(0,1). Define the random variable

G(M,N) = max
π∈5M,N

∑
(i,j)∈π

w(i, j). (1.1)

We also define the closely related random variable

G∗(M,N) = max
π∈5M,N

∑
(i,j)∈π

w∗(i, j),

wherew∗(i, j) = w(i, j)+ 1, so thatP[w∗(i, j) = k] = (1 − q)qk−1, k ≥ 1. Clearly,

G∗(M,N) = G(M,N)+M +N − 1, (1.2)

since all paths have the same length. Using this random variable we can define, for each
t ≥ 0, a random subset of the first quadrant by

A(t) = {(M,N) ∈ Z
2+ ; G∗(M,N) ≤ t} + [−1,0]2. (1.3)

From the definition ofG∗(M,N) and the fact that we consider up/right paths it follows
thatA(t) has the form

∪rk=1[k − 1, k] × [0, λk]
for some integersλ1 ≥ λ2 ≥ · · · ≥ λr ≥ 1, so we can think ofA(t) as a Young
diagramλ = (λ1, . . . , λr ). If we think of t ∈ N as a discrete time variable,A(t) is
a randomly growing Young diagram. Let∂∗A(t) be those unit cubes adjacent toA(t)
that can be added toA(t) so that it is still a Young diagram, i.e. each cube in∂∗A(t)
must have a cube inA(t) or R

2 \ [0,∞)2 immediately below and to the left of it. The
fact that thew∗(i, j)’s are independent and geometrically distributed random variables
implies thatA(t + 1) is obtained by picking each cube in∂∗A(t) independently with
probabilityp = 1 − q and adding those cubes that were picked toA(t). (Recall that
P[w∗(i, j) = k + l|w∗(i, j) ≥ k] = P[w(i, j) = l], l ≥ 0, the lack of memory
property.) The starting configuration isA(0) = ∅ and∂∗A(0) = [0,1]2. In this model
G∗(M,N) = k means that the box[M − 1,M] × [N − 1, N ] is added at timek. This
growth model has been considered in [JPS].

This randomly growing Young diagram can also, equivalently, be thought of as a
certain totally asymmetric exclusion process with discrete time, compare [Ro] or [Li,
p. 412]. LetC(t) = ∂([0,∞)2 \ A(t)) and note thatC(t) consists of vertical and
horizontal line segments of length 1. To each vertical line segment we associate a 1
and to each horizontal line segment a 0. If we read the numbers alongC(t), starting
at infinity along the y-axis and ending at infinity along the x-axis, we get an infinite
sequenceX(t) = (. . . , x−1(t), x0(t), x1(0), x2(0), . . . ) of 0’s and 1’s, starting with
infinitely many 1’s and ending with infinitely many 0’s; we letx0 be the last number we
have before passing through the linex = y. We can think ofX(t) as a configuration
of particles, wherexk = 1 means that there is a particle atk, whereasxk = 0 means
that there is no particle atk. The stochastic growth ofA(t) described above corresponds
to the following stochastic dynamics of the particle system. At timet each particle
independently moves to the right with probability 1− q provided there is no particle
immediately to the right of it. Otherwise it does not move. The starting configuration
is xk(0) = 1(−∞,0](k). In this particle modelG∗(M,N) = k means that the particle
initially at position−(N − 1) has movedM steps at timek.

Our first result concerns the mean and large deviation properties ofG(M,N).
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Theorem 1.1.For eachq ∈ (0,1) andγ ≥ 1,

lim
N→∞

1

N
E[G([γN ], N)] = (1 + √

qγ )2

1 − q
− 1

.= ω(γ, q). (1.4)

Also,G([γN ], N) has the following large deviation properties. There are functionsi(ε)

and`(ε) (which depend onq andγ ), so that, for anyε > 0,

lim
N→∞

1

N2 logP[G([γN ], N) ≤ N(ω(γ, q)− ε)] = −`(ε) (1.5)

and

lim
N→∞

1

N
logP[G([γN ], N) ≥ N(ω(γ, q)+ ε)] = −i(ε). (1.6)

The functions̀ (x) andi(x) are> 0 if x > 0.

Note that the existence of the limit (1.4) follows by a subadditivity argument, so it is
the explicit form of the constant that is interesting. The large deviation result (1.6) has
been obtained in [Se2]. The theorem will be proved in Sect. 2.

The theorem implies that1
t
A(t) has an asymptotic shapeA0 ast → ∞, in the sense

that given anyε > 0,

(1 − ε)A0 ⊆ 1

t
A(t) ⊆ (1 + ε)A0

for all sufficiently larget . It follows from the definition ofA(t), (1.3), and Theorem 1.1
that

A0 = {(x, y) ∈ [0,∞)2 ; y + 2
√
qxy + x ≤ 1 − q}.

The boundary ofA0 consists of two line segments from the origin to(1 − q,0) and
(0,1 − q) and part of an ellipse that is tangent to thex- andy-axes.

We now want to understand the fluctuations ofA(t) around its asymptotic shape
A0, i.e. the fluctuations ofG([γN ], N) aroundNω(γ, q). Before we can formulate the
result we need some preliminaries. Let Ai(x) be the Airy function defined by

Ai (x) = 1

2π

∫ ∞

−∞
ei(t+is)3/3+ix(t+is)dt,

wheres > 0 is arbitrary. Consider theAiry kernel

A(x, y) = Ai (x)Ai ′(y)− Ai ′(x)Ai (y)

x − y
, (1.7)

as an integral kernel onL2[s,∞). The Fredholm determinant

F(s) = det(I − A) |L2[s,∞)=
∞∑
k=0

(−1)k

k!
∫

[s,∞)k
det(A(xi, xj ))

k
i,j=1d

kx (1.8)

is a distribution function. It is the distribution function of the appropriately scaled largest
eigenvalue of anN ×N random matrix from the Gaussian Unitary Ensemble (GUE) in
the limitN → ∞, the Tracy–Widom distribution, see [TW1]. The distribution function
F(s) can also be defined using a certain Painlevé II function,

F(s) = exp[−
∫ ∞

s

(x − s)u(x)2dx], (1.9)
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whereu(x) is the unique solution of the Painlevé II equation

u′′ = 2u3 + xu,

with the asymptoticsu(x) ∼ Ai (x) asx → ∞. The fact that the expressions (1.8) and
(1.9) are equal is proved in [TW1].

Theorem 1.2.For eachq ∈ (0,1), γ ≥ 1 ands ∈ R,

lim
N→∞ P[G([γN ], N)−Nω(γ, q)

σ (γ, q)N1/3 ≤ s] = F(s), (1.10)

where

σ(γ, q) = q1/6γ−1/6

1 − q
(
√
γ + √

q)2/3(1 + √
qγ )2/3. (1.11)

The theorem will be proved in Sect. 3. We have not proved convergence of the moments
of the rescaled random variable, see Remark 2.5. This theorem should be compared
with the result obtained in [BDJ], that if̀N(σ) is the length of a longest increasing
subsequence in a random permutationσ ∈ SN (all N ! permutations have the same
probability), then

lim
N→∞ P[(√N)−1/3(`N(σ )− 2

√
N) ≤ s] = F(s). (1.12)

Note that in both cases we have the same exponent 1/3, the standard deviation is∼
(mean)1/3

The proofs of Theorems 1.1 and 1.2 are based on the following result which will be
proved in Sect. 2.

Proposition 1.3.For anyM ≥ N ≥ 1,

P[G(M,N) ≤ t] = 1

ZM,N
∑
h∈NN

max{hi }≤t+N−1

∏
1≤i<j≤N

(hi − hj )
2

·
N∏
i=1

(
hi +M −N

hi

)
qhi ,

(1.13)

whereZM,N is the normalization constant (partition function).

This remarkable formula should be compared with the formula for the distribution
function for the largest eigenvalue,λmax, of anN ×N random matrix from GUE,

P[λmax ≤ t] = 1

ZN

∫
(−∞,t]N

∏
1≤i<j≤N

(xi − xj )
2
N∏
j=1

e
−2Nx2

j dNx. (1.14)

There is a clear similarity between the two expressions, so we can use the ideas developed
to investigate (1.14). Just as the right-hand side of (1.14) can be written as a Fredholm
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determinant, so can the right-hand side of (1.13). The kernel for (1.13) is theMeixner
kernel.

KM,N(x, y)

= κN−1

κN

MN(x)MN−1(y)−MN−1(x)MN(y)

x − y
(w

q
K(x)w

q
K(y))

1/2,
(1.15)

whereMN(x) = κNx
N + . . . are the normalized orthogonal polynomials with respect

to the discrete weight,K = M −N + 1,

w
q
K(x) =

(
x +K − 1

x

)
qx, x ∈ N. (1.16)

This Meixner kernel also appears in the recent paper [BO]. The polynomialMN(x) is
a multiple of the classical Meixner polynomialsmK,qN (x). Using the explicit generating
function for the Meixner polynomials, see [Ch], the appropriate asymptotics of the kernel
(1.15) can be analyzed. This will be done in Sect. 5.

Let u(i, j), (i, j) ∈ Z
2+, be independent exponentially distributed random variables

with parameter 1. LetH(M,N) be the analogue ofG(M,N) for these random variables,
i.e.

H(M,N) = max{
∑
(i,j)∈π

u(i, j) ; π ∈ 5M,N }. (1.17)

We can consider the related stochastically growingYoung diagram and totally asymmet-
ric exclusion process just as in the geometric case, where we now have continuous time.
This simple exclusion process is exactly the one considered by Rost, [Ro], see also [Li].
In this processX(t) = (ηk(t))

∞
k=−∞ ∈ {0,1}Z the initial configuration is 1(−∞,0](k)

and a particle (ηk = 1) jumps with exponential rate to the right one step provided there
is no particle atk + 1 (ηk+1 = 0). By taking theq → 1 limit in (1.13) we obtain

Proposition 1.4.For anyM ≥ N ≥ 1, t ≥ 0,

P[H(M,N) ≤ t] = 1

Z′
M,N

∫
[0,t]N

∏
1≤i<j≤N

(xi − xj )
2
N∏
j=1

xM−N
j e−xj dNx. (1.18)

Proof. If XL is geometrically distributed with parameter 1−1/L, thenL−1XL converges
in distribution to an exponential random variable with parameter 1. SinceG(M,N) is a
continuous function of thew(i, j)’s, Proposition 1.3 gives

P[H(M,N) ≤ t]

= lim
L→∞

1

ZM,N
∑
(∗)

∏
1≤i<j≤N

(hi − hj )
2
N∏
i=1

(
hi +M −N

hi

)
(1 − 1/L)hi

= lim
L→∞

LN
2

ZM,N(M −N)!
∑
(∗)

∏
1≤i<j≤N

(
hi − hj

L
)2

N∏
i=1

e−
hi
L

+o( 1
L
)
M−N∏
k=1

(
hi + k

L
)

= 1

Z′
M,N

∫
[0,t]N

∏
1≤i<j≤N

(xi − xj )
2
N∏
j=1

xM−N
j e−xj dNx,

where(∗) means summation over allh ∈ N
N such that max{hi} ≤ [Lt] +N − 1. ut
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Remark 1.5.The right-hand side in (1.18) is the probability that the largest eigenvalue
in the Laguerre ensemble is≤ t . It occurs in the following way. LetA be anN × M

rectangular matrix (N ≤ M) with entries that are complex Gaussian random variables
with mean zero and variance 1/2. Then the right-hand side in (1.18) is the distribution
function for the largest eigenvalue ofAA∗, see [Ja].

