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Abstract: We study a certain random growth model in two dimensions closely related
to the one-dimensional totally asymmetric exclusion process. The results show that the
shape fluctuations, appropriately scaled, converges in distribution to the Tracy—Widom
largest eigenvalue distribution for the Gaussian Unitary Ensemble (GUE).

1. Introduction and Results

The shape and height fluctuations in many 2-d random growth models are expected to
be of orderN*, with x = 1/3, if the mean of the linear size of the shape or the height

is of orderN. See [KS] for a review and [NP] for rigorous bounds pim first-passage
percolation.

In this paper we will consider a specific model. It can be given several probabilistic
interpretations, as a randomly growing Young diagram, a totally asymmetric one di-
mensional exclusion process, a certain zero-temperature directed polymer in a random
environment or as a kind of first-passage site percolation model. The model has the
advantage that we can prove thyat 1/3 and also compute the asymptotic distribution
of the appropriately rescaled random variable. Interestingly, the limit distribution that
occurs is the same as that of the scaled largest eigenvalueddfaw random matrix
from the Gaussian Unitary Ensemble (GUE) in the liMit> co. The model in this pa-
per has many similarities with the problem of the distribution of the length of the longest
increasing subsequence in a random permutation where the same limiting distribution
andy = 1/3 was found in [BDJ].

To define the modellet (i, ), (i, j) € Zi, be independent geometrically distributed
random variables,

Plw(i, j) =kl = (1—-q)q*, keN,

where 0 < ¢ < 1. Let Iy n be the set of all up/right paths in Z?r from (1, 1)
to (M, N), i.e. sequencedy, ji), k = 1,...,M + N — 1, of sites inZ2 such that



438 K. Johansson

(i1, 1) = L D), (im+N-1, ju+n-1) = (M, N) and(ix+1, jrk+1) — Gk, jx) = (1, 0) or
(0, 1). Define the random variable

G(M.N)=_max > w, j). (1.1)

We also define the closely related random variable

. B .

G*(M, N) = max > wri ),

T, ))erm

wherew* (i, j) = w(i, j) + 1, so thafP[w*(i, j) = k] = (1 — ¢)¢*~ 1, k > 1. Clearly,
G*M,N)=GM,N)+ M+ N —1, 1.2

since all paths have the same length. Using this random variable we can define, for each
t > 0, a random subset of the first quadrant by

A(t) ={(M,N) € Z% ; G*(M, N) <t} +[-1, 0% (1.3)

From the definition of5*(M, N) and the fact that we consider up/right paths it follows
that A(¢) has the form
Ukz1lk — 1, k1 x [0, Ax]

for some integers.y > A2 > --- > A, > 1, so we can think ofA(¢) as a Young
diagrami = (A1,...,A;). If we think of t € N as a discrete time variabld,(¢) is

a randomly growing Young diagram. Let A(z) be those unit cubes adjacentAdr)
that can be added ta(¢) so that it is still a Young diagram, i.e. each cube)im (¢)
must have a cube iA(r) or R? \ [0, c0)? immediately below and to the left of it. The
fact that thew*(i, j)’s are independent and geometrically distributed random variables
implies thatA(r 4+ 1) is obtained by picking each cube &iA(¢) independently with
probability p = 1 — ¢ and adding those cubes that were pickedito). (Recall that
Plw*@, j) = k + lw*(i, j) > k] = Plw(, j) = 1,1 > 0, the lack of memory
property.) The starting configuration is(0) = # andd*A(0) = [0, 1]2. In this model
G*(M, N) = k means that the bopf — 1, M] x [N — 1, N] is added at timé. This
growth model has been considered in [JPS].

This randomly growing Young diagram can also, equivalently, be thought of as a
certain totally asymmetric exclusion process with discrete time, compare [Ro] or [Li,
p. 412]. LetC(r) = d([0, 00)2 \ A(r)) and note thaiC(¢) consists of vertical and
horizontal line segments of length 1. To each vertical line segment we associate a 1
and to each horizontal line segment a 0. If we read the numbers @langstarting
at infinity along the y-axis and ending at infinity along the x-axis, we get an infinite
sequenceX (r) = (...,x_1(t), xo(?), x1(0), x2(0), ...) of 0's and 1’s, starting with
infinitely many 1's and ending with infinitely many 0's; we lej be the last number we
have before passing through the line= y. We can think ofX (¢) as a configuration
of particles, wherer; = 1 means that there is a particlekatwhereast, = 0 means
that there is no particle &t The stochastic growth of (r) described above corresponds
to the following stochastic dynamics of the particle system. At timeach particle
independently moves to the right with probability-1g provided there is no particle
immediately to the right of it. Otherwise it does not move. The starting configuration
is xk(0) = 1(—o0,01(k). In this particle modeG*(M, N) = k means that the particle
initially at position—(N — 1) has movedV steps at timé.

Our first result concerns the mean and large deviation propertiésmdf, N).
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Theorem 1.1.For eachg € (0,1) andy > 1,

A+ va7)?
1-—

. 1 .
Nlmo NE[G([VN], N)] = 1=w(y,q9). (1.4

Also,G([y N1, N) has the following large deviation properties. There are functigas
and{(¢) (which depend og andy), so that, for any > 0,

. 1
/Jf‘oo Nz logP[G([yN], N) = N(w(y,q) — €)] = —L(€) (1.5

and
1
1\7|i—>n100 N logP[G([yN], N) = N(w(y.q) + €)] = —i(e). (1.6)

The functiondg(x) andi(x) are> 0if x > 0.

Note that the existence of the limit (1.4) follows by a subadditivity argument, so it is
the explicit form of the constant that is interesting. The large deviation result (1.6) has
been obtained in [Se2]. The theorem will be proved in Sect. 2.

The theorem implies th#tA(t) has an asymptotic shape ast — oo, in the sense
that given any > 0,

(1-€)Ao < %A(t) S 1+e)Ao

for all sufficiently larger. It follows from the definition ofA (), (1.3), and Theorem 1.1
that

Ao ={(x,y) €[0,00%; y+2,/gxy +x < 1—q}.

The boundary ofAg consists of two line segments from the origin(tb— ¢, 0) and
(0,1 — ¢) and part of an ellipse that is tangent to theandy-axes.

We now want to understand the fluctuationsAf) around its asymptotic shape
Ag, i.e. the fluctuations ofs ([y N1, N) aroundNw(y, q). Before we can formulate the
result we need some preliminaries. Let(A) be the Airy function defined by

1 [ 3l
Ai (x) = _/ PUGED) /3+lx(t+:s)dt’
—0o0
wheres > 0 is arbitrary. Consider th&iry kernel

Ai (DA (y) — A’ (0OAI (y)
X —y '

A(x,y) = .7

as an integral kernel oh?[s, 00). The Fredholm determinant

0 Ak
F(s) = dettl — A) |12, 00= ) % /[ . det(A(x;, x;))f j_d*x  (18)
k=0 5,00

is a distribution function. Itis the distribution function of the appropriately scaled largest
eigenvalue of atv x N random matrix from the Gaussian Unitary Ensemble (GUE) in
the limit N — oo, the Tracy—Widom distribution, see [TW1]. The distribution function
F(s) can also be defined using a certain Painlevé Il function,

F(s) = exp— /oo(x — $)u(x)?dx], (1.9
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whereu (x) is the unique solution of the Painlevé Il equation
u” = 2u® + xu,

with the asymptotica(x) ~ Ai (x) asx — oo. The fact that the expressions (1.8) and
(1.9) are equal is proved in [TW1].

Theorem 1.2.For eachg € (0,1), y > 1ands € R,

G(yN],N) = No(y,q)

s o N SS1=FO). (110
where
q1/6y~1/6 . ”
oly.a)= 1_q_*¢7*‘¢5)/0=%vqy)/. (1.11)

The theorem will be proved in Sect. 3. We have not proved convergence of the moments
of the rescaled random variable, see Remark 2.5. This theorem should be compared
with the result obtained in [BDJ], that #y (o) is the length of a longest increasing
subsequence in a random permutatiore Sy (all N! permutations have the same
probability), then

iym P[(v/N) Y3y (o) — 24/ N) < 5] = F(s). (1.12)

Note that in both cases we have the same exponghtthe standard deviation is
(meanl/3

The proofs of Theorems 1.1 and 1.2 are based on the following result which will be
proved in Sect. 2.

Proposition 1.3.ForanyM > N > 1,

1
P[G(M,N) <t] =
Zum,N

Z 1—[ (hi —hj)?

heNV 1<i<j<N
max{h;}<t+N—1 (113

No(hi+ M =N\,
’ l_[ h; qs

i=1 !
whereZ), v is the normalization constant (partition function).

This remarkable formula should be compared with the formula for the distribution
function for the largest eigenvaluiyay, of an N x N random matrix from GUE,

N

1 _

PlAmax < t] = Z—f l—[ (xi — Xj)z 1_[ e ZNXIZde. (1.19
N S0V 1 iy =1

There is a clear similarity between the two expressions, so we can use the ideas developed
to investigate (1.14). Just as the right-hand side of (1.14) can be written as a Fredholm



Shape Fluctuations and Random Matrices 441

determinant, so can the right-hand side of (1.13). The kernel for (1.13) idénaer
kernel.

KM,N(-X7 )’)
_ K:];l MN(X)MN—l(y; = )]:/IN—l(x)MN()’) Wl w2, (1.15

whereMy (x) = kyx™ + ... are the normalized orthogonal polynomials with respect
to the discrete weighty = M — N + 1,

K-1
w(;((x) = (x + . )qx, x € N. (1.16)

This Meixner kernel also appears in the recent paper [BO]. The polynadyak) is

a multiple of the classical Meixner polynomiaiéf,’q(x). Using the explicit generating
function for the Meixner polynomials, see [Ch], the appropriate asymptotics of the kernel
(1.15) can be analyzed. This will be done in Sect. 5.

Letu(i, j), (i, j) € Zi, be independent exponentially distributed random variables
with parameter 1. Let/ (M, N) be the analogue @ (M, N) for these random variables,
ie.