Theorem 1.6.For eachγ ≥ 1,

lim
N→∞

1

N
E[H([γN ], N)] = (1 + √

γ )2, (1.19)

and there are functionsi∗(ε) and`∗(ε) (which depend onγ ), so that for anyε > 0,

lim
N→∞

1

N2 logP[H([γN ], N) ≤ N((1 + √
γ )2 − ε)] = −`∗(ε) (1.20)

and

lim
N→∞

1

N
logP[H([γN ], N) ≥ N((1 + √

γ )2 + ε)] = −i∗(ε). (1.21)

Furthermore, assume thataN = O(N1/3) asN → ∞ and pickdN so thatdN − (1 +
1/

√
γ )aN = o(N1/3) asN → ∞. Then, for eachγ ≥ 1,

lim
N→∞ P[H(γN + aN,N)− (1 + √

γ )2N − dN

γ−1/6(1 + √
γ )4/3N1/3 ≤ s] = F(s). (1.22)

Proof. For the proof of (1.19) to (1.21) see Remark 2.3. Writec = (1 + √
γ )2 and

ρ = γ−1/6(1 + √
γ )4/3. Then, by Proposition 1.4,

P[H(γN + aN,N) ≤ cN + dN + ρN1/3s]

= 1

Z′
γN+aN ,N

∫
[0,cN+dN+ρN1/3s]N

1(x)2
N∏
j=1

x
αN
j e−xj dNx,

where1(x) = ∏
1≤i<j≤N(xj −xi) andαN = (γ −1)N+aN . By a standard argument,

see [Me, Ch. 5], [TW3] or Sect. 3, this equals the Fredholm determinant

N∑
k=0

(−1)k

k!
∫

[s,∞)k
det(ρN1/3K

αN
N (cN+dN+ρN1/3ξi, cN+dN+ρN1/3ξj ))

k
i,j=1d

kξ,

(1.23)
where

Kα
N(x, y) = κN−1

κN

`αN(x)`
α
N−1(y)− `αN(y)`

α
N−1(x)

x − y

(
xαe−xyαe−y

)1/2
is the Laguerre kernel. Here,

`αn(x) =
(

n!
(α + n)!

)1/2

(−1)nLαn(x) = κnx
n + . . .



Shape Fluctuations and Random Matrices 443

are the normalized associated Laguerre polynomials,∫ ∞

0
`αn(x)`

α
m(x)x

αe−xdx = δnm.

From asymptotic formulas for these polynomials it follows that

lim
N→∞K

αN
N (cN + dN + ρN1/3ξ, cN + dN + ρN1/3η) = A(ξ, η). (1.24)

This can be proved in the same way as the corresponding results for Meixner polynomials,
see Sects. 3 and 4, by using the integral representation

Lαn(x) = ex

2πi

∫
C

e−xzzn+α

(z− 1)n+1dz,

whereC is a circle surroundingz = 1. Using (1.23), (1.24) and some estimates (compare
Lemma 3.1) we obtain

lim
N→∞P [H(γN + aN,N) ≤ cN + dN + ρN1/3s]

=
∞∑
k=0

(−1)k

k!
∫

[s,∞)k
det(A(ξi, ξj ))

k
i,j=1d

kξ = F(s).

We will not present all the details since they are similar to the proof of Theorem 1.2.ut
Using this result we can get a fluctuation theorem for Rost’s totally asymmetric

simple exclusion process defined above. The random variableH(N,M) is the first time
at which the particle starting at−(N − 1) has moved exactlyM steps to the right. If we
defineY (k, t) = ∑

j>k ηj (t) to be the number of particles to the right ofk at time t ,
thenY (k, t) > mmeans that the particle that starts at−m has moved≥ m+ k+ 1 steps
at timet . Hence

P[Y (k, t) ≤ m] = 1 − P[H(m+ k + 1,m+ 1) ≤ t].
Using this relation and (1.19) to (1.21) we obtain the following result first proved by
Rost, [Ro],

1

t
Y ([ut], t) → 1

4
(1 − u)2

almost surely ast → ∞, |u| ≤ 1. Now, using (1.22) it is fairly straightforward to show
the following result.

Corollary 1.7. For eachu ∈ [0,1),

lim
t→∞ P[Y ([ut], t) ≤ t

4
(1 − u)2 + (1 − u)2/3

(1 + u)1/3
ξ t1/3] = 1 − F(−ξ).

Remark 1.8.We can interpret Theorems 1.1 and 1.2 (and analogously Theorem 1.6)
as a result for a kind of zero-temperature directed polymer or equivalently a directed
first-passage site percolation model in the following way.

Let Sk be the simple random walk inZ starting at 0 at time 0 and ending at 0 at
time 2N + 2. Denote the set of all possible paths byPN . Let v(i, j), (i, j) ∈ Z

2 be



444 K. Johansson

independent, identically distributed random variables, and letβ > 0. OnPN we put the
random path probability measure

Q
β
N [S] = 1

C
β
N

exp(−β
2N∑
k=1

v(k, Sk)),

S ∈ PN , whereCβN is the normalization constant. This measure describes a directed
polymer (S) fixed at both endpoints at inverse temperatureβ in the random environ-
ment given by thev(i, j)’s, see [Pi]. Thefree energyis −β−1 logCβN , and in the zero
temperature limitβ → ∞ this becomes

FGSN = min
Z∈PN

2N∑
k=1

v(k, Sk), (1.25)

the ground state energy. By rotating the coordinate system by the angle−π/4 it is seen
that (1.25) can, equivalently, be thought of as a first-passage time in a directed first
passage site percolation model. Letu(i, j), (i, j) ∈ R

2+, be independent, identically
distributed random variables (with the same distribution as thev(i, j)’s). ThenFGSN has
the same distribution asF(N,N), where

F(M,N) = min
π∈5M,N

∑
(i,j)∈π

u(i, j).

(Theu(i, j)’s are usually thought of as passage times andF(M,N) is the minimal flow
time from(1,1) to (M,N). Hence it is natural to assume thatu(i, j) ≥ 0, but this will
not be the case below.) We can define a random shape

B(t) = {(M,N) ∈ Z
2+;F(M,N) ≤ t} + [−1,0]2.

Setu(i, j) = α − w(i, j), whereα > αmin = (1 − q)−1(q + √
q) (this condition onα

ensures thatB(t) will grow); w(i, j) are the geometrically distributed random variables
considered above. Then clearly,

F(M,N) = α(M +N − 1)−G(M,N). (1.26)

Let γ ≥ 1, setx̂(γ ) = (1 + γ 2)−1/2(γ,1), a unit vector and[nx̂(γ )] = ([Nγ ], N),
([·] the integer part), whereN = [(1 + γ 2)−1/2n], so that[nx̂(γ )] is a lattice site near
nx̂(γ ). Let Tn(γ ) be the first times ≥ 0 for whichB(s) reaches[nx̂(γ )],

Tn(γ ) = inf {s ≥ 0; [nx̂(γ )] ∈ B(s)}.
Clearly, by the definition ofB(s) and Eq. (1.26),

Tn(γ ) = α([γN ] +N − 1)−G([γN ], N),
whereN = [(1 + γ 2)−1/2n].

Theorem 1.1 implies that for eachq ∈ (0,1) andγ ≥ 1,

lim
n→∞

1

n
E[Tn(γ )] = 1√

1 + γ 2
[α(γ + 1)− (1 + √

qγ )2

1 − q
+ 1] .= µ(γ ).
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Also, Tn(γ ) has large deviation properties similar to those forG([γN ], N). Using this
result we can compute the asymptotic shape ofB(t). It follows from Theorem 1.2 that

P[ Tn(γ )− nµ(γ )

(1 + γ 2)−1/6ρ(q, γ )n1/3 ≤ s] → 1 − F(−s),
asn → ∞.

Conjecture 1.9.Is the result forG([γN ], N) limited to geometric and exponential ran-
dom variables? Normally, we expect limit laws for appropriately scaled random variables
to be independent of the details. It is therefore natural to conjecture that if thew(i, j)’s
are i.i.d. random variables with some suitable asumptions on their distribution, then
there are constantsa andb so that(G([γN ], N)− aN)/bN1/3 converges to a random
variable with distributionF(s). By Remark 1.8 this leads to a related conjecture for
directed first-passage site percolation.

2. The Coulomb Gas

2.1. Combinatorics.The key combinatorial ingredient is the Knuth correspondence in-
troduced in [Kn]. It generalizes the Schensted correspondence [Sc] which is used in
[BDJ]. Write [N ] = {1, . . . , N}. Let MM,N denote the set of allM × N matrices
A = (aij ) with non-negative integer elements, and letMk

M,N be the subset of those

matrices that satisfy
∑M
i=1

∑N
j=1 aij = k. A two-rowed array

σ =
(
i1 . . . ik
j1 . . . jk

)

is called a generalized permutation if the columns
(
ir
jr

)
are lexicographically ordered, i.e.

eitherir < ir+1 or ir = ir+1, jr ≤ jr+1. There is a one-to-one correspondence between
the setSkM,N of all generalized permutations of lengthk, where the elements in the upper

row come from[M] and the elements in the lower row from[N ], andMk
M,N defined

by σ → f (σ) = A = (aij ), where

aij = #times

(
i

j

)
occurs inσ.

We say that
(ir1
jr1

)
, . . . ,

(irm
jrm

)
, r1 < r2 < · · · < rm is an increasing subsequence inσ if

j1 ≤ j2 ≤ · · · ≤ jrm . Let `(σ ) denote the length of a longest increasing subsequence in
σ .

Example.The generalized permutatation(
1 1 1 2 2 2 3 3 4 4
1 2 2 2 2 2 1 2 1 3

)

corresponds to 


1 2 0
0 3 0
1 1 0
1 0 1


 .

A longest increasing subsequence is 1 2 2 2 2 2 2 3 sò(σ ) = 8.
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Recall from Sect. 1 that5M,N denotes the set of all up/right pathsπ from (1,1) to
(M,N) through the sites(i, j) with 1 ≤ i ≤ M, 1 ≤ j ≤ N .

Lemma 2.1.For eachA ∈ Mk
M,N ,

max{
∑
(i,j)∈π

aij ; π ∈ 5M,N } = `(f−1(A)). (2.1)

Proof. This is clear from the definitions. That we go to the right corresponds to the fact
that ir1 ≤ · · · ≤ irm and that we go up corresponds tojr1 ≤ · · · ≤ jrm (the upper row
gives row indices whereas the lower row gives column indices in the matrix).ut

Now, Knuth has defined a one-to-one mapping from the setSkM,N to pairs(P,Q)
of semi-standard Young tableaux of the same shapeλ, which is a partition ofk, λ ` k,
whereP has elements in[N ] andQ has elements in[M]. (More information on Young
tableaux can be found in [Sa] and [Fu].) This correspondence has the property that if
σ → (P,Q) andP,Q have shapeλ, then`(σ ) = the length of the first row,λ1, in λ.
ConsiderG(M,N) defined by (1.1). TheM × N matrixW = (w(i, j)) is a random
element inMM,N . Let

S(M,N) =
M∑
i=1

N∑
j=1

w(i, j)

and
pM,N(t) = P[G(M,N) ≤ t].

Then,

pM,N(t) =
∞∑
k=0

P[G(M,N) ≤ t |S(M,N) = k]P[S(M,N) = k]. (2.2)

For a fixedA ∈ Mk
M,N we have

P[{A}] =
∏
i,j

(1 − q)qaij = (1 − q)MNqk,

since
∑
i,j aij = k. We have proved

Lemma 2.2.The conditional probabilityP[·|S(M,N) = k] is the uniform distribution
onMk

M,N .

This lemma is the reason that we choose thew(i, j)’s to be independent and geomet-
rically distributed. Note that

P[S(M,N) = k] = #Mk
M,N(1 − q)MNqk. (2.3)

Let L(λ,M,N) denote the number of pairs(P,Q) of semi-standard Young tableaux
of shapeλ, such thatP has elements in[N ] andQ has elements in[M]. Combining
Lemma 2.1, Lemma 2.2 and the Knuth correspondence we see that

P[G(M,N) ≤ t |S(M,N) = k] = 1

#Mk
M,N

∑
λ`k,λ1≤t

L(λ,M,N). (2.4)

To computeL(λ,M,N) we use
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Lemma 2.3.The number of semi-standard tableaux of shapeλ and elements in[N ]
equals ∏

1≤i<j≤N

λi − λj + j − i

j − i
.