HM,N)y=max Y u(i.j): 7 € yy). (117)
(i, ))en

We can consider the related stochastically growing Young diagram and totally asymmet-
ric exclusion process just as in the geometric case, where we now have continuous time.
This simple exclusion process is exactly the one considered by Rost, [Ro], see also [Li].
In this processX (t) = ()2 _., € {0, 1}% the initial configuration is d 0,01 (k)
and a particlerf, = 1) jumps with exponential rate to the right one step provided there
is no particle ak + 1 (n;4+1 = 0). By taking theg — 1 limit in (1.13) we obtain

Proposition 1.4.ForanyM > N > 1,¢ > 0,

N
l_[ (xi—xj)zl_[x;w_Ne*X-dex. (1.18
j=1

M.N IOV i iy

P[H(M,N) <t]=

Proof. If X; is geometrically distributed with parameter 1/ L, thenL~1X; converges
in distribution to an exponential random variable with parameter 1. Sit{@é, N) is a
continuous function of the (i, j)'s, Proposition 1.3 gives

P[H(M, N) < 1]

oI —h)H(h M= N)(l 1/L)"

L_)OO ZMN (*) 1<i<j<N
i h; +k
hi J 2 LRES)
i Il H H<
L*)OO ZMN(M N) (%) 1<l<j<N
/ —xj)zl_[x;.w_Ne_xdex,
MN 0,11 l<z<]<N j=1

where(x) means summation over @le NV such that magf;} < [Lt]+ N —1. O
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Remark 1.5The right-hand side in (1.18) is the probability that the largest eigenvalue
in the Laguerre ensembile is ¢. It occurs in the following way. LefA be anN x M
rectangular matrixyY < M) with entries that are complex Gaussian random variables
with mean zero and variance 1/2. Then the right-hand side in (1.18) is the distribution
function for the largest eigenvalue afA*, see [Ja].

Theorem 1.6.For eachy > 1,
. 1
lim —E[H(yN], )] = 1+ 7)% (119
N—oo N
and there are function& (¢) and£,(¢) (which depend ofy), so that for any > 0,
. 1
lim — logP[H([yN], N) < N((1+ =l =—t(e) (1.20)
N—oco N

and
N"an % logP[H([yN], N) > N((1+ «/7)2 + )] = —i.(e). (1.2

Furthermore, assume thaly = O(N¥/3) asN — oo and pickdy so thatdy — (1 +
1//7)an = o(N¥3) asN — co. Then, for eacly > 1,

- H(yN +an,N) = 1+ J/7)°N —dy
Nlinoo Pl Y81+ /) *BN3 =sl=F(). (1.22

Proof. For the proof of (1.19) to (1.21) see Remark 2.3. Write- (1 + ﬁ)z and
p =y Y81+ /»)¥3. Then, by Proposition 1.4,
P[H(yN 4 an, N) < cN +dy + pN/3s]
1

N
2 oy —xj gN
=7, oy SO [
yN+ay,N Y[0,cN+dy+pN1/3s] =1

whereA (x) = ngqu(xj —x;) anday = (y —1)N +ay. By a standard argument,
see [Me, Ch. 5], [TW3] or Sect. 3, this equals the Fredholm determinant

N k

(-1
> - /[ . det(oNPK Y (eN+dy+pNY 3, cN +dy+pN3))} _1d'E,
k=0 7 5,00

(1.23)
where
_1 L5 (x0) €% — L5 (LS4 (x
K (x, ) = kn—1 Ly )y _1(0) — L Ly _1( )(x“e"‘y“e‘y)l/z

KN xX—y

is the Laguerre kernel. Here,

o n! 1/2 nraoa n
En(x) = (m) (—1) Ln(x) =KX +...
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are the normalized associated Laguerre polynomials,

o0
/ (X)L (x)x%e ™ dx = Spp.
0
From asymptotic formulas for these polynomials it follows that
lim K¥(eN +dy + pNY3g, eN + dy + pNY3p) = AE, ). (1.24)
—00

This can be proved inthe same way as the corresponding results for Meixner polynomials,
see Sects. 3 and 4, by using the integral representation

ex e—xzzn+a
o —
) = 2 /c EEE

whereC is a circle surrounding = 1. Using (1.23), (1.24) and some estimates (compare
Lemma 3.1) we obtain

Jim PIH(yN +ay, N) < cN +dy + pNY3s]
—00

o (—DF o
- Z k! [ Y det(A (&, SJ'))i,jzld & =F(s).
k=0 ' 5,00

We will not present all the details since they are similar to the proof of Theoremi.2.

Using this result we can get a fluctuation theorem for Rost’s totally asymmetric
simple exclusion process defined above. The random varkalg M) is the first time
at which the particle starting at(N — 1) has moved exactlyf steps to the right. If we
defineY (k, 1) = Zj>k n;(t) to be the number of particles to the right/oft timez,
thenY (k, r) > m means that the particle that starts-at has moved m + k + 1 steps
at timer. Hence

PlY(k,t) <m]=1-P[Hm+k+1m+1) <t].
Using this relation and (1.19) to (1.21) we obtain the following result first proved by
Rost, [Ro],
Lyl — 21— u)?
— % p— J—
PR 4 "

almost surely as — oo, |u| < 1. Now, using (1.22) it is fairly straightforward to show
the following result.

Corollary 1.7. For eachu € [0, 1),

A—w?? ;3
Remark 1.8We can interpret Theorems 1.1 and 1.2 (and analogously Theorem 1.6)
as a result for a kind of zero-temperature directed polymer or equivalently a directed
first-passage site percolation model in the following way.

Let S; be the simple random walk i# starting at O at time 0 and ending at O at
time 2V + 2. Denote the set of all possible pathsBy. Let v(i, j), (i, j) € Z? be

lim Py ([ur), 1) < %(1 w4
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independent, identically distributed random variables, and let0. OnPy we put the
random path probability measure

2N

1
oNLS] = P > vk, S0,

N k=1

S € Py, WhereCf, is the normalization constant. This measure describes a directed
polymer (§) fixed at both endpoints at inverse temperatarim the random environ-
ment given by the(i, j)'s, see [Pi]. Theree energyis —8 1 log C?, and in the zero
temperature limig — oo this becomes

2N
FSS = min k, Sp), 1.2
5 Zem;“( %) (1.25

the ground state energy. By rotating the coordinate system by the anglkit is seen

that (1.25) can, equivalently, be thought of as a first-passage time in a directed first
passage site percolation model. L&, j), (i, j) € REL, be independent, identically
distributed random variables (with the same distribution asthej)’s). ThenFﬁS has

the same distribution a&(N, N), where

F(M,N)= mi i, J).
(M,N)= min Z ui, j)
(i,j)em
(Theu(i, j)'s are usually thought of as passage times B, N) is the minimal flow

time from (1, 1) to (M, N). Hence it is natural to assume thai, j) > 0, but this will
not be the case below.) We can define a random shape

B(t) = {(M,N) € Z%; F(M,N) < t} + [-1, 0%

Setu(i, j) = a — w(i, j), wherea > amin = (1 — ¢) (¢ + /g) (this condition orw
ensures thaB(¢) will grow); w(i, j) are the geometrically distributed random variables
considered above. Then clearly,

F(MM,N)=a(M+N —-1)—G(M,N). (1.26)

Lety > 1, seti(y) = (14 y2)~Y2(y, 1), a unit vector andni(y)] = ((Ny], N),
([-] the integer part), whery = [(1+ y?)~Y2n], so that{ni(y)] is a lattice site near
nx(y). LetT,(y) be the first time > O for which B(s) reachegnx (y)],

Tu(y) = inf{s > 0; [nX(y)] € B(s)}.
Clearly, by the definition oB(s) and Eq. (1.26),
T,(y) =a(lyNl+ N —1) — G([yN], N),
whereN = [(1+ y?)~?n].
Theorem 1.1 implies that for eaghe (0, 1) andy > 1,

o1 1+ Jq7)>2
nILmOO ;E[Tn(y)] = [a(y +1) — (1% + 1] = p(y).

1
V14 y2
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Also, T,,(y) has large deviation properties similar to thosedfy N], N). Using this
result we can compute the asymptotic shap8@}. It follows from Theorem 1.2 that

LW =) 1 Ry

P
[(1 + vy Yep(q, y)nt/® ~

asn — oQ.

Conjecture 1.91s the result forG ([y N], N) limited to geometric and exponential ran-
dom variables? Normally, we expect limit laws for appropriately scaled random variables
to be independent of the details. It is therefore natural to conjecture thatif(ihe)’s

are i.i.d. random variables with some suitable asumptions on their distribution, then
there are constantsandb so that(G([y N1, N) — aN)/bN/3 converges to a random
variable with distributionF (s). By Remark 1.8 this leads to a related conjecture for
directed first-passage site percolation.

2. The Coulomb Gas

2.1. Combinatorics.The key combinatorial ingredient is the Knuth correspondence in-
troduced in [Kn]. It generalizes the Schensted correspondence [Sc] which is used in
[BDJ]. Write [N] = {1,..., N}. Let My, y denote the set of all x N matrices

A = (g;j) with non-negative integer elements, and/fdt"M’N be the subset of those

matrices that satisfy_;Z; >/ a;; = k. A two-rowed array

o= [t ik
J1 -+ Jk

is called a generalized permutation if the colurﬁir))sare lexicographically ordered, i.e.

eitheri, < i,y10ri, =i,y1, j» < jr+1. There is a one-to-one correspondence between
the setS’,@  of all generalized permutations of lengtfwhere the elements in the upper

row come from[M] and the elements in the lower row frav], andM’ij defined
byo — f(o) = A = (a;;), where

i

a;; = #times <J

) occurs ino.

We say that(j’ri), e (;m) r1 < rp < --- < ry, is an increasing subsequencevirif

J1 < j2<--- < j,. Letl(o) denote the length of a longest increasing subsequence in
o.