Proof. We have two formulas for the Schur polynomial inN variables associated with
the partitionλ, [Sa, Fu],

sλ(x) =
∑
T

xT = det(xλi+N−i
j )1≤i,j≤N

det(xN−i
j )1≤i,j≤N

,

where the sum is over all semi-standardλ-tableauxT with elements in[N ] andxT =
x
m1
1 . . . x

mN
N with mj equal to the number of timesj occurs inT . Hence, evaluating the

Vandermonde determinants,

sλ(1, x, . . . , x
N−1) = xr

∏
1≤i<j≤N

xλi−λj+j−i − 1

xj−i − 1
,

wherer = ∑N
i=1(i− 1)λi . The number of semi-standard tableaux with elements in[N ]

equals

sλ(1,1, . . . ,1) = lim
x→1

sλ(1, x, . . . , x
N−1) =

∏
1≤i<j≤N

λi − λj + j − i

j − i
.

This completes the proof of the lemma.ut
It follows from Lemma 2.3 that

L(λ,M,N) =
∏

1≤i<j≤M

λi − λj + j − i

j − i

∏
1≤i<j≤N

λi − λj + j − i

j − i
. (2.5)

We assume from now on thatM ≥ N , the other case is analogous by symmetry. Since
the numbers in the columns inP andQ are strictly increasing we must haveλi = 0 if
N < i ≤ M. Hence

L(λ,M,N) =
∏

1≤i<j≤M

(
λi − λj + j − i

j − i

)2 N∏
i=1

M∏
j=N+1

(
λi + j − i

j − i

)
.

Let hj = λj + N − j , j = 1, . . . , N , so thath1 = λ1 + N − 1, hN = λN ≥ 0 and
h1 > h2 > · · · > hN . Then

L(λ,M,N) =
∏

1≤i<j≤N

(hi − hj )
2

(j − i)2

N∏
i=1

M∏
j=N+1

hi + j −N

j − i

=
N−1∏
j=0

1

j !(M −N + j)!
∏

1≤i<j≤N
(hi − hj )

2
N∏
i=1

(hi +M −N)!
hi ! .

(2.6)
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The condition
∑N
j=1 λj = k translates into

∑N
j=1 hj = k +N(N − 1)/2 andλ1 ≤ t to

h1 ≤ t +N − 1. By (2.2), (2.3) and (2.4) we have

pM,N(t) =
∞∑
k=0

(1 − q)MNqk
∑

λ`k,λ1≤k
L(λ,M,N),

and inserting (2.6) yields

pM,N(t) = (1 − q)MN

N ! q−N(N−1)/2
N−1∏
j=0

1

j !(M −N + j)!

×
∞∑
k=0

∑
h∈NN∑

hi=k+N(N−1)/2
max{hi }≤t+N−1

∏
1≤i<j≤N

(hi − hj )
2
N∏
i=1

(hi +M −N)!
hi ! q

∑N
i=1 hi ,

where we have used the symmetry under permutation of thehi ’s. Summing overk gives
all the possible values of

∑
hi , so we obtain

pM,N(t) = 1

ZM,N
∑
h∈NN

max{hi }≤t+N−1

∏
1≤i<j≤N

(hi − hj )
2
N∏
i=1

w
q
M−N+1(hi), (2.7)

wherewqK(x) is given by (1.16) and

ZM,N = qN(N−1)/2(1 − q)−MN
N−1∏
j=0

j !(M −N + j)!. (2.8)

This proves Proposition 1.3.ut

2.2. The large deviation estimate.In order to investigate the location of the rightmost
charge in (2.7) and prove large deviation formulas we rescale the discrete Coulomb gas
(2.7). LetM = [γN ], γ ≥ 1 fixed, andK = K(N) = [γN ] −M + 1. SetAN = 1

N
N,

AN(s) = {x ∈ AN ; x ≤ s} and

V
γ,q

N (t) = − 1

N
logwqK(N)(Nt), t ≥ 0.

Using Stirling’s formula we see that

lim
N→∞V

γ,q

N (t) = t log
1

q
− (t + γ − 1) log(t + γ − 1)

+ t log t + (γ − 1) log(γ − 1)
.= V γ,q(t)

(2.9)

uniformly on compact subsets of[0,∞). (We will often omit the superscriptsγ andq.)
Rescaling the variables in (2.7) by settinghi = Nxi , xi ∈ AN we see that (2.7) can be
written

pN(t)
.= pM(N),N (t) = ZN(

t
N

+ 1 − 1
N
)

ZN
, (2.10)
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where

ZN(s) =
∑

x∈AN(s)
N

1N(x)
2 exp

(−N N∑
j=1

VN(xj )
)

(2.11)

andZN = ZN(∞). Here1N(x) = ∏
1≤i<j≤N(xj − xi) is the Vandermonde determi-

nant.
When investigating the large deviation properties ofpN(t) we may just as well

consider more general confining potentialsVN . Assume thatVN : [0,∞) → R,N ≥ 1,
satisfy

(i) VN is continuous,N ≥ 1.
(ii) There are constantsξ > 0, T ≥ 0 andN0 ≥ 1 such that

VN(t) ≥ (1 + ξ) log(t2 + 1) (2.12)

for t ≥ T andN ≥ N0.
(iii) VN(t) → V (t) uniformly on compact subsets of[0,∞).

Set forx ∈ A
M
N andβ > 0,

QM,N(x) = |1M(x)|β
M∏
j=1

exp(−βN
2
VN(xj )).

(ThisM is not the same as the previousM.) Define the partition functions

ZM,N(t) =
∑

x∈AN(t)
M

QM,N(x),

ZM,N = ZN,M(∞) and the probability measure

PM,N [B] = 1

ZM,N

∑
x∈B

QM,N(x),

B ⊆ N
M . We are interested in the distribution of the position of the rightmost charge,

max1≤k≤M xk. Its distribution function is given by

FM,N(t) = PM,N [maxxk ≤ t] = ZM,N(t)

ZM,N
. (2.13)

(If M = N we writeFN(t).)
In order to formulate the large deviation results forFN(t) we need some results

from weighted potential theory, [ST]. The results we need differ from the usual ones
since we are interested in the continuum limit of a discrete Coulomb gas, so that the
particle density of the rescaled gas is always≤ 1. Hence, the equilibrium measures
will be absolutely continuous with a densityφ satisfying 0≤ φ ≤ 1. Let As denote
the set of allφ ∈ L1[0, s) such that 0≤ φ ≤ 1 and

∫ s
0 φ = 1, 1 ≤ s ≤ ∞. Given

V : [0,∞) → R, continuous and such that there is aδ > 0 and aT ≥ 0 such that

V (t) ≥ (1 + δ) log(t2 + 1) (2.14)
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for t ≥ T , we set

kV (x, y) = log |x − y|−1 + 1

2
V (x)+ 1

2
V (y)

and

IV [φ] =
∫ s

0

∫ s

0
kV (x, y)φ(x)φ(y)dxdy,

for φ ∈ As .
The proof of the next proposition is similar to the corresponding result in weighted

potential theory. See [DS] and also [LL] where a very similar problem is treated.

Proposition 2.1.For eachs ∈ [1,∞] there is a uniqueφsV ∈ As such that

inf
φ∈As

IV [φ] = IV [φsV ] = F sV .

The extremal functionφsV has compact support. (Ifs = ∞ we will drop the superscript.)

Let bV = sup(suppφV ) be the right endpoint of the support ofφV . SetJ (t) = 0 for
t ≤ bV and

J (t) = inf
τ≥t

∫ ∞

0
kV (τ, x)φV (x)dx − FV (2.15)

for t ≥ bV . Also, set

L(t) = 1

2
(F tV − FV )

for t ≥ 1. The next theorem gives the large deviations for the distribution functionFN(t)

defined by (2.13)

Theorem 2.2.Assume thatVN(t) satisfies the assumptions (i)–(iii) above. Then

lim
N→∞

1

N2 logFN(t) = −βL(t) (2.16)

for any t ≥ 1 andL(t) > 0 if t < bV . Assume furthermore thatJ (t) > 0 for t > bV .
Then

lim
N→∞

1

N
log(1 − FN(t)) = −βJ (t) (2.17)

for all t .

We postpone the proof to Sect. 4.

Remark 2.3.The same result is true for a continuous Coulomb gas onR with density

1

Z
β
N

|1N(x)|β exp(−βN
2

N∑
j=1

V (xj )), (2.18)

on R
N , which occur in random matrix theory. The choiceβ = 2 andV (t) = 2t2

corresponds to the Gaussian Unitary Ensemble (GUE), compare (1.14). We assume that
V is continuous and satisfies (2.14). In this caseAs is replaced byM1(s), the set of all
probability measures on(−∞, s), andφV (x)dx is replaced by the equilibrium measure
dµV (t), see [Jo]. The proof is essentially the same. The formula (2.16) for certainV

is a consequence of the result in [BG], see also [HP]. Also, (2.17) has been proved
in the caseV (t) = t2/2 in [BDG]. If we take (2.18) on[0,∞)N with β = 2 and
V (t) = −(M/N − 1) log t + t we get the measure in (1.18), and in this way we can
prove (1.19) to (1.21).
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We can now apply Theorem 2.2 to the model we are interested in. It is straightforward to
verify thatV γ,qN satisfies the conditions (i) - (iii) with limiting external potentialV γ,q(t).
Write bV γ,q = b(γ, q). The computation ofφV γ,q will be outlined in Sect. 6. We have

b(γ, q) = (1 + √
qγ )2

1 − q
.

If γ ≥ 1/q, then

φV γ,q (t) = v(
2

c
(t − a)− 1), a ≤ t ≤ b,

wherea = (1−√
qγ )2

1−q , c = b(γ, q)− a and

v(x) = 1

2π
[arctan(

Dx + 1√
1 − x2

√
D2 − 1

)− arctan(
Bx + 1√

1 − x2
√
B2 − 1

)], (2.19)

B = (γ + q)/2
√
qγ ,D = (1 + qγ )/2

√
qγ . If γ < 1/q, then,

φV γ,q (t) =
{

1, if 0 ≤ t ≤ a

v(2
c
(t − a)− 1), if a ≤ t ≤ b,

where

v(x) = 1

2π
[π − arctan(

Dx + 1√
1 − x2

√
D2 − 1

)− arctan(
Bx + 1√

1 − x2
√
B2 − 1

)] (2.20)

with a, c, B,D as before.
We will not discuss the explicit form of the lower tail rate function. The upper tail

rate function is given by

J (t) = c

8
√
qγ

∫ x

1
(x − y)[ γ − q

y + B
+ 1 − qγ

y +D
] dy√
y2 − 1

, (2.21)

with c, B,D as above andx = 2(t − a)/c − 1. Using this formula we can show that
(see Sect. 6) there are constantsc1 > 0 andc2 > 0 so that

J (b + δ) ≥
{
c1δ

3/2 if 0 ≤ δ ≤ 1
c2δ if δ ≥ 1

(2.22)

and

J (b + δ) = 2(1 − q)3/2γ 1/4

3q1/4(
√
q + √

γ )(1 + √
qγ )

δ3/2 +O(δ5/2). (2.23)

In particularJ (t) > 0 if t > b(γ, q).
From (2.10), (2.13) and Theorem 2.2 we obtain

lim
N→∞

1

N2 logpN(Nt) = −2L(t + 1) (2.24)

and

lim
N→∞

1

N
log(1 − pN(Nt)) = −2J (t + 1) (2.25)

for eacht ≥ 0. These formulas imply Theorem 1.1 with̀(ε) = 2L(bV − ε) and
i(ε) = 2J (bV +ε). By Theorem 2.2 and (2.22) we havei(ε) > 0 and`(ε) > 0 if ε > 0.

By a superadditivity argument, the limit (2.25) actually gives a large deviation esti-
mate for allN , compare [Se1].
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Corollary 2.4. For all t ≥ 0 andN ≥ 1,

1 − pN(Nt) ≤ exp(−2NJ(t + 1)). (2.26)

Proof. For 1≤ M1 ≤ M2 and 1≤ N1 ≤ N2 we letG[(M1, N1), (M2, N2)] denote the
maximum of

∑
(i,j)∈π w(i, j) over all up/right paths from(M1, N1) to (M2, N2). Note

that if 1 ≤ M1 < M2 and 1≤ N1 < N2, then

(i) G[(M1+1, N1+1), (M2, N2)] andG[(1,1), (M2−M1, N2−N1)] are identically
distributed.

(ii) G[(1,1), (M1, N1)] andG[(M1 + 1, N1 + 1), (M2, N2)] are independent. Since
[2γN ] ≥ 2[γN ], we have

(iii) G[([γN ]+1, N+1), ([2γN ],2N)] ≥ G[([γN ]+1, N+1), (2[γN ],2N)]. Write
aN(t) = 1 − pN(Nt) = P[G((1,1), ([γN ], N)) > Nt]. Then, by (i) and (iii),

aN(t) ≤ P[G(([γN ] + 1, N + 1), ([2γN ],2N)) > Nt]
and hence, by (ii),aN(t)2 ≤ a2N(t). Repeated use of this inequality yields
N−1 logaN(t) ≤ (2kN)−1 loga2kN (t), and by lettingk → ∞ and using (2.25)
we findN−1 logaN(t) ≤ −2J (t + 1). ut

Remark 2.5.We cannot prove convergence of the moments of the rescaled random vari-
able in Theorem 1.2 since we have no finiteN estimate ofP[G([γN ], N) − ωN ≤
−sN1/3] for s > 0 large. This would require an estimate of the finiteN Fredholm
determinant. In the other direction we can use the estimate in Corollary 2.4. The same
remark applies to Theorem 1.6.

Remark 2.6.In [BR] it is proved by Baik and Rains that if we consider permutations
with certain restrictions we can get the Tracy–Widom distributions for GOE and GSE
as limiting laws for longest increasing and decreasing subsequences. By considering a
restricted geometry we can obtain the Tracy–Widom distribution for GOE, [TW2], also
in the present setting. Letw(i, j) , 1 ≤ i ≤ j be independent geometrically distributed
random variables,P[w(i, j) = k] = (1 − q)qk for 1 ≤ i < j andP[w(i, i) = k] =
(1 − √

q)qk/2 for i ≥ 1. Setw(i, j) = w(j, i), if i > j ≥ 1, so thatA = (w(i, j)) is a
symmetric matrix. The Knuth correspondence mapsA to a pair of semistandard Young
tableaux(P,Q) with Q = P , i.e.A maps to a single semistandard Young tableaux,
see [Kn] or [Fu]. Let5sym

N,N be the set of all up/right paths from(1,1) to (N,N) in

{(i, j) ∈ Z
2+ ; 1 ≤ i ≤ j}, i. e. in a triangle, and set

F(N) = max{
∑
(i,j)∈π

w(i, j) ; π ∈ 5sym
N,N }.

Now, we also have

F(N) = max{
∑
(i,j)∈π

w(i, j) ; π ∈ 5N,N },

which equals the length of the first row inP , because those parts of a maximal path in
5N,N which goes below the diagonal can be reflected in the diagonal to give a path in
5

sym
N,N without changing the sum

∑
w(i, j) sincew(i, j) is symmetric.
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The same argument as above now gives

P[F(N) ≤ t] = 1

Z
(1)
N

∑
h∈NN

max{hj }≤t+N−1

∏
1≤i<j≤N

|hi − hj |
N∏
i=1

qhi/2.

This corresponds toβ = 1, γ = 1 in Theorem 2.2. It should be possible to analyze
the asymptotics in this case analogously to GOE, see [TW2], to show that we can find
constantsa andb so thatP[F(N) ≤ aN + sbN1/3] converges toF1(t), the Tracy–
Widom distribution for GOE. However it is not immediate to generalize the techniques
of [TW2], so this remains to be done. Note that again we can take the limitq → 1 to
get the case of exponentially distributed random variables.

3. The Fredholm Determinant

From the identity (2.7) we have

pN(t) = ψN(t +N − 1), (3.1)

where

ψN(s) = EN [
N∏
j=1

(1 − χs(hj ))]. (3.2)

Here

EN [·] = 1

ZM(N),N
∑
h∈NN

(·)1N(h)2
N∏
j=1

w
q

K(N)(hj ),

K(N) = M(N) − N + 1,M(N) = [γN ] andχs(t) is the indicator function for the
interval(s,∞). We will takes in (3.2) to be an integer.

LetMK,q
j (x), j = 0,1, . . . be the normalized orthogonal polynomials with respect

to the weightwqK(x) onN,

∞∑
x=0

M
k,q
i (x)M

K,q
j (x)w

q
K(x) = δij ,

andMK,q
j (x) = κjx

j + . . . with κj > 0. Set

KN(x, y) =
N−1∑
j=0

M
K,q
j (x)M

K,q
j (y)w

q
K(x)

1/2w
q
K(y)

1/2,

so thatKN(x, y) is a reproducing kernel oǹ2(N).
The polynomialsMK,q

n are multiples of the standard Meixner polynomials, [NSU,
Ch],

M
K,q
n (x) = (−1)n

dn
m
K,q
N (x),
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where

d2
n = n!(n+K − 1)!

(1 − q)Kqn(K − 1)! .

The leading coefficient inmK,qn is ( q−1
q
)n and consequently

κn = 1

dn

(
1 − q

q

)n
.

The Meixner polynomials have the generating function, [Ch],

∞∑
n=0

m
K,q
n (x)

tn

n! = (1 − t

q
)x(1 − t)−x−K. (3.3)

The Christoffel–Darboux formula, [Sz], gives

KN(x, y) = κN−1

κN

MN(x)MN−1(y)−MN(y)MN−1(x)

x − y
w
q
K(x)

1/2w
q
K(y)

1/2

= − q

(1 − q)d2
N−1

mN(x)mN−1(y)−mN(y)mN−1(x)

x − y
w
q
K(x)

1/2w
q
K(y)

1/2,

(3.4)

where we have omitted the upper indices. Standard computations from random matrix
theory, [Me], Ch. 5 and [TW2], show thatψN can be written as a Fredholm determinant,

ψN(s) =
N∑
k=0

(−1)k

k!
∑

h∈{s+1,s+2,... }k
det(KN(hi, hj ))1≤i,j≤k. (3.5)

The proof of Theorem 1.2 is based on taking the appropriate limit in (3.5).
The next lemma will allow us to compute the asymptotics of the right-hand side of

(3.5).

Lemma 3.1.Let b ≥ 0 be a constant and assume thatρN → ∞ asN → ∞. Suppose
furthermore thatKN : N × B → R,N ≥ 1, satisfies the following properties.

(i) LetM1 > 0 be a given constant. There is a constantC such that

∞∑
m=1

KN(bN + ρNτ +m, bN + ρNτ +m) ≤ C (3.6)

for all N ≥ 1, τ ≥ −M1.
(ii) Givenε > 0, there is anL > 0 so that

∞∑
m=1

KN(bN + ρNL+m, bN + ρNL+m) ≤ ε, (3.7)

for all N ≥ 1.
(iii) LetM0 > 0 be a given constant. IfA(ξ, η) is the Airy kernel defined by (1.7), then

lim
N→∞ ρNKN(bN + ρNξ, bN + ρNη) = A(ξ, η) (3.8)

uniformly forξ, η ∈ [−M0,M0].



Shape Fluctuations and Random Matrices 455

(iv) The matrix(KN(xi, xj ))ki,j=1 is positive definite for anyxi, xj ∈ [0,∞), k ≥ 1
Then, for each fixedt ∈ R,

lim
N→∞

N∑
k=0

(−1)k

k!
∑
h∈Nk

det(KN(bN + ρN t + hi, bN + ρN t + hj ))
k
i,j=1 = F(t), (3.9)

whereF(t) is given by (1.8).

Proof. It follows from (iv) that

| det(KN(xi, xj ))1≤i,j≤k| ≤
k∏
j=1

KN(xj , xj ), (3.10)

see for example [HJ]. Consequently,

|
∑
h∈Nk

det(KN(aN + hi, aN + hj ))1≤i,j≤k| ≤
( ∞∑
m=1

KN(m,m)

)k
, (3.11)

where we have writtenaN = bN + ρN t .
ChooseM1 so that|t | ≤ M1. Let ε > 0 be given. It follows from the estimates (3.6)

and (3.11) that we can choose` so that

|
N∑

k=`+1

(−1)k

k!
∑
h∈Nk

det(KN(aN + hi, aN + hj ))
k
i,j=1| ≤

∞∑
k=`+1

Ck

k! ≤ ε, (3.12)

for allN ≥ 1. ChooseL0 so that (3.11) holds withL = L0−M0. Then, by the estimates
(3.6), (3.7) and (3.10),

∣∣∣∣∣∣

∑
h∈Nk

−
∑

h∈([L0ρN ]c)k


det(KN(aN + hi, aN + hj ))1≤i,j≤k

∣∣∣∣∣∣
≤

∑
h∈Nk

somehj>L0ρN

k∏
i=1

KN(aN + hi, aN + hi)

≤
k∑
j=1

∑
h∈Nk

hj>L0ρN

k∏
i=1

KN(aN + hi, aN + hi)

≤ k

( ∞∑
m=1

KN(aN +m, aN +m)

)k−1( ∞∑
m=1

KN(bN + LρN +m, bN + LρN +m)

)

≤ kCk−1ε.

(3.13)
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Denote the Fredholm determinant in the right-hand side of (3.9) byDN(t). Inserting the
estimates (3.12) and (3.13) into the formula (3.9) we obtain∣∣∣∣∣∣DN(t)−

∑̀
k=0

(−1)k

k!
∑

h∈[L0ρN ]k
det(KN(σ + hi

ρN
, σ + hj

ρN
))1≤i,j≤k

1

ρkN

∣∣∣∣∣∣
≤
(∑̀
k=0

kCk−1

k! + 1

)
ε ≤ (1 + eC)ε,

(3.14)

where
KN(ξ, η) = ρNKN(bN + ρNξ, bN + ρNη).

By assumption (iii), withM0 = L0 +M1, we can choseN0 so that ifN ≥ N0, then

| det(KN(σ + x

ρN
, σ + y

ρN
))− det(A(σ + x

ρN
, σ + y

ρN
))| ≤ ε

Lk0

for all x, y ∈ [L0ρN ]. Thus,∣∣∣∣∣∣
∑̀
k=0

(−1)k

k!
∑

h∈[L0ρN ]k

[
det(KN(t + hi

ρN
, t + hj

ρN
))− det(A(t + hi

ρN
, t + hj

ρN
))

]
1

ρkN

∣∣∣∣∣∣
≤
∑̀
k=0

1

k!
(
L0ρN + 1

L0ρN

)k
ε ≤ C′ε.

(3.15)
Combining the estimates (3.14) and (3.15) we find∣∣∣∣∣∣DN(t)−

∑̀
k=0

(−1)k

k!
∑

h∈[L0ρN ]k
det(A(σ + hi

ρN
, σ + hj

ρN
))ki,j=1

1

ρkN

∣∣∣∣∣∣ ≤ C′′ε. (3.16)

The Airy kernel can be written, [TW1],

A(x, y) =
∫ ∞

0
Ai (x + s)Ai (y + s)ds. (3.17)

Using the formula, see for example [Hö], p. 214,

Ai (x) = e−
2
3x

3/2 1

2π

∫ ∞

−∞
e−ξ2√x+iξ3/3dξ,

valid for x > 0, we see that

|Ai (x)| ≤ 1

2
√
πx1/4

e−
2
3x

3/2
, x > 0.