Example. The generalized permutatation
111222334
122222121

corresponds to

0
0

PR Ok
oOrRrWN

A longest increasing subsequensdi2 2222 2 3sé(c) = 8.



446 K. Johansson

Recall from Sect. 1 thdi y, y denotes the set of all up/right pathsrom (1, 1) to
(M, N) through the siteg¢i, j)withl<i <M,1<j <N.

Lemma 2.1.For eachA € M, .

max Y aj; € My n}=L(fHA). 2.1)
(i,j)em
Proof. This is clear from the definitions. That we go to the right corresponds to the fact

thati,, < --- <i,, and that we go up correspondsjQ < --- < j, (the upper row
gives row indices whereas the lower row gives column indices in the matrix).

Now, Knuth has defined a one-to-one mapping from theS#jv to pairs(P, Q)
of semi-standard Young tableaux of the same shapéhich is a partition ok, A + k,
whereP has elements ifiv] and Q has elements if/]. (More information on Young
tableaux can be found in [Sa] and [Fu].) This correspondence has the property that if
o — (P, Q) and P, Q have shape, then{(c) = the length of the first rowi, in .
ConsiderG(M, N) defined by (1.1). Thed x N matrix W = (w(i, j)) is a random

elementinM, y. Let
M N
S(M,N) =Y "> "w(i, j)
i=1j=1
and
pu.n(t) =P[G(M, N) <t].

Then,
oo
pu.N(t) = ZP[G(M, N) <t[S(M, N) = kIP[S(M, N) = k]. 2.2
k=0
For a fixedA € M%,  we have
Pl{A = [ [A - 9)¢% = - g",
iJ
since}_; ; aij = k. We have proved

Lemma 2.2.The conditional probability?[-|S(M, N) = k] is the uniform distribution
on M}, .
This lemma is the reason that we chooseitfie j)'s to be independent and geomet-
rically distributed. Note that
P[S(M, N) = k] = #M}, 1 — )MV g". (2.3)

Let L(A, M, N) denote the number of paif®, Q) of semi-standard Young tableaux
of shapei, such thatP has elements ifiv] and Q has elements ipM]. Combining
Lemma 2.1, Lemma 2.2 and the Knuth correspondence we see that

PIG(M, N)§t|S(M,N):k]:W Z L, M,N). (2.4

M,N \+kaq<t

To computeL (A, M, N) we use



Shape Fluctuations and Random Matrices 447

Lemma 2.3.The number of semi-standard tableaux of shapend elements iiN]
equals
l_[ Ai— )\.j +j—i
1<i<j<N J =l

Proof. We have two formulas for the Schur polynomialdhvariables associated with
the partitioni, [Sa, Fu],

Ai+N—i
det(x’;’ Vi<i,j<N

T = =
si(x) = X = - s
() ; det ™

)1<i,j<N

where the sum is over all semi-standarthbleaux?” with elements ifN] andx” =
mi

x7't .. xy" with m; equal to the number of timgsoccurs inT. Hence, evaluating the
Vandermonde determinants,

53 (L, x, .., xN T = %" 1_[

1<i<j<N

whi—hjti—i _q

x/—i—1

)

wherer = vazl(i — 1)A;. The number of semi-standard tableaux with element&/in
equals

i
s, (1, 1,...,1)=}!i£1)‘|1s;\(1,x,...,xN_l) = 1_[ ;—iﬂl

1<i<j<N Jt
This completes the proof of the lemman
It follows from Lemma 2.3 that
Mi—AjAj—i Mo—hj+j—i
Loom Ny = [ HEAEIZD O HEAEIZL g
- J—i e J—i
1<i<j<M 1<i<j<N

We assume from now on thaf > N, the other case is analogous by symmetry. Since
the numbers in the columns P and Q are strictly increasing we must hakg = 0 if
N <i < M. Hence

. . M
Ai—Aj+j—i Ai+
LA, M,N)= _ .
( ) .H < J—i )rln (Jﬂ
1<i<j<M i=1j=N+1

Lleth; =A;+N—j,j=1,...,N,sothathy = A1+ N —1,hy = Ay > O and
h1>hy > ---> hy.Then

N M
(hi —hj)? hi +
room= ] SRy Ay
1<i<j<N J i=1j=N+1 J (26)
- (hi + M — N)!
]17————j I1 w-mﬁﬂ———T—ﬁ
joo JM = N+DE Ty i=1 hi!
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The COHdItIOﬂZ i_1Aj = k translates mt@ i—1hj=k+ NN —1)/2andr; <rto
h1 <t+ N — By (2.2), (2.3) and (2.4) we have

pun@® =) A-"¢" Y LM, N),

k=0 Ak A<k
and inserting (2.6) yields
A-gMV g~NN-D/2
PuN() = ————— N l_[ M = N+])'
0 !
XZ Z l—[ h; —h)zl_[(h +M N)! Z, i,
k= 1<i<j<N

Y hi=k+N(N—1)/2
max{h;}<t+N-1

where we have used the symmetry under permutation df;teeSumming ovek gives
all the possible values df i;, so we obtain

N
z; N > [T ti—np?T]wh niahd. (27

heNN 1<i<j<N i=1
max{h;}<t+N-1

pu.N () =

wherew$ (x) is given by (1.16) and

N-1
Zun =q" VPP A— )MV [T UM = N+ ). (2.8)
j=0

This proves Proposition 1.30

2.2. The large deviation estimatén order to investigate the location of the rightmost
charge in (2.7) and prove large deviation formulas we rescale the discrete Coulomb gas
(2.7). LetM = [yN],y > 1fixed,andK = K(N) = [yN]— M + 1. SetAy = —N
Ay(s)={x e Ay; x <s}and

1
Vi@ = =5 logu oy, (N0, 120,
Using Stirling’s formula we see that

1
lim v9) =tlog= — (¢ — D log(t -1
am Vy () gq t+y—-Dlogt+y -1 2.9

+1tlogr + (y — Dlog(y — 1) = V()

uniformly on compact subsets [, co). (We will often omit the superscripis andg.)
Rescaling the variables in (2.7) by setting= Nx;, x; € Ay we see that (2.7) can be
written

I +1-3)

2.10
Zn , (2.10)

PN () = puny,N(E) =
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where
N
I = Y. Av@Zexp(—N Y Vn(x)) (2.11)
xeln ()N Jj=1

andZy = Zy(c0). HereAy (x) = l—ll<i<j<N(Xj — x;) is the Vandermonde determi-
nant. T

When investigating the large deviation propertiespaf(r) we may just as well
consider more general confining potentidils. Assume thaVy : [0,00) —> R, N > 1,
satisfy

(i) VyiscontinuouspN > 1.
(ii) There are constants> 0, T > 0 andNgp > 1 such that

Vn () > (1+ &) log(r® + 1) (2.12)

fort > T andN > Np.
(i) Vn(t) — V() uniformly on compact subsets , co).

Set forx € AY andg > 0,

M BN
Qun () = Ay @) [T exp(==-Vi ().
j=1

(This M is not the same as the previous) Define the partition functions
ZuN(t) = Z Omn(x),
XGAN(I)M
Zu.N = Zn,m(00) and the probability measure
Py (Bl = — > Ounx)
M,N = 5 M,N(X),
ZM’N xeB

B < N We are interested in the distribution of the position of the rightmost charge,
maxi<k<m Xk Its distribution function is given by

Zy.n()
ZunN

Fy n@) = Py ny[maxxy <] = (2.13

(If M = N we write F (¢).)

In order to formulate the large deviation results 6y (z) we need some results
from weighted potential theory, [ST]. The results we need differ from the usual ones
since we are interested in the continuum limit of a discrete Coulomb gas, so that the
particle density of the rescaled gas is alwaysl. Hence, the equilibrium measures
will be absolutely continuous with a densigysatisfying 0< ¢ < 1. Let A; denote
the set of allp € L1[0,s) suchthatO< ¢ < 1 andfosqb =1,1<s < oco. Given
V [0, o0) — R, continuous and such that there i& & 0 and aT" > 0 such that

V() > (14 8)log(t? + 1) (2.14)
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forr > T, we set

41 1
ky(x,y) = loglx — y| +§V(X)+§V(y)

and oo
Iv[g] = /O /O kv (x. )¢ ()¢ (y)dxdy.

for ¢ € As.
The proof of the next proposition is similar to the corresponding result in weighted
potential theory. See [DS] and also [LL] where a very similar problem is treated.

Proposition 2.1.For eachs € [1, oo] there is a uniquey, € A, such that
inf I =1Iy[¢y] = F.
o vigl vigyl %

The extremal functios;, has compact support. (if= oo we will drop the superscript.)

Letby = supsupppy) be the right endpoint of the supportgf. SetJ () = 0 for
t < by and .

10 =inf [y s = py (2.15)
fort > by. Also, set
L(r) = %(F"/ — Fy)

fort > 1. The next theorem gives the large deviations for the distribution funétiarn)
defined by (2.13)
Theorem 2.2.Assume thaVy (¢) satisfies the assumptions (i)—(iii) above. Then

. 1
NITOO V2 log Fy(t) = —BL(t) (2.16)

foranyr > landL(¢) > Qif t < by. Assume furthermore that(z) > 0 for¢ > by.
Then 1
lim —log(1- F, =— 2.1
N@OON 0g( N (@) BJ (@) (2.17)
for all ¢.