This estimate can be used to show that the Airy kernel satisfies (i) and (ii) above. Since
the matrix(A(ξi, ξj ))1≤i,j≤k is positive definite, we can use the same argument as above
to show that∣∣∣∣∣

( ∞∑
k=0

∫
[t,∞)k

−
∑̀
k=0

∫
[t,L0]k

)
(−1)k

k! det(A(ξi, ξj ))
k
i,j=1d

kξ

∣∣∣∣∣ ≤ ε (3.18)
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provided` andL0 are sufficiently large. From (3.17) we see that choosingN1 ≥ N0
large enough we have∣∣∣∣∣DN(t)−

∑̀
k=0

(−1)k

k!
∫

[t,L0]k
det(A(ξi, ξj ))1≤i,j≤kdkξ

∣∣∣∣∣ ≤ C′′′ε (3.19)

for all N ≥ N1. If we combine the estimates (3.18) and (3.19) we have proved the
lemma. ut
To apply this lemma to the Meixner kernel (3.4) we need

Lemma 3.2.The Meixner kernel satisfies the properties (i) to (iv) in Lemma 3.1 with
b = b(γ, q) as before andρN = σN1/3, whereσ is given by (1.11).

This lemma will be proved in Sect. 5. We can now combine (3.1), (3.5) and (3.9) to
get

lim
N→∞pN((b − 1)N + σN1/3t) = F(t), (3.20)

which is (1.10) and Theorem 1.2 is proved.ut

4. Proof of the Large Deviation Theorem

In this section we will prove Theorem 2.2. Set

KN,V (x) =
∑

1≤i 6=j≤N
kV (xi, xj ).

By adding a constantC toVN , which does not alter the problem we can, by assumption
(ii) on VN , assume that

VN(t)− log(t2 + 1) ≥ ξ log(t2 + 1) (4.1)

for all t ≥ 0. Since|t − s|2 ≤ (t2 + 1)(s2 + 1), this implies

−KM,VN (x) ≤ −ξ(M − 1)
M−1∑
j=1

log(1 + x2
j ) (4.2)

for all x ∈ [0,∞)M . Note that

∑
1≤j 6=k≤N−1

log |xj − xk| −N

N−1∑
j=1

VN(xj ) = −KN−1,VN (x)−
N−1∑
j=1

VN(xj ). (4.3)

The next lemma is analogous to Lemma 4.2 in [Jo].

Lemma 4.1.Let {sN } be a sequence in[0,∞) such thatsN → s > 0 asN → ∞, or
sN ≡ ∞. Set, for a givenα > 0,

�N,α(s) = {x ∈ AN(s)
N−1 ; 1

N2KN−1,VN (x) ≤ FσV + α}.
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Let 0 ≤ λ ≤ 1 and letσN ∈ AN , N ≥ 1, be a sequence converging toσ > 0. Define a
probability measure onAN(sN)N−1 by

P
λ,σN
N−1,N (�; sN) = 1

Z
λ,σN
N−1,N (sN)

∑
x∈�

N−1∏
j=1

|σN − xj |λβQN−1,N (x), (4.4)

whereZλ,σNN−1,N (sN) is a normalization constant. (Eλ,σNN−1,N [·; sN ] denotes the correspond-
ing expectation and ifsN ≡ ∞ or λ = σN = 0 we omit them in the notation.) Fixη > 0.
Then there is anN1 such that for alla ≥ 0 andN ≥ N1,

P
λ,σN
N−1,N (�N,η+a(sN)

c; sN) ≤ e−
β
4 aN

2
. (4.5)

Proof. We first prove the following claim.

Claim 4.2. Let σN ∈ AN , σN → σ asN → ∞ and s ∈ (0,∞]. For eachN ≥ 2 we
can choose(xN1 , . . . , x

N
N−1) ∈ AN(s)

N−1 so that

1

N2

∑
1≤j 6=k≤N−1

log |xNj − xNk |−1 + 1

N

N−1∑
j=1

VN(x
N
j )

− 1

N2

N−1∑
j=1

log |σN − xNj | → F sV

(4.6)

asN → ∞.

To see this set

yNk = max{ j
N

; j ∈ N and
∫ j/N

0
φsV (t)dt <

k

N
}.

If yNk 6= σN for k = 1, . . . , N − 1, we setxNk = yNk . If yNk0
= σN , we setxNk = yNk for

k < k0 andxNk = yNk + 1/N for k = k0, . . . , N − 1. Using the fact that 0≤ φsV ≤ 1
it is not difficult to see thatxN1 < xN2 < · · · < xNN−1 ≤ L for all N and some fixedL.
Furthermore

1

N − 1

N−1∑
k=1

δxNk
→ φsV (x)dx (4.7)

weakly asN → ∞. The property (iii) in the assumptions onVN implies

1

N

N−1∑
j=1

VN(x
N
j ) →

∫ ∞

0
V (t)φsV (t)dt. (4.8)

Clearly,

1

N2

N−1∑
j=1

log |σN − xNj |−1 ≤ 2

N2

N−1∑
j=1

log
N

j
= 2

N2 log
NN−1

(N − 1)! , (4.9)
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which → 0 asN → ∞. Also, sinceσN → σ and thexNj belong to a bounded set,
we get a bound in the other direction which goes to 0 asN → ∞. GivenM ≥ 1, set
fM(t) = min{log |t |−1, logM}. Write

1

N2

∑
j 6=k

log |xNj − xNk |−1 = 1

N2

∑
j 6=k

fM(x
N
j − xNk )

+ 1

N2

∑
j 6=k

|xNj −xNk |<1/M

(log |xNj − xNk |−1 − fM(x
N
j − xNk )).

(4.10)

The absolute value of the second sum in the right-hand side of (4.10) is

≤ 1

N2

∑
1≤|j−k|≤N/M

|j |,|k|≤LN

log | N

j − k
| ≤ C

logM

M
.

Thus, using the weak convergence (4.7) and then lettingM → ∞ we obtain

lim
N→∞

1

N2

∑
j 6=k

log |xNj − xNk |−1 =
∫ ∞

0

∫ ∞

0
log |x − y|−1φsV (x)φ

s
V (y)dxdy,

which together with (4.8) and (4.9) proves the claim.
We turn now to the proof of Lemma 4.1. Letε > 0 be given. We want to estimate

Z
λ,σN
N−1,N from below. ChooseN0 so thatsN ≥ s − ε if N ≥ N0. Then

Z
λ,σN
N−1,N (sN) ≥ Z

λ,σN
N−1,N (s − ε),

if N ≥ N0. Choose(xNk )
N−1
k=1 ⊆ AN(s − ε) as in the claim. Clearly,

1

N2 logZλ,σNN−1,N (sN) ≥ −β
2


 1

N2

∑
j 6=k

log |xNj − xNk |−1

+
N−1∑
j=1

VN(x
N
j )− 1

N2

N−1∑
j=1

log |σN − xNj |

 ,

and consequently, by Claim 4.2,

lim inf
N→∞

1

N2 logZλ,σNN−1,N (sN) ≥ −β
2
F s−εV .

SinceF s−εV ↘ F sV asε → 0+,

lim inf
N→∞

1

N2 logZλ,σNN−1,N (sN) ≥ −β
2
F sV . (4.11)

Thus, givenδ > 0, we can chooseN(δ) so that ifN ≥ N(δ), then

1

N2 logZλ,σNN−1,N (sN) ≥ −β
2
(F sV + δ). (4.12)
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It follows from (4.2) withM = N − 1 and (4.3), that for any 0< ρ < 1/2,

P
λ,σN
N−1,N (�N,η+a(SN)

c; sN)

≤ e
βN2

2 (F sV+δ) ∑
x∈A(sN )

N−1\�N,η+a(sN )
e
− β

2KN−1,VN (x)− β
2

∑
j VN (xj )

N−1∏
j=1

|σN − xj |λβ

≤ e
βN2

2 (F sV+δ)− β
2 (1−ρ)(F sV+η+a)N2


∑
t∈AN

(t2 + 1)−
β
2 ξ(N−1)(1 + σ 2

N)
λβ/2



N

≤ e−
β
4 aN

2

if N is sufficiently large (independent ofa ≥ 0). Note thatδ + ρF sV − η < 0 if we
chooseδ = η/2 andρ sufficiently small. This completes the proof.ut

This lemma can be used to prove

Corollary 4.3. For anys ∈ (1,∞],

lim
N→∞

1

N2 logZN(s) = −β
2
F sV . (4.13)

FurthermoreF sV − FV > 0 if s < bV .

Proof. The lower limit follows by takingλ = σN = 0 in (4.11) (replacingN − 1 byN
does not modify the argument above in any essential way). Given 0< ρ < 1, we can
use (4.2) withM = N and the continuity of expKN,VN to see that

ZN(s) =
∑

x∈AN(s)
N

e
− β

2KN,VN (x)− β
2

∑N
j=1 VN(xj )

≤ sup
x∈AN(s)

N

e−
β
2 (1−ρ)KN,VN (x)

∑
x∈AN(s)

N

e
− β

2 ρξ(N−1)
∑
j log(1+x2

j )

≤ e−
β
2 (1−ρ)KN,VN (yN )+CN,

(4.14)

if N is sufficiently large, whereyN = (yN1 , . . . , y
N
N ) ∈ AN(s)

N . Clearly,yNj 6= yNk if

j 6= k. SetλN = N−1∑
j δyNj

. It follows from (4.12), withλ = σ = 0 andN − 1

replaced byN , thatN−2 logZN(s) ≥ −β(F sV + δ)/2 forN ≥ N(δ), so (4.2) and (4.14)
yield ∫ ∞

0
log(1 + t2)dλN(t) ≤ C.

Thus {λN }∞N=1 is tight. Pick a subsequence that gives the upper limit of
N−2 logZN(s), and a further subsequence so thatλNj converges weakly toν = ψdx.
The measureν has to be absolutely continuous with density satisfying 0≤ ψ ≤ 1
because of the definition ofλN . Using (4.1) and|t − s| ≤ √

t2 + 1
√
s2 + 1 we see

that kVN (t, s) ≥ 0. Set, for givenM > 0, kMVN (t, s) = min(kVN (t, s),M) and choose
φT (t) continuous so that 0≤ φT ≤ 1, φT (t) = 1 if |t | ≤ T , = 0 if |t | ≥ T + 1
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andφT (t) ≤ φT ′(t) if T ≤ T ′. Then,kVN (t, s) ≥ φT (t)φT (s)k
M
VN
(t, s) and using the

estimate (4.14) we get

1

N2
j

logZNj (s)

≤ C + β
2 (1 − ρ)M

Nj
− β

2
(1 − ρ)

∫ ∞

0

∫ ∞

0
φT (t)φT (s)K

M
VN
(t, s)dλNj (t)dλNj (s),

and thus, lettingj → ∞,M → ∞, T → ∞ andρ → 0+ in that order, we obtain

−β
2
F sV ≤ lim inf

N→∞
1

N2 logZN(s) ≤ lim sup
N→∞

1

N2 logZN(s) ≤ −β
2
IV [ψ].

ThusIV [ψ] ≤ F sV andψ ∈ As , so we must haveψ = φsV .
Assume thatF sV ≤ FV and s < bV . ThenIV [φsV ] ≤ IV [φV ] and consequently

φsV = φV by the uniqueness of the minimizing measure. This contradicts the definition
of bV . The corollary is proved.ut

Note that by (2.13) Corollary 4.3 implies (2.16) so we have proved the first part
of Theorem 2.2. Before turning to the proof of the second part we need one more
consequence of Lemma 4.1.

Corollary 4.4. Let{sN } be as in Lemma 4.1 and assume thatf : [0, σ+ε] → R, ε > 0,
is continuous, orf : [0,∞) → R is continuous and bounded in casesN ≡ ∞. Then

lim
N→∞

1

N
logEy,σNN−1,N [e

∑N
j=1 f (xj ); sN ] =

∫ ∞

0
f (t)φσV (t)dt. (4.15)

Furthermore let

u
y,σN
N−1,N (t) = 1

N − 1
E
y,σN
N−1,N [

N−1∑
i=1

δt,xi ], (4.16)

(δt,s is Kronecker’s delta), be the 1-dimensional marginal distribution of the probability
measure (4.4) (withsN ≡ ∞). Then for each0< y ≤ 1:

(i) 0 ≤ u
y,σN
N−1,N (t) ≤ 1

N−1 for all t ∈ AN ,

(ii) if δt is the Dirac measure att , then
∑
t∈AN

u
y,σN
N−1,N (t)δt converges weakly toφV (t)dt

asN → ∞.
(iii) uy,σNN−1,N (σN) = 0.

Proof. We can prove (4.15) using Lemma 4.1 in exactly the same way as in the proof of
(2.5) on p. 194 in [Jo], see also [De]. The weak limit (ii) is a direct consequence of (4.15),
see [De]. Note that the limit does not depend ony since the factor

∏N−1
i=1 |σN − xi |yβ

does not affect the leading asymptotics.
In the expectation (4.16) all thexi ’s have to be different, otherwise the probability is

zero, and consequently the expectation is≤ 1, which proves (i). That (iii) holds follows
from the presence of the factor

∏N−1
i=1 |σN − xi |yβ . The corollary is proved.
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We turn now to the proof of the upper-tail limit. Note that

QM,N(x) = e−
Nβ
2 VN(xM)

M−1∏
i=1

|xM − xi |βQM−1,N (x
′), (4.17)

wherex′ = (x1, . . . , xM−1). Using this identity we see that

ZM,N(t) = M!
∑
x∈AMN

x1≤···≤xM≤t

QM,N(x)

= M
∑

s∈AN(t)

e−
Nβ
2 VN(s)

∑
x∈AN(s)

M−1

M−1∏
i=1

|s − xi |βQM−1,N (x).

If we define

HM−1,N (s) = 1

ZM−1,N (s)

∑
x∈AN(s)

M−1

M−1∏
i=1

|s − xi |βQM−1,N (x),

this can be written

ZM,N(t) = M
∑

s∈AN(t)

e−
Nβ
2 VN(s)ZM−1,N (s)HM−1,N (s), (4.18)

or

FM,N(t) = MZM−1,N

ZM,N

∑
s∈AN(t)

e−
Nβ
2 VN(s)FM−1,N (s)HM−1,N (s). (4.19)

This is the main formula to be used in the proof of (2.17). We will need two choices of
M, namelyM = N andM = N − 1. They are handled completely analogously and we
will consider only the caseM = N .

Write AN(t, s) = AN ∩ (t, s) for any 0≤ t < s ≤ ∞ andAN(t)
∗ = AN(t,∞). If

we lett → ∞ in (4.19) and then subtract (4.19) from the limiting equality, we get

1 − FN(t) = NZN−1,N

ZN,N

∑
s∈AN(t)

∗
e−

Nβ
2 VN(s)FN−1,N (s)HN−1,N (s). (4.20)

Set

8V = FV − 1

2

∫ ∞

0
V (s)φV (s)ds.

From the variational relations forφV (t) it follows that∫ ∞

0
log |bV − s|−1φV (s)ds + 1

2
V (bV ) = 8V . (4.21)

Lemma 4.5.We have

lim sup
N→∞

1

N
log

ZN−1,N

ZN,N
≤ β8V . (4.22)
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Proof. By (4.17) we have

ZN,N

ZN−1,N
=
∑
s∈AN

e−
Nβ
2 VN(s)EN−1,N [

N−1∏
i=1

|s − xi |β ]

≥ e−
Nβ
2 VN(r)EN−1,N [

N−1∏
i=1

|r − xi |β ]
(4.23)

for anyr ∈ AN . One difficulty in estimating the right-hand side in (4.23) comes from
the fact that, due to the discrete nature of the problem the integrand could, apriori, be
zero for manyr ’s with high probability. Note that we define 0y = 0 for anyy > 0. Let
ψs(t) = 1 if t 6= s andψs(s) = 0.

Consider

fN(y; s) = 1

N
logEN−1,N [

N−1∏
i=1

|s − xi |yβψs(xi)].

Then,

fN(0+; s) = lim
y→0+ fN(y; s) = 1

N
logEN−1,N [

N−1∏
i=1

ψs(xi)]

= 1

N
logPN−1,N [all xi 6= s].

(4.24)

Let ε > 0 be given and writeBN(ε) = AN(bV + ε, bV + 2ε). Now,∑
s∈BN(ε)

PN−1,N [all xi 6= s] ≥ PN−1,N [
⋃

s∈BN(ε)

{all xi 6= s}]

= 1 − PN−1,N [
⋂

s∈BN(ε)

{onexi = s}].
(4.25)

Takeg : [0,∞) → [0,∞) continuous such thatg(s) = 1 if bV + ε ≤ s ≤ bV + 2ε and
g(s) = 0 if 0 ≤ s ≤ bV or s ≥ bV + 3ε. Then,

eεNPN−1,N [
⋂

s∈BN(ε)

{onexi = s}] ≤ EN−1,N [e
∑N
i=1 g(xi )] ≤ eεN/2 (4.26)

for all sufficiently largeN . The first inequality follows from the definitions whereas the
second follows from Corollary 4.4, (4.15). Combining (4.25) and (4.26) we see that

max
s∈BN(ε)

PN−1,N [all xi 6= s] ≥ 1

2N
(4.27)

for all sufficiently largeN . Hence, by (4.24) and (4.27) we can chooseσN = σN(ε) ∈
BN(ε) so that

lim
N→∞ fN(0+; σN) = 0. (4.28)

Taker = σN in (4.23). Then

1

N
log

ZN,N

ZN−1,N
≥ −β

2
VN(σN)+ fN(1; σN)

= −β
2
VN(σN)+ fN(0+; σN)+ β

∫ 1

0
f ′
N(y; σN)dy.

(4.29)
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We can pick a subsequence{Nj } which gives lim infN→∞ 1
N

log ZN,N
ZN−1,N

and such that
σNj (ε) → σ(ε) ∈ [bV + ε, bV + 2ε]. Then, by (4.28) and (4.29),

lim inf
N→∞

1

N
log

ZN,N

ZN−1,N
≥ −β

2
V (σ(ε))+ β lim inf

j→∞

∫ 1

0
f ′
Nj
(y; σNj )dy. (4.30)

Now,

f ′
N(y; σN) = E

y,σN
N−1,N [ 1

N

N−1∑
i=1

log |σN − xi |]

= N − 1

N

∑
t∈AN

log |σN − t |uy,σNN−1,N (t).

Hence, by Corollary 4.4 (i) and (iii),

f ′
N(y; σN) ≥ 2

1

N

N∑
i=1

log
i

N
≥ −2,

and consequently, by Fatou’s lemma,

lim inf
j→∞

∫ 1

0
f ′
Nj
(y; σNj )dy ≥

∫ 1

0
lim inf
j→∞ f ′

Nj
(y; σNj )dy. (4.31)

Givenδ > 0, small, andM > 0 set

fM,δ(t) =




logM, if |t | ≥ M

log |t |, if δ ≤ |t | < M

logδ, if |t | ≤ δ.

By Corollary 4.4 (i) and (iii) we have∣∣∣∣∣∣
∑
t∈AN

(min(logM, log |σN − t |)− fM,δ(σN − t))u
y,σN
N−1,N (t)

∣∣∣∣∣∣
≤

∑
t∈AN ; 0<|t−σN |≤δ

∣∣∣∣log

∣∣∣∣σN − t

δ

∣∣∣∣
∣∣∣∣ 1

N − 1
≤ 2

N − 1

[Nδ]∑
k=1

log
Nδ

k

≤ 2N

N − 1
δ.

Also, if |σN − σε | ≤ δ, which is true ifN is large enough,

|fM,δ(|σN − t |)− fM,δ(|σ(ε)− t |)| ≤ δ log
1

δ
.

Since log|σN − t | ≥ min(logM, log |σN − t |) andM,δ are arbitrary it follows from
Corollary 4.4, (ii) that

lim inf
j→∞ f ′

Nj
(y; σNj ) ≥

∫ ∞

0
log |σ(ε)− t |φV (t)dt.



Shape Fluctuations and Random Matrices 465

Together with (4.30) and (4.31) this gives

lim inf
N→∞

1

N
log

ZN,N

ZN−1,N
≥ −β

2
V (σ(ε))+ β

∫ ∞

0
log |σ(ε)− t |φV (t)dt.

We can pick a sequenceεj → 0 such thatσ(εj ) → bV and using (4.24) we obtain

lim inf
N→∞

1

N
log

ZN,N

ZN−1,N
≥ −β8V ,

and the lemma is proved.ut
Givenδ > 0 we can use Lemma 4.5 to findN0(δ) so that

ZN−1,N

ZN,N
≤ eNβ(8V+δ) (4.32)

if N ≥ N0(δ). SinceFN−1,N (s) ≤ 1 we can combine (4.20) and (4.32) to get the
estimate

1 − FN(t) ≤ NeNβ(8V+δ) ∑
s∈AN(t)

∗
e−

Nβ
2 VN(s)HN−1,N (s). (4.33)

We have

HN−1,N (s) = EN−1,N [
N−1∏
i=1

|s − xi |β; s]

≤ (1 + s2)
β
2 (N−1)E

0,0
N−1,N [

N−1∏
i=1

(1 + x2
i )
β/2; s] ≤ eCN(1 + s2)βN/2,

where the last inequality is proved, using Lemma 4.1, just as (4.25) in [Jo]. Together
with (4.1) this gives

e−
Nβ
2 VN(s)HN−1,N (s) ≤ eCN−Nβξ

2 log(1+s2). (4.34)

Hence, given a constantD > 0, there is a constantd > 0 such that

eNβ(8V+δ) ∑
s∈AN(d)

∗
e−NβVN(s)/2HN−1,N (s) ≤ e−ND. (4.35)

For t ≥ s we define

HN−1,N (t, s) = 1

ZN−1,N (s)

∑
x∈AN(s)

N−1

N−1∏
j=1

|t − xi |βQN−1,N (x).

Clearly,
HN−1,N (s) = HN−1,N (s, s) ≤ HN−1,N (t, s) (4.36)

if t ≥ s. Combining the estimates (4.33), (4.35) and (4.36) we obtain

1 − FN(t) ≤ Ne−ND +NeNβ(8V+δ) ∑
x∈AN(t,d)

e−
Nβ
2 VN(s)HN−1,N (s + ε, s) (4.37)
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for anyε > 0. Let sN ∈ AN(t, d) be thes which gives the largest term in the sum in
(4.37). Then

1 − FN(t) ≤ Ne−ND +N2(d − t)eNβ(8V+δ− 1
2VN(sN ))HN−1,N (sN + ε, sN). (4.38)

Choose a sequence which gives the upper limit ofN−1 log(1 − FN(t)) and such that
sNj → σ ∈ [t, d]. We would like to prove that

lim
j→∞

1

Nj
logHNj−1,Nj (sNj + ε, sNj ) = −β

∫
log |σ + ε − t |φσV (t)dt. (4.39)

We will write N instead of Nj for simplicity. Looking at the definition of
HN−1,N (t, s), we see that we are interested in the limit of

1

N
logEN−1,N [eβ

∑N−1
j=1 log |sN+ε−xi |; sN ]

asN → ∞, sN → σ . Since

| log |sN+ε−xi |− log |σ+ε−xi || = | log |1+ sN − σ

σ + ε − xi
|| ≤ C

|sN − σ |
σ + ε − xi

, (4.40)

whereC is a numerical constant, andsN ≤ σ + ε/2 forN large enough, the limit (4.39)
follows from Corollary 4.4.