We postpone the proof to Sect. 4.
Remark 2.3The same result is true for a continuous Coulomb gaR @ith density

1 NI
Z—ﬂmN(x)Vf exp(—’% Z V(x;)), (2.18)
N j=1

on RV, which occur in random matrix theory. The choife= 2 andV(r) = 22
corresponds to the Gaussian Unitary Ensemble (GUE), compare (1.14). We assume that
V is continuous and satisfies (2.14). In this cagds replaced byM (s), the set of all
probability measures ofr-o00, s), andgy (x)dx is replaced by the equilibrium measure

duy (), see [Jo]. The proof is essentially the same. The formula (2.16) for cértain

is a consequence of the result in [BG], see also [HP]. Also, (2.17) has been proved
in the caseV (1) = +2/2 in [BDG]. If we take (2.18) or{0, co)" with 8 = 2 and

V@) = —(M/N — 1)logt + t we get the measure in (1.18), and in this way we can
prove (1.19) to (1.21).
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We can now apply Theorem 2.2 to the model we are interested in. It is straightforward to
verify thatVN”’q satisfies the conditions (i) - (iii) with limiting external potentiat-4 (¢).
Write byr.e = b(y, q). The computation opyr.¢ will be outlined in Sect. 6. We have

1+ 2
.00 = ST

If y > 1/q, then
2
oyra(t) =v(=(t—-a)—1), a<t=<b,
c
_ 2
wherea = %, ¢=b(y,q) —aand

Dx+1 Bx+1

1
v(x) = E[arctan{ T2 p7 1 1) — arctar( T2 571 1)], (2.19
B=(W+q/2/q7,D=14+qy)/2/qy.If y < 1/q, then,
1, f0<t=<a
brralt) = {v(%(r —a)—-1), fa<t<b,
where
1 Dx +1 Bx+1
v(x) = Z[” — arctammm) — arctammm)] (2.20

with a, ¢, B, D as before.

We will not discuss the explicit form of the lower tail rate function. The upper tail
rate function is given by

c x — 1- d
—/ (R EA A D4 B
8Vqv J1 y+B y+D  /y2_-1
with ¢, B, D as above and = 2(t+ — a)/c — 1. Using this formula we can show that
(see Sect. 6) there are constants- 0 andc, > 0 so that

J(t) =

(2.21)

1832 ifo<s<1
J(b+6) > {025 5= 1 (2.22
and 3/2,,1/4
20 -7y 3/2 5/2
J(b+9d) = 874+ 0(87°). 2.23
( 347G+ ST Jar) @
In particularJ (¢) > 0if t > b(y, q).
From (2.10), (2.13) and Theorem 2.2 we obtain
. 1
Nli’noo V2 logpn(Nt) = —2L(t + 1) (2.29
and 1
lim —log(l— py(NB)) =—-2J( +1) (2.25)
N—oo N

for eacht > 0. These formulas imply Theorem 1.1 witlle) = 2L(by — €) and
i(e) = 2J(by +¢€). By Theorem 2.2 and (2.22) we hai@) > 0 andé(¢) > Oife > 0.

By a superadditivity argument, the limit (2.25) actually gives a large deviation esti-
mate for allN, compare [Sel].
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Corollary 2.4. Forall t > 0andN > 1,
1— pn(Nt) < exp(—2NJ(t + 1)). (2.26)

Proof. For 1< M; < My and 1< N1 < No we letG[(M1, N1), (M2, N»)] denote the
maximum OfZ(i,j)en w(i, j) over all up/right paths froniM1, N1) to (M2, N2). Note
thatif 1 < M1 < My and 1< N; < No, then

(i) GI[(M1+1, N1+1), (M2, No)]andG[(1, 1), (M2 — M1, No — N1)] are identically
distributed.

(i) G[(1,1), (M1, N1)] andG[(M1 + 1, N1 + 1), (M2, N»)] are independent. Since
[2yN] > 2[y N], we have

(i) GI(yN1+1, N+1),([2yN1,2N)] > G[([yN1+1, N+1), (2[y N1, 2N)]. Write
ay() =1— py(Nt) =P[G((L, 1), ([yN], N)) > Nt]. Then, by (i) and (iii),

ay(®) <P[G(([yN1+ 1, N +1), ([2yN],2N)) > Nr1]

and hence, by (ii)an ()2 < aon(1). Repeated use of this inequality yields
N~tlogay(t) < (2*N)~tlogay y(t), and by lettingk — oo and using (2.25)
we findN~tlogay(r) < —2J(t +1). O

Remark 2.5We cannot prove convergence of the moments of the rescaled random vari-
able in Theorem 1.2 since we have no fineestimate ofP[G([y N], N) — oN <
—sNY3] for s > 0 large. This would require an estimate of the finkeFredholm
determinant. In the other direction we can use the estimate in Corollary 2.4. The same
remark applies to Theorem 1.6.

Remark 2.6In [BR] it is proved by Baik and Rains that if we consider permutations
with certain restrictions we can get the Tracy—Widom distributions for GOE and GSE
as limiting laws for longest increasing and decreasing subsequences. By considering a
restricted geometry we can obtain the Tracy—Widom distribution for GOE, [TWZ2], also

in the present setting. Lei(i, j), 1 <i < j be independent geometrically distributed
random variablesP{w(i, j) = k] = (1 —g)g* for1 < i < j andPlw(i, i) = k] =

(1 — /g2 fori > 1. Setw(i, j) = w(j,i),ifi > j > 1,sothatd = (w(i, j))isa
symmetric matrix. The Knuth correspondence mage a pair of semistandard Young
tableaux(P, Q) with stzm P, i.e. A maps to a single semistandard Young tableaux,

see [Kn] or [Fu]. LetITy 'y be the set of all up/right paths frogd, 1) to (¥, N) in
{(i, j)) € Z%; 1 <i < j},i. e.inatriangle, and set

sym

F(Ny=max Y w(,j): = ey 'y}
(i,j)emw

Now, we also have

F(N)=max ) w(,j); = € ly,n),

(i,j)em

which equals the length of the first row i, because those parts of a maximal path in

Iy x Which goes below the diagonal can be reflected in the diagonal to give a path in
3"y, without changing the surl w(i, j) sincew(i, j) is symmetric.
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The same argument as above now gives

N
1 .
PIF(N) <tl=—5 Y [T thi—ni]]a""
ZN heNN 1<i<j<N i=1

max(h,}<r+N—-1

This corresponds t8 = 1,y = 1 in Theorem 2.2. It should be possible to analyze
the asymptotics in this case analogously to GOE, see [TW2], to show that we can find
constants: andb so thatP[F(N) < aN + sbN1/3] converges taFi(t), the Tracy—
Widom distribution for GOE. However it is not immediate to generalize the techniques
of [TW2], so this remains to be done. Note that again we can take thedimit 1 to

get the case of exponentially distributed random variables.

3. The Fredholm Determinant

From the identity (2.7) we have

pn(t) =yYn(t+ N — 1), 3.1
where
N
Yn(s) = EnI] [ = xs )1, 3.2
j=1
Here
1 il
Elbl= D OAND? T ] wh )

heNN Jj=1
K(N) = M(N) — N+ 1, M(N) = [yN] and x,(¢) is the indicator function for the
interval (s, co). We will takes in (3.2) to be an integer.

Let Mf’q(x), j =0,1,... be the normalized orthogonal polynomials with respect
to the weightw? (x) onN,

oo

k, K,
DM OMP g () = 8,
x=0

ande’q(x) = Kjxj +... with«; > 0. Set

N-1

Kn(x,y) =Y MM (w0 2wl (02,
j=0

so thatK v (x, y) is a reproducing kernel of?(N).
The ponnomiaIst’q are multiples of the standard Meixner polynomials, [NSU,
Ch],

—1)n
My (x) = %mﬁ*qm,
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where
2 nl(n + K —1)!

" A— KK — 1)

The leading coefficient imf’q is (qT_l)" and consequently
_1/1—g¢q "
o= d‘(T) ‘
The Meixner polynomials have the generating function, [Ch],
0 n
Yol = @ Hra—nk (33)
) n: q

The Christoffel-Darboux formula, [Sz], gives
KN—1 MN()My_1(y) — My(y)My-_1(x) 4

Ky(x,y) = wK(X)l/Zw(II(()’)l/Z
o - 3.4)
g mma®) — O oy e O
A —d3_, x =y K e

where we have omitted the upper indices. Standard computations from random matrix
theory, [Me], Ch. 5 and [TW2], show thdty can be written as a Fredholm determinant,

N

—1)k
U (s) = Z ( k') Z det(Ky (hi, hj))i<i,j<k- (39
k=0 © he{s+Lls+2,. )k

The proof of Theorem 1.2 is based on taking the appropriate limit in (3.5).
The next lemma will allow us to compute the asymptotics of the right-hand side of
(3.5).

Lemma 3.1.Leth > 0 be a constant and assume that — oo asN — oco. Suppose
furthermore thatky : N x B — R, N > 1, satisfies the following properties.

(i) LetM1 > 0be agiven constant. There is a const@nsuch that

o0
ZKN(bN+,0Nr+m,bN+,0Nr+m) <C (3.6)

m=1

foral N > 1,7 > —Mj.
(ii) Givene > 0, there is anL > 0 so that

o
Z Ky (N + pyL 4+m,bN + pyL +m) <€, (3.7)
m=1
forall N > 1.
(i) Let Mg > 0 be a given constant. (&, n) is the Airy kernel defined by (1.7), then
IJi_rPOO pnKN (BN + py&E, DN + pyn) = A(E, 1) (3.9

uniformly for&, n € [—Mp, Mo].
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(iv) The matrix(K y (x;, Xj))i-(’j=l is positive definite for any;, x; € [0, 00), k > 1
Then, for each fixed € R,

N

. (—1)*
Nlinoo kzo x Zk det Ky (bN + pnt + hi, BN + pnt +h)))f j_y = F(1), (3.9)
= heN

whereF (t) is given by (1.8).
Proof. It follows from (iv) that

k

| det(Ky (x;. xj)1<ij<k| < [ [ Kn(xj. x)). (3.10)
j=1

see for example [HJ]. Consequently,

o0 k
| Y det(Ky(ay + hi.ay + hj))isij<k| < (Z KN<m,m>> : (3.11)
heNk m=1

where we have writteay = bN + pyt.
ChooseM; so that|r| < M;. Lete > 0 be given. It follows from the estimates (3.6)
and (3.11) that we can chooéaso that

- (D >, ¢k
| 2 i 2 detKntay thiay +hp)i il Y o6 (812
k=t+1 " heNk k=t+1

forall N > 1. Choosd.q so that (3.11) holds witlh = Lo — Mp. Then, by the estimates
(3.6), (3.7) and (3.10),

(Z — Z ) det(Kn(an + hi,an + hj))1<i j<k

heNk  he([Lopn]9)k

k
< Z HKN(aN + hi,an + h;)

heNF i=1
somehj >LopN

k k
< Z Z l_[KN(aN + hi,an + h;)

j=1 peNk i=1
hj>Lopn

00 k—1 , 00
< k(Z Ky(ay +m,ay +m)> (Z Ky (N + Lpy +m,bN + Lpy +m)>

m=1

< kCk e,

m=1

(3.13
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Denote the Fredholm determinant in the right-hand side of (3.9) b¥). Inserting the
estimates (3.12) and (3.13) into the formula (3.9) we obtain

L=k h; 1
DMOEDIE DS det(/cN(o+—o+—>>1<l,<k .
e RLNCEYY
¢ k—1
kC
5(12 - +1>es(1+ec)e,

where
Kn(E, n) = pyKn(BN + pnE, BN + pyn).