If t > bV , thenφσV = φV , sinceσ ≥ t , and combining (4.38) and (4.39) yields

lim sup
N→∞

1

N
log(1 − FN(t))

≤ max{−D,β8V + δ − β

2
V (σ)− β

∫
log |σ + ε − t |−1φV (t)dt}.

(4.41)

Note thatσ could depend onε and d. Pick a sequenceε = εj → 0+ and then a
subsequence so thatσ(εjk ) → τ ∈ [t, d]. Then, sinceD andδ are arbitrary, we get

lim sup
N→∞

1

N
log(1 − FN(t)) ≤ β(8V − inf

τ≥t

∫
kV (τ, s)φV (s)ds) (4.42)

and we have proved one half of (2.17).
We now turn to the lower limit. If we start withM = N − 1 instead ofN then (4.42)

holds withFN−1 replaced byFN−1,N (t). By assumption the right-hand side of (4.42) is
negative for allt > bV . Hence, ift > bV , we see that

FN−1,N (t) ≥ 1/2 (4.43)

for all sufficiently largeN . Note that, ift ≥ s, then

HN−1,N (t) ≥ ZN−1,N (s)

ZN−1,N (t)
HN−1,N (t, s) ≥ FN−1,N (s)HN−1,N (t, s). (4.44)
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The functionf (τ) = ∫
kV (τ, s)φV (s)ds is continuous on[t,∞) andf (τ) → ∞ as

τ → ∞, so it assumes its minimum in[t,∞) at some pointτ0 ≥ t . Let ε > 0. Pick
sN ∈ AN(t)

∗ such thatsN ↘ τ0 + ε. Then, picking one term in the sum

∑
s∈AN(t)

∗
e−

Nβ
2 VN(s)FN−1,N (s)HN−1,N (s)

≥ e−
Nβ
2 VN(sN )FN−1,N (τ0)

2HN−1,N (sN , sN − ε).

If we use the limit (4.39), the estimate (4.43) withs = τ0, and letε → 0+, we see that

lim inf
N→∞

1

N
log

∑
s∈AN(t)

∗
e−

Nβ
2 VN(s)FN−1,N (s)HN−1,N (s)

≥ −β
2
V (τ0)− β

∫
log |τ0 − t |−1φV (t)dt.

(4.45)

To complete the proof we need

Lemma 4.6.For anyVN satisfying the conditions (i)–(iii),

lim inf
N→∞

1

N
log

ZN−1,N

ZN,N
≥ β8V . (4.46)

Proof. If we let t → ∞ in (4.19), we see that,ε > 0,

ZN,N

ZN−1,N
= N

∑
s∈AN

e−
Nβ
2 VN(s)FN−1,N (s)HN−1,N (s)

≤ N
∑

s∈AN(bV−ε)
e−

Nβ
2 VN(s)FN−1,N (s)HN−1,N (s)

+N
∑

s∈AN(bV−ε)∗
e−

Nβ
2 VN(s)HN−1,N (s),

(4.47)

sinceFN−1,N (s) ≤ 1. By adjusting the constantC we see that (4.34) holds for all
s ∈ AN , so the first sum in the right-hand side of (4.47) is

≤ eCNFN−1,N (bV − ε)
∑
s∈AN

e−
β
2Nξ log(1+s2) ≤ eCN− β

2L(bV−ε)N2

for all sufficiently largeN by the first part of Theorem 2.2. (ReplacingFN(t) by
FN−1,N (t) does not make any difference.) SinceL(bV − ε) > 0 if ε > 0, the first
part of the right hand side of (4.47) is negligible.

The same argument that lead us from (4.33) to (4.42) allows us to treat the second
term in the right-hand side of (4.47) and obtain

lim sup
N→∞

1

N
log

ZN,N

ZN−1,N

≤ max{−D,−β
2
V (σ)− β

∫
log |σ + η − t |−1φσV (t)dt},

(4.48)
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whereσ ∈ [bV − ε, d], η > 2ε, D > 0 are given. Takeε = εj → 0+ so that

σ(εj ) → τ ∈ [bV , d] . Note thatφ
σ(εj )

V (t)dt converges weakly toφτV (t)dt = φV (t)dt .
Using an inequality like (4.40) we get

lim sup
N→∞

1

N
log

ZN,N

ZN−1,N

≤ max{−D,−β
2
V (τ)− β

∫
log |τ + η − t |−1φV (t)dt}.

(4.49)

We can now repeat the argument that leads from (4.41) to (4.42) and obtain

lim sup
N→∞

1

N
log

ZN,N

ZN−1,N
≤ β

2

∫
V (s)φV (s)ds

− β inf
τ≥bV

∫
kV (τ, s)φV (s)ds ≤ −β8V ,

since
∫
kV (τ, s)φV (s)ds ≥ FV if τ ≥ bV . The lemma is proved.ut

Combining (4.20), (4.45) and Lemma 4.6, we see that

lim inf
N→∞

1

N
log(1 − FN(t))

≥ β(FV −
∫
kV (τ0, s)φV (s)ds) = β(FV − inf

τ≥t

∫
kV (τ, s)φV (s)ds),

by the choice ofτ0. This completes the proof of Theorem 2.2.

5. Asymptotics for the Meixner Kernel

This section is devoted to the proof of Lemma 3.2, which is based on establishing the
appropriate asymptotics of the Meixner polynomials. See [Go] and [JW] for some results
on the asymptotics of Meixner polynomials.

From (3.3) we obtain,x ∈ R,

m
K,q
n (x) = (−1)n

(
√
γ )n+Kn!

(
√
q)n2πi

∫
0r

(√
γ + z/

√
q√

γ + √
qz

)x
dz

(
√
γ + √

qz)Kzn+1

− sinπx

π

(
√
γ )n+Kn!
(
√
q)n

∫ r

√
γ q

∣∣∣∣
√
γ − t/

√
q√

γ − √
qt

∣∣∣∣
x

dt

(
√
γ − √

qt)Ktn+1 ,

(5.1)

where0r is the circle|z| = r, 0 < r <
√
γ /q; if 0 < r ≤ √

γ q the second integral
should be omitted. Letb = (1+ √

γ q)2/(1− q) as before, letσ be given by (1.11) and
set

a = b + γ − 1 = (
√
γ + √

q)2

1 − q
.

Set

t (z) =
(√

γ q + z√
γ q + 1

)( √
γ + √

q√
γ + √

qz

)
,

s(z) =
√
γ + √

q√
γ + √

qz
,
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and

AN(x) = bx

xx+K
(x +K − 1)!N !
x!(N +K − 2)!

γK+N

1 − q

√
q

γ
.

For 0< r <
√
γ /q we define

Drn(x; g) = 1

2π

∫ π

−π
g(reiθ )t (reiθ )xs(reiθ )K

dθ

rneinθ
, (5.3)

F rn (x; g) = 0 if 0 < r ≤ √
γ q, and if

√
γ q < r <

√
γ /q, then

F rn (x; g) = (−1)n+x+1
∫ r

√
γ q

|t (−τ)|xs(−τ)Kg(−τ) dτ
τn+1 . (5.4)

The powers are defined by taking the prinipal branch of the logarithm.
The Meixner kernel (3.4) can now be written, forx, y integers(which is the case we

need),

KN(x, y) = √
AN(x)AN(y)

DN(x; g1)DN(y; g2)−DN(x; g2)DN(y; g1)

x − y
(5.5)

if x 6= y, and

KN(x, x) = AN(x)[DN(x − 1; g3)DN(x; g2)−DN(x; g1)DN(x − 1; g4)

+ FN(x; g1)DN(x; g2)− FN(x; g2)DN(x; g1)], (5.6)

whereg1(z) ≡ 1, g2(z) = z − 1, g3(z) = t (z) log t (z) andg4(z) = g2(z)g3(z). The
functionsgi(z) are bounded for|z| ≤ 1.

Write x = Nb + y andK = [γN ] − N + 1
.= N(γN − 1)

.= N(γ − 1) + ωN ,
0< ωN ≤ 1.

Lemma 5.1.If x = Nb+ ξσN1/3 andM0 > 0 is a given constant, there are constants
c1(q, γ ) andc2(q, γ ), such that

1

N
AN(x) ≤ c1(q, γ )e

c2(q,γ )ξN
−2/3

(5.7)

for all ξ ≥ −M0. Furthermore,

lim
N→∞

1

N
AN(x) = γ

√
q

(1 − q)
√
ab

(5.8)

uniformly for|ξ | ≤ M0.

Proof. By Stirling’s formula

AN(x) = (x +K)x+KNNbx

xx(N +K)N+Kax+K
γK+N (N +K)(N +K − 1)

x +K

×
√
(x +K)N

x(N +K)

1

1 − q

√
q

γ
eo(1).

(5.9)
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Write aN = b + γN − 1. Then,

(x +K)x+KNNbx

xx(N +K)N+Kax+K
γK+N

=
(
Nb

x

)x(
x +K

NaN

)x+K(
aN

a

)x+K(
γ

γN

)N+K
.

(5.10)

If we write u = NaN andv = Nb < u. Then(
Nb

x

)x(
x +K

NaN

)x+K
=
(

1 + y

u

)u+y(
1 + y

v

)−v−y
.= eg(y).

Sinceg(0) = g′(0) = 0 andg′′(t) = (v − u)(u + t)−1(v + t)−1 < 0, we have
expg(t) ≤ 1 if ξ ≥ 0. If −M0 ≤ ξ ≤ M0, then

|g(t)| = |
∫ t

0
(t − s)g′′(s)ds| ≤ CN−1/3.

Furthermore (
aN

a

)x+K
= eωN+O(ξN−2/3)+o(1)

and (
γ

γN

)K+N
= e−ωN+o(1).

Inserting these estimates into (5.10) we obtain

(x +K)x+KNNbx

xx(N +K)N+Kax+K
γK+N ≤ CeCξN

−2/3

for ξ ≥ −M0 and

lim
N→∞

(x +K)x+KNNbx

xx(N +K)N+Kax+K
γK+N = 1

uniformly for |ξ | ≤ M0. By (5.9) this proves (5.7) and (5.8). The lemma is proved.ut
Set

u(z) = b log(
√
γ q + z)− a log(

√
γ + √

qz)− logz

so that

DrN(x; g) = 1

2π

∫
0r

eN(u(z)−u(1))+y log t (z)+ωN logs(z)g(z)
dz

iz
. (5.11)

Now,

u′(z) = −ρ(1 − z)2

+ ρ(1 − z)3
√
qz2 + (

√
q + √

γ + q
√
γ )z+ √

q + √
γ + q

√
γ + γ

√
q

z(z+ √
γ q)(

√
γ + √

qz)
,

where

ρ = γ
√
q

(1 + √
γ q)(

√
γ + √

q)
.
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Hence we can write

u(z)− u(1) = 1

3
ρ(1 − z)3 + ρ(1 − z)4v(z), (5.12)

where one verifies that|v(z)| ≤ 28/27 if |z− 1| ≤ 1/4.
By taking absolute values in (5.3) we obtain

|DrN(x; g)| ≤ C

2π

(
a

b

)x/2
aK(1 − q)K

rN

∫ π

−π
ef (cosθ)dθ, (5.13)

where

f (τ) = x

2
log(γ q + r2 + 2

√
γ qrτ)+ x −K

2
log(γ + qr2 + 2

√
γ qrτ).