By assumption (iii), withMy = Lo + M3, we can chosé/p so that if N > Ny, then

|del(ICN(U+— o+—))—det(A(cr+— o+—))| <=
PN PN Ly

forall x, y € [Lopn]. Thus,

_ k i h i h
Z( D > |:det(’CN(l+h—,t-i-—j))—det(A(t'f‘h—,l-l-_J))]ik
oN PN PN PN

k=0 helLopw ¥ PN
¢
Cy k() e
= k! Lopn
(3.15)
Combining the estimates (3.14) and (3.15) we find
(- L
Dy(t) =Y 0 Y dettA(o + — Ui )), 1| =Ce (316
k=0 7" he[LopnTt PN
The Airy kernel can be written, [TW1],
oo
Alx,y) = / Ai (x + $AI (y + s)ds. 3.17)
0

Using the formula, see for example [H&], p. 214,
Al(r) = e 57 / T VISR
27 J_o

valid for x > 0, we see that

. 1 o352
IAT (x)| < Zﬁxl/“ T, x>0
This estimate can be used to show that the Airy kernel satisfies (i) and (ii) above. Since
the matrix(A(&;, &;))1<i, j<« is positive definite, we can use the same argument as above
to show that

14

()2

—_ 1)k
/[L ]k) ( k‘) del(A (&, §))f j_1d"E| < € (3.18)
k=0 k=0" Lo .
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provided? and Lg are sufficiently large. From (3.17) we see that choogiig> No
large enough we have

14

—1)k
Dy - S [ detaG e endte < Ce (319
k=0 : [t,Lol¥

forall N > N;. If we combine the estimates (3.18) and (3.19) we have proved the
lemma. O

To apply this lemma to the Meixner kernel (3.4) we need

Lemma 3.2.The Meixner kernel satisfies the properties (i) to (iv) in Lemma 3.1 with
b = b(y, q) as before angy = o N1/3, whereo is given by (1.11).

This lemma will be proved in Sect. 5. We can now combine (3.1), (3.5) and (3.9) to
get
Nlim pn((b—DN +oNY3) = F@), (3.20)
—00

which is (1.10) and Theorem 1.2 is proved

4. Proof of the Large Deviation Theorem

In this section we will prove Theorem 2.2. Set

Kynv@) = > ky(x.x)).

l<i#j<N

By adding a constar@ to Vy, which does not alter the problem we can, by assumption
(ii) on Vy, assume that

V(1) —log(t? + 1) > & log(r® + 1) 4.1
forallr > 0. Sincelr — s|% < (12 + 1)(s2 + 1), this implies

M-1

—Kum vy (x) < —E(M — 1) Y log(1+ x%) (4.2)
j=1

for all x € [0, c0)™. Note that

N-1

N-1
> loglxj —xkl =N Y Vn(xj) =Ky 1ve(x) = Y Vn(x)). (43)
1<j#£k<N-1 j=1 j=1

The next lemma is analogous to Lemma 4.2 in [Jo].
Lemma4.1.Let{sy} be a sequence ifD, oo) such thatsy — s > 0asN — oo, Or

sy = oo. Set, for a giverw > 0,

1
Qn.a(s) = {x € Ays)VL; KNy (0 < FY + ).
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LetO <X < 1landletoy € Ay, N > 1, be a sequence convergingdo> 0. Define a
probability measure oy (sy)V 1 by

N-1

1

PV N @sw) = ——— 3 [[lov —x;P On-an), (44
Zy_1nGN) voo j=1

A0 . . . e .
whereZN_”iN(sN) isanormalization constantE(N_’iN [-; sy ] denotes the correspond-

ing expectation and iy = oo or . = oy = Owe omitthem in the notation.) Fix> 0.
Then there is av1 such that for alla > 0Oand N > Ny,

. _B 2
PyoY y (QNva(sn) s sy) < e 39N, (4.5)

Proof. We first prove the following claim.

Claim4.2.Letoy € Ay,ony — o0 asN — oo ands € (0, oo]. For eachN > 2 we

can chooséxy, ..., xN_1) € Ay(s)V~1 sothat
1 1 N1
v T ol e )
1<j#k<N-1 j=1
Vo1 (4.6)
1 N s
%2 |Og|oN—xj|—>FV
j=1
asN — oo.
To see this set
. /N
N J . / s k
=max{-—; j e Nand Hdt < —}.
Vi X{N J /0 ¢y ()dt < N}
IfyY #oyfork=1...,N -1 weset) =y’ If yl =on, weset;) =y for
k < ko andx)Y = yY + 1/N fork = ko, ..., N — 1. Using the fact that &< ¢}, < 1

it is not difficult to see that)Y < x) < ... <x¥_; < L forall N and some fixed..

Furthermore
N-1

1 A
1 ; 8y = by ()dx 4.7

weakly asN — oo. The property (iii) in the assumptions &y implies

1 Nt ~
N > ) > /0 V()¢y (1)dt. (4.8)
j=1
Clearly,
N-1 N-1 B
1 2 NN 1
WZ|OQ|O'N—X;V| 15W log— =+ oD (4.9)
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which - 0 asN — oo. Also, sincesy — o and thexj belong to a bounded set,
we get a bound in the other direction which goes to Was> oo. GivenM > 1, set
fu () = min{log 7|71, log M}. Write

22Iog|x —xk 2X:fM(x —xk

J#k j#k
1 B (4.10
+z 2 Oogh — I = fu e = x).
J#k

\xj-vfxliv|<1/M

The absolute value of the second sum in the right-hand side of (4.10) is

N log M
S logl——| < c0E

M
1<|j—k|=N/M k
ljl,Ik|<LN

1
= N2
Thus, using the weak convergence (4.7) and then letdng- oo we obtain
im 3 logle — x|t = f ) / " loghx -y} (16} ()dxdy
N—oo N2 et J k 0 0 %4 Vv ,
J

which together with (4.8) and (4.9) proves the claim.
We turn now to the proof of Lemma 4.1. Let> 0 be given. We want to estimate

Zy7% , from below. ChooseVo so thatsy > s — € if N > No. Then

e e
ZN—lj\I].,N(SN) = ZN_?I_,N(S —€),

if N > Ng. Choose(x,iv),’{\':_l1 C An(s — €) as in the claim. Clearly,

1 a Bl 1 -
ﬁlogZI\;ZAJI.,N(‘YN) E—E WZIOQPC;V—X]?q 1
J#k

N-1 1 N1
+> G - e > logloy —x}'1 ],
j=1 j=1

and consequently, by Claim 4.2,

I|m |nf Iog Z?VJIX.,N(SN) > —%Ff/’e.
SinceFy € \( F}, ase — 0+,
P 1 YW ﬁ X
"151'25 V2 log ZN_hl’,N(sN) > —EF“,. (4.11
Thus, givens > 0, we can choos#&/ (§) so thatifN > N (), then

Iog ZA Y Nn) = —E(FV +9). (4.12
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It follows from (4.2) withM = N — 1 and (4.3), that for any & p < 1/2,

A,
PNfiN(QN,nJm(SN)C; SN)

2 N-1
< SR R 0= T W) TT oy —
xeAGMNINQN, 1alsn) j=1

N
BN? (ps 45— B (1 p)(FS N2 2 —Brv-1 2\18/2
<e Vi ( V+) 2( P)( V+n+a) Z(I +l) 2“,%( )(l_'_o.N))»ﬂ/
IEAN
< efgaNz

if N is sufficiently large (independent af > 0). Note thats 4+ pFj, — n < 0 if we
chooses = n/2 andp sufficiently small. This completes the proofa

This lemma can be used to prove

Corollary 4.3. For anys € (1, oo],

1 B
lim —logZ =—-=Fy. 4.13
Jim 5 log Zy(s) = ~ S Fy (4.13)

FurthermoreFy, — Fy > Oif s < by.

Proof. The lower limit follows by takingh = oy = 0in (4.11) (replacingv — 1 by N
does not modify the argument above in any essential way). GivencO< 1, we can
use (4.2) withM = N and the continuity of ex . v, to see that

v = Y P LV ANICOR D SR E9)

xeAy ()N
< sup o= 5 A= KN vy () Z o 2PEN -1 Y log(L+) (4.14
xeAy ()N xeAy ()N

< e FA-PKNy MIHCN.

if N is sufficiently large, where™ = (yY, ..., y¥) € Ay(s)V. Clearly,yj." £ y if
J # k. Setay = N1 8 v. It follows from (4.12), withi. = o = 0 andN — 1
]

replaced by, thatN —2log Zy (s) > —B(Fy +8)/2forN > N(8),so (4.2) and (4.14)
yield

/ log(1 + r2)dn(t) < C.
0

Thus {Ay}}_; is tight. Pick a subsequence that gives the upper limit of
N—2log Zy(s), and a further subsequence so ﬂn@}t converges weakly to = yrdx.
The measure has to be absolutely continuous with density satisfying Q) < 1
because of the definition ofy. Using (4.1) andt — s| < v2 + 14/s2 4+ 1 we see
thatky, (¢, s) > 0. Set, for givenM > O, kyN(z,@ = min(ky, (z, s), M) and choose
¢r(t) continuous sothat & ¢y < 1,¢7() = 1if |t < T,=0if|ty] > T +1
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andor(t) < ¢p(t) if T < T'. Then,ky, (¢, s) > ¢T(t)¢T(s)kM (t, s) and using the
estimate (4.14) we get

! I
N2 0gZy; (s)
J
SA-pM B
< T (l p) ¢r(t)¢r(s)KvN(t $)dAn; (D)dry; (s),
J
and thus, letting — oo, M — oo, T — oo andp — 0+ in that order, we obtain
'BF‘<Iiminf ! logZy(s) <limsu 1 logZy(s) < ﬂl [v]
5ty =limint 51092y (s) = N—>oopN2 9Zn(s) = =3 vyl

Thusly[y] < Fy, andy € A, so we must havey = ¢y,.

Assume thatFy, < Fy ands < by. Thenly[¢y] < Iy[¢v] and consequently
¢y = ¢v by the uniqueness of the minimizing measure. This contradicts the definition
of by. The corollary is proved.O

Note that by (2.13) Corollary 4.3 implies (2.16) so we have proved the first part
of Theorem 2.2. Before turning to the proof of the second part we need one more
consequence of Lemma 4.1.

Corollary 4.4. Let{sy} be asin Lemma4.1 and assume tfiat[0, o +¢] — R, e > 0,
is continuous, orf : [0, co) — R is continuous and bounded in case = co. Then

lim —IogE‘ N [eXim )sN]—/ FOS(0)dt. (4.15)

N—oco N

Furthermore let
Ty 0 = BN N[Z 8r.x,] 4.16)

(8;.5 is Kronecker's delta), be the 1-dimensional marginal distribution of the probability
measure (4.4) (withy = oo). Then for eact) < y < 1:

() 0=<uy” vy < igforallseAy,

(ii) ifs; isthe Diracmeasureattheny_,, . MX}T\LN(Z‘)S, converges weakly iy (t)dt
asN — oo.

(i) uy™ y(on) =0

Proof. We can prove (4.15) using Lemma 4.1 in exactly the same way as in the proof of
(2.5)onp. 194 in[Jo], see also [De]. The weak limit (ii) is a direct consequence of (4.15),
see [De]. Note that the limit does not dependyosince the factoﬂ |aN — x; |8
does not affect the leading asymptotics.

In the expectation (4.16) all the’s have to be different, otherwise the probability is
zero, and consequently the expectatior: i%, which proves (i). That (iii) holds follows
from the presence of the fact‘p‘[ 1 |aN — x;|*. The corollary is proved.
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We turn now to the proof of the upper-tail limit. Note that

M-1
Q@) == T WO TT xar = xilf Qo1 (¥, (4.17)
i=1

wherex’ = (x1, ..., xp—1). Using this identity we see that

Zun® =M Y Qun()

xEA%
X1=--=xpm=t

M-1
_NB
=M Y e 2O X [T ls—xilf Qu-1n ).
seAy (@) xeAy(s)M-1 i=1
If we define
1 M-1
Hy-an () = Z—— > I s —xlfom-an @),
M-1N xeAyn(s)M-1 i=1
this can be written
_NB
Zun@ =M Y e 2WOZy 4 N Hy 1N (), (4.18)
SEAN(I)
or M7
M-1,N _NB .
Fun(t)=—="—== %" e 2 "W Fy 3 n(s)Hyu-1.8(). (4.19)
ZM,N
SEAN(I)

This is the main formula to be used in the proof of (2.17). We will need two choices of
M, namelyM = N andM = N — 1. They are handled completely analogously and we
will consider only the caséf = N.

Write Ay(z,s) = Ay N (t,s) forany 0<t < s < ococandAy()* = Ay (z, 00). If
we letr — oo in (4.19) and then subtract (4.19) from the limiting equality, we get

NZn-1Nn

1- Fy() = 3 e EWO Ry Hyin().  (4.20

Z
NN Ay )

Set 1 oo
by = Fy — —/ V(s)py(s)ds.
2 Jo

From the variational relations fary (¢) it follows that

o0 1
f l0g by — 51"y (5)ds + SV (by) = By, 421)
0

Lemma 4.5.We have
ZN-1N

. 1
lim sup— log

< Bdy. 4.22
N—o0 N ZN,N _ﬁ v ( )
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Proof. By (4.17) we have

ZN v N-1
= 3 e TNOEy NI ] Is - xil#]
ZN LN S‘EAN i=1 (4 23)
N—-1 '

> e FWOEy ] Ir - xil]
i=1
for anyr € Ay. One difficulty in estimating the right-hand side in (4.23) comes from
the fact that, due to the discrete nature of the problem the integrand could, apriori, be
zero for many’s with high probability. Note that we define’ G= 0 for anyy > 0. Let
Ys() =1ift £sandy,(s) =0

Consider N1
In(y;s) = IogEN LN Is = %P ().
i=1
Then,
N-1
fn(@+;5) = lim fy(y;s) = IogEN L[] sl
y—>OF i=1 (4.24)

1
= N log Py—_1 nlall x; # s].
Lete > 0 be given and writ8y () = Ay (by + €, by + 2¢). Now,
> Pyoanlallx #s1> Pyanl | {a@llx #s)]
seBy () seBy(e)

=1-Py_anl m {onex; = s}].
seBy (e)

(4.25)

Takeg : [0, o0) — [0, co) continuous such that(s) = 1if by + € <s < by + 2¢ and
g(s)=0if0 <s < by ors > by + 3. Then,

N
NPy 1yl () (onex; = s} < Ey_qyleXi=1800)] < N/ (4.26)
seBy (€)

for all sufficiently largeN. The first inequality follows from the definitions whereas the
second follows from Corollary 4.4, (4.15). Combining (4.25) and (4.26) we see that

1
max P all > — 4.2
,opax Py- wnlallx; #s] > 5N (4.27)
for all sufficiently largeN. Hence, by (4.24) and (4.27) we can choege= oy (¢) €
By (¢) so that
lim fy(0+;0y)=0. (4.28)
N—oo
Taker = oy in (4.23). Then
1 V4
o N,N

N ZN-1,N

> —ng(O'N) + fn(d; on)
(4.29)

1
= —éVN(aN) + fn(O+; on) +,3/0 v (s on)dy.
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We can pick a subsequent®;} which gives liminfy_, o % log Z?LNN and such that

on;(€) = o(€) € [by + €, by + 2¢]. Then, by (4.28) and (4.29),

o1 ZN N B T
Ilj\rfn_:ggc Nlog Znin > —EV(U(G))—{—ﬁth’T_l)Ig]of/(; f,’vj(y; on;)dy. (4.30)

Now,
1 N-1
fuion) = Ey% I ) loglo — xil]
i=1
N-1

y,0
=— > " logloy — tluy ™y 5 ().
ZGAN

Hence, by Corollary 4.4 (i) and (i),
1Y i
fnion) = 2+ ;Iog— > 2,

and consequently, by Fatou’s lemma,

1 1
lim inf/ fn, (v on)dy z/ liminf £y (v; on,)dy. (4.31)
j—> Jo Y 0 Jjox J J

Givens > 0, small, andv/ > 0 set

logM, if [t]>M
fms@ = logle], ifs<|t|]<M
logs, if |¢] <.

By Corollary 4.4 (i) and (iii) we have

> (min(og M, loglon — ) — fu.s(on — D)y} v (@)

IEAN

[Né]

oN —1 1 2 N§
< lo < log—
= 2 e e DL b

teAy ; O<|t—oy|<8 k=1
- 2N 5
“N-1"

Also, if oy — o¢| < 8, which is true ifN is large enough,

1
|fus(on — 1) — fus(lo(e) —t)| < dlog 3

Since logoy — t| = min(log M, log|ox — t|) and M,§ are arbitrary it follows from
Corollary 4.4, (ii) that

fiminf £} (v; on,) > / l0g lo(€) — tlgpy (¢)dr.
j—00 J J 0
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Together with (4.30) and (4.31) this gives

Zn.N . B

N-1,N 2

! ©

liminf — log V(o(e)) + B / log|o(€) — t|py (2)dt.
N—oo N 0

We can pick a sequeneg — 0 such thabtr(¢;) — by and using (4.24) we obtain

o1 V4
liminf — log NN
N—oo N ZN_j_’N

> _ﬂ®V5

and the lemma is provedno

Givens > 0 we can use Lemma 4.5 to fidy(§) so that
ZN-LN _  NB(@y+5) 4.32)
ZN.N

if N > No(8). SinceFy_1n(s) < 1 we can combine (4.20) and (4.32) to get the
estimate
1— Fy(0) < NeMFOHD 3™ o= Z WO By g (o), (4.33)
seAy(1)*

We have

N-1

Hy_15(s) = Ex_anL] ] Is = xilP: ]
i=1

N-1
B(N—
< @+ 522 NPERS VT A+ xDP2s) < N (L4522,
i=1

where the last inequality is proved, using Lemma 4.1, just as (4.25) in [Jo]. Together
with (4.1) this gives

efngmHN_l,N(s) < oCN—55 log(1+5?) (4.34)
Hence, given a constaifit > 0, there is a constaat > 0 such that

NB@y+5) Z e NBVNG2Ey g n(s) < e NP, (4.35)
seh (d)*

For: > s we define

1 N-1
Hy ants)=———— Y []lt—xlfOv-an@).

ZnN— s
N 1’N( ) xeAy(s)N-1 j=1

Clearly,
Hy_1n(s) = Hy_1n(s,s) < Hy_1n(2,5) (4.36)

if + > s. Combining the estimates (4.33), (4.35) and (4.36) we obtain

NB ]
1— Fy(t) < NeNP 4 NNP@vED N o= T WO HY 3 n(s+e.5) (4.37)
XEAN(l,d)
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foranye > 0. Letsy € Ay(t, d) be thes which gives the largest term in the sum in
(4.37). Then

1— Fy(1) < Ne NP 4 N2(d — )eMB@vI=3VW O 3 v (sy + €, sv). (4.38)

Choose a sequence which gives the upper limitvoft log(1 — Fx(¢)) and such that
sy; = o € [t,d]. We would like to prove that

, 1
lim A log Hy;—1.n;(sN; + €, 58;) = —ﬁ/log|a + e —t|¢y (t)dt. (4.39

We will write N instead of N; for simplicity. Looking at the definition of
Hn_1.n(t, s), we see that we are interested in the limit of

1 N=110g sy te—xi
7 109 En g ylef Zmt Ol gy )

asN — oo, sy — o. Since

R — 0 S — O
log sy +¢ —x:] —log o +¢ —xi]| = log 1+ —Y =7 || < c N =L 44
o+e€e—x; o+€—x;

whereC is a numerical constant, ang < o +¢/2 for N large enough, the limit (4.39)
follows from Corollary 4.4.
If t > by, thengy, = ¢y, sinces > ¢, and combining (4.38) and (4.39) yields

lim sup% log(1— Fn (1))
N=eo p (4.41)
<max{—D, Py + 6 — EV(G) - B / loglo + € — t|*1¢v(t)dt}.