Write r = 1 − δ, 0 ≤ δ < 1. A computation shows thatf ′(τ ) ≥ 0 if (say)

y ≥ −δ1 + q + 2
√
γ q

1 − q
N, (5.14)

which covers all they’s we are interested in. Thus, if (5.14) is fullfilled, then

|DrN(x; g)| ≤ C exp(N(u(1 − δ)− u(1))+ y log t (1 − δ)). (5.15)

By (5.12),

u(1 − δ)− u(1) ≤ ρδ3(
1

3
δ

28

27
) ≤ 2

3
ρδ3 (5.16)

if 0 ≤ δ ≤ 1/4. Now,

log t (1 − δ) = log
(
1 − 1

1 −
√
q√

γ+√
q
δ

(1 − q)
√
γ

(1 + √
γ q)(

√
γ + √

q)
δ
)

≤ −ρ(1 − q)
1√
γ q
δ,

and consequently it follows from (5.15) and (5.16) that, ify ≥ 0, then

|DrN(x; g)| ≤ C[exp
[2N

3
ρδ3 − ρ(1 − q)

1√
γ q
δy
]
. (5.17)

Recall thaty = σN1/3ξ with σ given by (1.11). Note thatσ = (1 − q)−1√γ qρ−2/3.
Chooseδ = (ρN)−1/3√ξ if ξ ≤ (Nρ)2/3/16 andδ = 1/4, if ξ ≥ (Nρ)2/3/16. Inserting
this into (5.17) gives

|DrN(x; g)| ≤ C exp
[−1

3
min(

√
ξ,

1

4
(Nρ)1/3)ξ

]
, (5.18)

for ξ ≥ 0.
Let ε ∈ [0, π ] and set

I ′
1 = 1

2π

∫ ε

−ε
g(reiθ )t (reiθ )xs(reiθ )K

dθ

rNeiNθ
,

I ′′
1 = DrN(x; g)− I ′

1.
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By the same argument that was used for (5.13) above, we see that ify satisfies (5.14),
then

|I ′′
1 | ≤ C|t (reiε)|x |s(reiε)|K 1

rN

≤ C exp
[
NRe(u(reiε)− u(1))+ y log |t (reiε)|]. (5.19)

Next, we considerF rN(x; g),
√
γ q < r ≤ 1. Taking absolute values in (5.4) yields

|F rN(x; g)| ≤ C

∫
√
γ q

∣∣∣∣
√
γ q − τ√
γ q + 1

∣∣∣∣
x∣∣∣∣

√
γ + √

q√
γ − √

qτ

∣∣∣∣
x+K

dτ

τN+1 . (5.20)

The integrand in (5.20) is a increasing function ofτ for all x that we are considering.
The monotonicity argument used for (5.13) now shows that, if (5.14) is fulfilled, then

|F rN(x; g)| ≤ C|t (−r)|x |s(−r)|K 1

rN

≤ C|t (reiε)|x |s(reiε)|K 1

rN

≤ C exp
[
NRe(u(reiε)− u(1))+ y log |t (reiε)|],

(5.21)

where the last inequality is the same as in (5.19). If we takeε = 0, we get the same
right-hand side as in (5.15) and hence we obtain the same estimates, i. e.

|F rN(x; g)| ≤ C exp
[−1

3
min(

√
ξ,

1

4
(Nρ)1/3)ξ

]
.

Combining this with (5.6), (5.7) and (5.18) yields

|KN(x, x)| ≤ CN exp
[−1

4
min(

√
ξ,

1

4
(Nρ)1/3)ξ

]
(5.22)

for anyξ ≥ 0; x an integer.
Consider nowξ ∈ [−M0, (ρN)

1/6]. Take ε = (ρN)−1/4, δ = η(ρN)−1/3 ≤
(ρN)−1/4, whereη > 0 will be chosen below. By (5.12), we have

I ′
1 = 1

2π

∫ ε

−ε
g((1 − δ)eiθ )exp

{
N
[1
3
ρ(1 − (1 − δ)eiθ )3

+ ρ(1 − (1 − δ)eiθ )4v((1 − δ)eiθ )
]+ y log t ((1 − δ)eiθ )

+ ωN logs((1 − δ)eiθ )
}
dθ.

(5.23)

We make the change of variablesθ = ω(ρN)−1/3. For 0< η ≤ (ρN)1/12, |θ | ≤ ε, we
have

1

3
ρ(1 − (1 − δ)eiθ )3 + ρ(1 − (1 − δ)eiθ )4v((1 − δ)eiθ )

= 1

3
(η − iω)3 + R1,

(5.24)

whereR1 → 0 uniformly asN → ∞. Furthermore, ifξ ∈ [−M0, (ρN)
1/6], then

y log t ((1 − δ)eiθ ) = (−η + iω)ξ + R2, (5.25)

whereR2 → 0 uniformly asN → ∞.
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Supposeg(j)(1) = 0, j = 0, . . . , `− 1 butg(`)(1) 6= 0, so that

g((1 − δ)eiθ ) = 1

`!g
(`)(1)ρ−`/3(−η + iω)` + . . . . (5.26)

We now have all the estimates we need. Letη = √
ξ if ξ ≥ M0 andη = 1 if |ξ | ≤ M0.

By (5.12) and (5.24) we obtain

ReNu((1 − δ)eiθ ) = 1

3
η3 − ηω2 + R1

and hence, ifξ ∈ [−M0, (ρN)
1/6], ε = ω(ρN)−1/3 with ω = (ρN)1/12,(5.19) yields,

|I ′′
1 | ≤ C exp

[1
3
η3 − η(ρN)1/6 − ηξ + R3

]
≤ C

N(`+1)/3
exp

[−2

3
|ξ |3/2]. (5.27)

Similarly, by (5.21), forξ ∈ [−M0, (ρN)
1/6],

|I ′
1| ≤ C

N(`+1)/3
exp

[−2

3
|ξ |3/2]. (5.29)

The dominated convergence theorem gives

lim
N→∞N

(`+1)/3I ′
1

= ρ−(`+1)/3

`! g(`)(1)
1

2π

∫ ∞

−∞
(−η + iω)` exp

[ i
3
(ω + iη)3 + iξ(ω + iη)

]
dω

= ρ−(`+1)/3

`! g(`)(1)Ai (`)(ξ),

(5.30)

uniformly for |ξ | ≤ M0. Observe thatg1(1) = 1,g2(1) = 0 butg′
2(1) = 1, g3(1) = 0

butg′
3(1) = ρ(1−q)(γ q)−1/2 andg4(1) = g′

4(1) = 0 butg′′
4(1) = 2ρ(1−q)(γ q)−1/2.

Combining (5.27) and (5.29) we obtain

|DrN(x; g)| ≤ C

N(`+1)/3
exp

[−2

3
|ξ |3/2], (5.31)

for ξ ∈ [−M0, (ρN)
1/6]. The estimate (5.27) and the limit (5.30) give

lim
N→∞N

1/3DrN(x; g1) = ρ−1/3Ai (ξ), (5.32a)

lim
N→∞N

2/3DrN(x; g2) = ρ−2/3Ai ′(ξ), (5.32b)

lim
N→∞N

2/3DrN(x; g3) = ρ1/3(1 − q)√
γ q

Ai ′(ξ), (5.32c)

and

lim
N→∞ND

r
N(x; g4) = (1 − q)√

γ q
Ai ′′(ξ). (5.32d)

We can now use (5.22), (5.28), (5.31) and (5.32) in (5.5) and (5.6) to prove (3.6), (3.7)
and (3.8) for the Meixner kernel. The lemma is proved.
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6. The Equilibrium Measure

The equilibrium measureφV (t)dt satisfies certain variational conditions.

Proposition 6.1.Assume thatφ ∈ As satisfies

(i)
∫ s

0 kV (t, τ )φ(τ)dτ ≥ λ if φ(t) = 0,
(ii)

∫ s
0 kV (t, τ )φ(τ)dτ ≤ λ if φ(t) = 1,

(iii)
∫ s

0 kV (t, τ )φ(τ)dτ = λ if 0< φ(t) < 1, for someλ (which= FV ). Thenφ = φV .

We will not prove this here, see [LL] for a very similar result. The way to computeφV
is to seek a candidate solutionφ and then verify thatφ satisfies the variational conditions.
In a region where 0< φ(t) < 1 we can differentiate (iii) and obtain∫ s

0

φ(τ)

τ − t
dτ = −1

2
V ′(t). (6.1)

SinceV γ,q is convex the support ofφV is a single interval. If we consider the variational
problem without the constraintφ ≤ 1, and this problem has a solutionψ0 such that
0 ≤ ψ0 ≤ 1, then thisψ0 is the solution we are seeking. This is the case whenγ ≥ 1/q,
and then[aV , bV ] = [a, b] and∫ b

a

φ(τ)

τ − t
dτ = −1

2
V ′(t), a ≤ t ≤ b. (6.2)

We must haveφ(b) = 0 andφ(a) bounded (φ(a) = 0 if γ > 1/q).
If the solutionψ0(t) > 1 in some interval, e.g.ψ0(t) > 1 in [0, a0)but 0< ψ0(t) < 1

in (a0, b0), we make an ansatz thatφ(t) = 1 in [0, a] and 0< φ(t) < 1 in (a, b) for
somea, b, [aV , bV ] = [0, b]. This is the situation whenγ < 1/q. By (6.1),

∫ b

a

φ(τ)

τ − t
dτ = −1

2
V ′(t)−

∫ a

0

dτ

τ − t
, (6.3)

andφ(a) = 1, φ(b) = 0. By making the substitutionx = 2(t − a)/c − 1, y =
2(τ − a)/c − 1, c = b − a, in (6.2) and (6.3) we get an equation of the form

1

π

∫ 1

−1

v(x)

x − y
dx = f (y), −1 ≤ x ≤ 1, (6.4)

with somef . This equation has the general solution, [Tr],

v(x) = − 1

π
√

1 − x2

∫ 1

−1

f (y)
√

1 − y2

y − x
dy + C

π
√

1 − x2
,

whereC is an arbitrary constant. In this way we obtain (2.19) and (2.20).
Equation (2.21) is obtained by substituting (2.19) or (2.20) into (2.15) (the infimum

is assumed forτ = t). Consider the caseγ > 1/q, the other case is similar. Then, with
t = a + c(x + 1)/2,

J (t) =
∫ t

b

J ′(s)ds = c

2

∫ x

1
J ′(a + c(y + 1)/2)dy
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and

g(y)
.= J ′(a + c(y + 1)/2) = c

2

∫ 1

−1

v(x)

x − y
dx + 1

2
V ′(a + c(y + 1)/2)

= c

2

∫ 1

−1
log |y − x|v′(x)dx + 1

2
[log

1

q
− log(y + B)+ log(y +D)].

Now,

v′(x) = 1

2π

[√
D2 − 1

x +D
−

√
B2 − 1

x + B

]
1√

1 − x2

and ∫ 1

−1
log |y − x|v′(x)dx = 1

2
F(y,D)− 1

2
F(y, B),

where

F(y,R) = 1

π

∫ 1

−1

√
R2 − 1

(x + R)
√

1 − x2
log |y − x|dx.

Note that
d

dy
F(y, R) =

√
R2 − 1

y + R
[ 1√
y2 − 1

+ 1√
R2 − 1

].

Using these formulas we see thatg(−1) = 0 and hence

J (t) = c

4

∫ x

1
g(y)dy = c

4

∫ x

1
(x − y)g′(y)dy

= c

4

∫ x

1
(x − y)(

√
B2 − 1

x + B
−

√
D2 − 1

x +D
)

dy√
y2 − 1

,

which gives (2.21).
If f (y) = (γ − q)(y + B)−1 + (1 − qγ )(y + D)−1, thenf (y) > 0 for all y ≥ 1

anda0 = inf 1≤y≤1/c f (y) > 0. Thus for 0≤ δ ≤ 1, by (2.21),

J (b + δ) ≥ a0c

8
√
qγ

∫ 1+δ/c

1
(1 − 2δ

c
− y)

dy√
y + 1

√
y − 1

≥ c1δ
3/2,

for some constantc1 > 0. If δ ≥ 1, then

J (b + δ) ≥ a0c

8
√
qγ

∫ 1+1/c

1
(1 − 2δ

c
− y)

dy√
y + 1

√
y − 1

,

which proves (2.22). A more careful computation for smallδ yields (2.23).
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