Note thato could depend or andd. Pick a sequence = ¢; — 04 and then a
subsequence so thate; ) — t € [t, d]. Then, sinceD ands are arbitrary, we get

lim sup% log(1— Fy(@)) < B(dy — irrlft / ky (T, s)py (s)ds) (4.42)

N—o0

and we have proved one half of (2.17).

We now turn to the lower limit. If we start withd = N — 1 instead ofvV then (4.42)
holds with Fy_1 replaced byFy_1 x (¢). By assumption the right-hand side of (4.42) is
negative for alk > by. Hence, ift > by, we see that

Fy_1n(1) = 1/2 (4.43
for all sufficiently largeN. Note that, iff > s, then

ZN-1,n(5)

Hy_an(@) > Hy_1in(t,s) = Fnoan(S)Hy_1n(E, $). (4.44
Zy_1,n()
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The functionf (t) = [ kv (z, s)¢v (s)ds is continuous oz, co) and f (t) — oo as
T — 00, SO it assumes its minimum im, co) at some pointg > . Lete > 0. Pick
sy € Ay ()* such thaty \ o + €. Then, picking one term in the sum

N
Y e WOy 4 N Hy-1n ()
sehn(t)*

NB
> e 2 VN(SN)FN_LN(TO)ZHN_LN(SN, SN — 6)-
If we use the limit (4.39), the estimate (4.43) with= 79, and lete — 0+, we see that
1 NB
liminf =1 WO R, Hy_
iminf — log Z e N-1N()HN-1,n(5)

sehn () (4.45)
> _gv(m) — ﬁ/log|ro — 1| v (0)dt.

To complete the proof we need

Lemma 4.6.For any Vy satisfying the conditions (i)—(iii),

o1 ZN—
liminf — log NN

> Bdy. 4.46
N—oco N ZN,N _IB v ( )

Proof. If we lett — oo in (4.19), we see that, > 0,

ZN,N _NB
=N Z e” 2 WO Ey 1 N(s)Hy-1.n3(5)
ZN_l’N SEAN
_NB ;
SN Y e 2O Fy g N Hy 1N () (4.47)
s€Ay (by —e)

Np
+N > e T WO HN g N(s),
seAy (by —e)*

since Fy_1 n(s) < 1. By adjusting the constar@ we see that (4.34) holds for all
s € Ay, so the first sum in the right-hand side of (4.47) is

B .2 _B —_€e)N2
< eCNFN—l,N(bV S Z o~ 2§ log(1+5?) < eCN=5L0by—eN

SEAN

for all sufficiently largeN by the first part of Theorem 2.2. (Replaciidgy () by
Fy_1n(t) does not make any difference.) Sintéy —¢) > 0if ¢ > 0, the first
part of the right hand side of (4.47) is negligible.

The same argument that lead us from (4.33) to (4.42) allows us to treat the second
term in the right-hand side of (4.47) and obtain

ZN.N

1
lim sup— log
N—o00 N ZN—l,N (4 48)

< max(—D, —gv«r) iy / loglo +n — 1|63 (1)d1).
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whereo € [by —€,d], n > 2¢, D > 0 are given. Take = ¢; — 04 so that

o(ej) — t € [by,d] . Note tha@;(e'/)(t)dt converges weakly to7, (1)dr = ¢y (t)dr.
Using an inequality like (4.40) we get

. 1 zZ
limsup— Iogﬂ

Nooo ZﬂN—l,N (4.49)
<max-D, —EV(T) - ,3/|09|T + 1 — t1 "Xy (1)dr).

We can now repeat the argument that leads from (4.41) to (4.42) and obtain

ZN.N

. 1
lim sup— log
N—00 ZN-1,N

<L / V(s)by (5)ds
— B inf /kv(T,S)cbv(S)dS < —Bdy,
t>by
since [ ky (t, s)¢y (s)ds > Fy if © > by. The lemma is proved.o
Combining (4.20), (4.45) and Lemma 4.6, we see that
liminf 1 log(1— Fy (1)
imint g N ()

= By — [ v,y ()d) = pFy —inf [ kv s)py(5)ds),

by the choice of. This completes the proof of Theorem 2.2.

5. Asymptotics for the Meixner Kernel

This section is devoted to the proof of Lemma 3.2, which is based on establishing the
appropriate asymptotics of the Meixner polynomials. See [Go] and [JW] for some results
on the asymptotics of Meixner polynomials.

From (3.3) we obtainy € R,

m () = (~1)" (W)’”Kn!/ <ﬁ+z/ﬁ)x dz
Iy

(V)" 2ri VY +Vaz ) (7 + gkt 6.0
_sinzx (V7)o /’ N INCIN dt '
T (ﬁ)n oo ﬁ_ﬁt (ﬁ—ﬂI)KﬂH_l’

whererl’, is the circle|z]| = r, 0 < r < /y/q; f0 < r < . /yq the second integral
should be omitted. Lei = (1+ ./y¢)?/(1— q) as before, let be given by (1.11) and

set )
a:b—i—y—l:M.
l1-g
Set
()5
VYa+1)\/v +az)’
_ Nt Va

s(z) = NN
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and

A (o) b* (x+ K — 1IN yK+N g
X) = —.
N XHEXN+K -2 1—q\y

For 0 < r < /y/q we define

D2<x;g)=i / grer(re?y s(re'?)X 49 (5.3)

n,ind’
27 J_, r'te

Fi(x;8)=0if0<r < Jfyq,andif /yqg <r < /y/q,then

r d
Fy(x; ) = (=1t f D s (D)  g(-1) g
V7 o

The powers are defined by taking the prinipal branch of the logarithm.
The Meixner kernel (3.4) can now be written, fary integers (which is the case we
need),

D ; D ; —D ; D ;
Ky, y) = VAN ANG) N (x; g1) DN (y gzi_yzv(x 82)Dn(y; g1) 5.5)

(5.4)

if x # y, and

Kn(x,x) =An(X)[Dn(x — 1 g3)Dn(x; g2) — Dy (x; g1) Dy (x — 1; g4)

(5.6)
+ Fn(x; g1)Dn(x; g2) — Fy(x; g2)Dn(x; g1)],

wheregi(z) = 1, g2(z) = z — 1, g3(z) = t(z)l0g1(z) andgs(z) = g2(z)ga(z). The
functionsg; (z) are bounded forz| < 1.

Writex = Nb+yandK = [yN]—- N+1= Ny —1) = Ny — 1) + wy,
O<wy <1

Lemma 5.1.I1f x = Nb+ £ NY/3 and My > Ois a given constant, there are constants
c1(g, y) andca(g, y), such that

1 _
AN = eag. y)e TN i (5.7)

for all &€ > — M. Furthermore,

Y4

5.8
(1— q)ab 8

1
lim —A =
NN N(x)
uniformly for|&| < M.
Proof. By Stirling’s formula

A _ (+ KENNpY V(N +K)(N+ K - 1)
N () = xx(N+K)N+Kax+Ky x+ K

(5.9)
L JetoN 1 \/@eo(l)
xX(N+K)l—-¢qVy ’
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Writeay = b + yny — 1. Then,

(x + K)X+KNNbx KAN
xx(N+K)N+Kax+K

Nb X x+ K x+K ay x+K y N+K
-(F) () (9 6o
If we write u = Nay andv = Nb < u. Then
x+K u+y —v—y
N_b NERRS = 1+X 1+X = 080
X Nay u v

Sinceg(0) = ¢(0) = O andg”’(t) = (v — w)w + ) (v +1)~1 < 0, we have
expg(t) <1lif& >0.If —Mp < & < Mo, then

(5.10

t
18] = I/ (t —5)g" (s)ds| < CN713,
0

Furthermore

x+K
(“_N> — (ONFOEN"H)t0(1)
a

and

K+N
(L) _ pon+o(D)
YN

Inserting these estimates into (5.10) we obtain

(@ + KYFENYDY iy CoCEN2
(N 1 K)NtK gtk Y =
for &€ > —Mp and
(x + K)*TENNp?
N—oo x*(N + K)N+Kax+Ky

uniformly for |&| < Mp. By (5.9) this proves (5.7) and (5.8). The lemma is proved.

K+N=l

Set
u(z) = blog(y/yq + 2) — alog(\/y + /qz) —logz
so that 1 . | | i
D 9) = 5 /F N —u(D)+ylogr@)+oy ogs(z)g(z)z. 5.10)
Now,

W' (z) = —p(l—2)?

)3ﬁz2+(ﬁ+ﬁ+qmz+ﬂ+ﬁ+qﬁ+yﬂ

1_
oz 2@+ VYOV + /972)

where

_ Y4
A+ YOWSY + VD)

0
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Hence we can write
1
u(z) —u(l) = ép(l—z)3+p(l—z)4v(z), (5.12)

where one verifies that (z)| < 28/27 if |z — 1| < 1/4.
By taking absolute values in (5.3) we obtain

C x/2 K 1_nk 7
|D§v(x;g)|55<%> a(r—NQ)/ e (€09 g, (5.13)
—TT
where
x—K

log(y + qr2 +2/yqrr).

f(r) = % log(yq + P24 2/yqrv) +

Writer =1 — 6,0 < § < 1. A computation shows that'(z) > 0 if (say)

1 2./vq
> s +q+ qu, (5.14)
1-g¢
which covers all the’s we are interested in. Thus, if (5.14) is fullfilled, then
|Dy (x; @)| < Cexp(N (u(1—8) — u(1)) + ylogz(1—é)). (5.15)
By (5.12),
12 2
u(l—8) —u(l) < pa3<§82—3) < 300 (5.16)
if0 <8 <1/4. Now,
1-—
logs(1—68) = log(1— 1ﬁ i ( )?3/{7+f)8)
1- ﬁ+ﬁ8 VY4 14 q
1
<—pQ-9q9)——4,
Vol
and consequently it follows from (5.15) and (5.16) thay; i O, then
2N 4 1
|Dy (x; &) < Clexp —-p8° — p(L— q)—=8y|. (5.17)
N g i3 D g y]

Recall thaty = o N/3¢ with o given by (1.11). Note that = (1 — ¢)~ 1 /ygp~%/5.
Choose = (pN) Y3 /Eif & < (Np)?/3/16ands = 1/4,if & > (Np)%/3/16. Inserting
this into (5.17) gives

1 . 1
Dy (x; )] = Cexp[—3 min(y/, Z(Np)”)s], (5.18)
for& > 0.
Lete € [0, 7] and set
, 1o » ; ; do
1= > » g(rele)t(rele)xs(re G)K—rNeiNe,

I{ = D\ (x; 8) — L.
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By the same argument that was used for (5.13) above, we see thsaiifsfies (5.14),
then

|| < Clt(re'®)[*|s(re')| X — 5.19

< Cexp[NRe(u(re®) — u(1)) + ylog|t(re')|].
Next, we consider (x; g), ,/yq < r < 1. Taking absolute values in (5.4) yields

f+f

x+K dt

(5.20)

q—f
|F’(x;g>|sc/
N v7alA/va qg+1

The integrand in (5.20) is a increasing functionzoffor all x that we are considering.
The monotonicity argument used for (5.13) now shows that, if (5.14) is fulfilled, then

N

|F} (x; @) < Cle(=n)[Fls(=r)* =
< Cle(re')*Is(re')|¥ (5.21)
< Cexp[NRe((re'®) —u(D) + yloglr (re')]],

where the last inequality is the same as in (5.19). If we take 0, we get the same
right-hand side as in (5.15) and hence we obtain the same estimates, i. e.

1 . 1
|Fi(xi g)l < Cexp[—3 min(y/&, Z(Np)1/3)§]-

Combining this with (5.6), (5.7) and (5.18) yields

|Kn(x,x)| < CN exp[—%1 min(y/, %(Np)w)s] (522
forany& > 0; x an integer.

Consider nowt € [—Mo, (oN)V®]. Takee = (pN) V4 8 = n(pN)"3 <
(pN)~14 wheren > 0 will be chosen below. By (5.12), we have

1 € . 1 ,
I = > ﬁé g((1—8)e'?) exp{N[é,o(l— (1-8)e'")3

+p(1— (L= 8e (L - 8)e)] + ylogt((1— 8)e)
+ oy logs((1 - 8)e'?)}do.

(5.23)

We make the change of variableés= w (o N)~1/3. For 0< n < (oN)12, 16| < €, we
have

%p(l —(1=8)e)3 4+ pL— 1 - e (L - 8)e?)
1 (5.24)
=30 - iw)® + Ry,

whereR1 — 0 uniformly asN — oo. Furthermore, it € [—Mo, (o N)¥/], then
ylogi((1—8)e"®) = (—n + iw)€ + Ra, (5.25)

whereR> — 0 uniformly asN — oo.
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Supposg V(1) =0, =0,...,£—1butg®(1) # 0, so that

. 1
g(@=)e") = 2 Wp™ Bl +io) +... (5.26)

We now have all the estimates we need. het /€ if £ > Mg andn = 1if |£| < Mo.
By (5.12) and (5.24) we obtain

. 1
ReNu((1—8)e'?) = §n3 —no® + Ry
and hence, i € [—-Mo, (pN)V], e = w(pN)~ 13 with w = (pN)¥12(5.19) yields,

1
1| < CeXp[éns —n(pN)Y® - ng + R3]

(5.27)
c 2 2
= N(+D/3 exp[—§|§| / ]
Similarly, by (5.21), forg € [—Mo, (pN)¥/8],
/ C 2 .32
1l = ~rs A58 (5.29)

The dominated convergence theorem gives

lim NEHD3p
N—o00 1
p—(lf+1)/3 7 1 00 ' i 3
= —g()(l)—/ (—n+io) exgz(0+in’ +is(w+in]do (530
2! 27 J_ o 3
p~C+D/3

£!

uniformly for || < Mp. Observe thag1(1) = 1,82(1) = 0 butgy(1) = 1,g3(1) =0

butgs(1) = p(1—q)(yq)~¥?andga(1) = g,(1) = 0butg; (1) = 2p(1—g)(yq) 2.
Combining (5.27) and (5.29) we obtain

g QA O &),

C 2
DR (s )] = s ©H - 51677, (5.31)

for £ € [—Mo, (pN)Y/]. The estimate (5.27) and the limit (5.30) give

Jim NYBDY (x; g1) = p7Y3AI (&), (5.32a)
Jim N2EDj(x: g2) = pTHPAI ), (5.32b)

1/3 1—

; 2/317 (v _p ( Qe

NIE)TIOON Dy (x; g3) = —yq Ai' (&), (5.32¢)

and 1— )

H r . _ - q 4

IJ[)nOONDN(x, g4) = “va ALT(E). (5.320)

We can now use (5.22), (5.28), (5.31) and (5.32) in (5.5) and (5.6) to prove (3.6), (3.7)
and (3.8) for the Meixner kernel. The lemma is proved.
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6. The Equilibrium Measure
The equilibrium measurgy (1)dt satisfies certain variational conditions.

Proposition 6.1.Assume thap € A, satisfies

() fo kvt Dp()dT = 1if () =0,
(i) fo kvt Dp()dt < 1if ¢(1) =1,
(i) [y kv (r, D¢ (r)dT = 1if 0 < ¢ (1) < 1, for somer (which= Fy). Thenp = ¢y .

We will not prove this here, see [LL] for a very similar result. The way to compute
is to seek a candidate solutigrand then verify thap satisfies the variational conditions.
In a region where B ¢ (¢) < 1 we can differentiate (iii) and obtain

/S 0@ o= Ly, (6.1)
0 2

T—1

SinceV"+4 is convex the support @fy is a single interval. If we consider the variational
problem without the constraint < 1, and this problem has a solutigry such that
0 < v < 1, then thig/yg is the solution we are seeking. This is the case whenl/q,
and therjay, by] = [a, b] and

bog(r)

e T—t

1
dt = _Ev/(t)’ a<t<bh. (6.2)

We must havep (b) = 0 and¢ () bounded §(a) = 0if y > 1/q).

Ifthe solutiomyg(t) > linsomeinterval, e.gro(¢) > 1in[0, ag) but0 < Yo(t) < 1
in (ao, bg), we make an ansatz tha{r) = 1in[0,a] and O< ¢(¢) < 1in (a, b) for
somea, b, [ay, by] = [0, b]. This is the situation whep < 1/¢4. By (6.1),

¢ dr

l l4
dt:—EV(t)—/o — (6.3

b (1)

e T—1

and¢(a) = 1, ¢(b) = 0. By making the substitution = 2(t — a)/c — 1,y =
2(t —a)/c—1,c =b —a,in(6.2) and (6.3) we get an equation of the form

1
1/ YD) e f), —l=x=<1 6.4)
T J_1X—Y

with somef. This equation has the general solution, [Tr],
=y [PIOWIZR, €
av1—x2J_1 y—x a/1—x2

whereC is an arbitrary constant. In this way we obtain (2.19) and (2.20).

Equation (2.21) is obtained by substituting (2.19) or (2.20) into (2.15) (the infimum
is assumed fot = r). Consider the case > 1/q, the other case is similar. Then, with
t=a+c(x+1)/2,

t X
J(t) = f J'(s)ds = f/ J'(@+c(y +1)/2)dy
b 2)x
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and
v(x)
g =J(@a+c(y+1)/2 = / P yd X+ = V(a+c(y+1)/2)
-1
1
= %/ logly — x|v/ (x)dx + é[logg —log(y + B) + log(y + D)].
-1
Now,
[\/DZ 1 «/32—1} 1
v'(x) = -
27| x+D x+B 1— x2
and
! , 1 1
f log|y — x[v'(x)dx = - F(y, D) — - F(y, B),
4 2 2
where
1 JVRZ-1
F(y,R) = — — o — x|dx.
. R) /_1(x+R)m 9ly =~
Note that
dppppo Y1 1 1
dy Y= \/y2_1 JRZZ

Using these formulas we see thdt-1) = 0 and hence

o= /1 g0y =5 /1 (x — y)g' (")dy

o [* vB2—1 /D2-1 dy
__./ (=t x+B  x+D ) /y2—1'

which gives (2.21).
ff() =@ -9 +B) 1+ A—qy)(y+ D) ! thenf(y) > Oforally > 1
andag = infi<y<1/c f(y) > 0. Thus for 0< § < 1, by (2.21),

1+6/c 28 dy

J(b+8)>8\/_ 1 ———y)mzcl(ﬁm
for some constant; > 0. If § > 1, then
e  os dy
J(b+8) = \/_ 1 ———)’)W,

which proves (2.22). A more careful computation for snaatlelds (2.23).
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