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Abstract. We prove the statement in the title of the paper.

1. Introduction

Broadbent and Hammersley [2], introduced the following percolation problem.
Let 3? be the graph in the plane whose vertices are the integral vectors (i.e.,
elements of Z2) and whose edges or bonds are the segments connecting two
adjacent vertices (we call two vertices v' and v" of 5£ adjacent if the distance
between them equals 1). Let each bond of 3? be open or passable with probability
p, and closed or blocked with probability q = l—p, and assume that open- or
closedness for all different bonds is chosen independently. The percolation
probability is defined as

θ(p) = P{the origin is part of an infinite connected open set in j£?}, (1.1)

and the critical probability pH as

pH = M{p:θ(p)>0}. (1.2)

Hammersley [5], [6] proved

i ̂ 4 (L3)

where λ is the socalled connectivity constant of JS?(A« 2.639, see [9]). Harris [7]
improved the lower bound to

Pπ^Ί (1.4)

Various results and numerical evidence (see [17], or [15] Chap. Ill, •• for a brief
summary) indicated that PH = ̂ , and most people seem to have accepted the truth
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42 H. Kesten

of this conjecture. So far no rigorous proof seems to have been given. Our principal
aim is to give such a proof here.

Theorem 1.

PH = 2'

We can combine this with previous results to obtain somewhat sharper
information. Define an open (closed) cluster to be a maximal connected subgraph
of 3f all of whose bonds are open (closed). Denote by W the open cluster which
contains the origin. (W consists of the origin only if all four edges connected to 0
are closed.) When p^pH=^ there is with probability one no infinite open cluster
[see (1.5) below], but when p>pH there exists with probability one exactly one
infinite open cluster (see [7] or [15], Theorem 3.14). With this information we can
formulate the following theorem.

Theorem 2.

p>{ implies θ(p)>0, (1.5)

p^ implies θ(p) = 0. (1.6)

For any p<^ there exists a constant C1(p)>0 such that for all n 1

Pp {W contains vertices at distance ^nfrom the origin}
Mn. (1.7)

For p = 2 and att n = l

P1/2 {W contains vertices at distance ^nfrom the origin}

.̂ (1-8)
8rc

Finally, for p>\

Pp {the infinite open cluster contains no vertices
within distance n of the origin}

e-Cl(q}}~1e-Cl(q)n (1.9)

[q = l-p, Cl( )isasm(l.T)'].

The principal tools for our proof are the recent results and estimates of
Seymour and Welsh [14] and Russo [12] (see also [15], Chap. Ill for an
exposition). They introduced the additional critical probabilities

ao}, (1.10)

1 The subscript p of course indicates that for each edge e, P{e is open} =p
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where # W denotes the number of vertices in W, and

p~ = inf in: lim sup SJri, n)>0\9 (1.11)
I °̂° I

where Sp(n,ri) is the probability that there exists an open path in the square
[l,n]x[l,w] connecting the left and right edge [see (2.2) below for a precise
definition]. [12] and [14] prove

0<Pτ=Ps^2> Pτ + Pfl = l (1-12)

We shall prove in the next section that ps^f, which together with (1.12) and (1.4)
implies Theorem 1, and of course pτ = ps=

:pH = 2

Remark. Sykes and Essam [16] have introduced a critical probability in terms of a
singularity of the mean number of clusters per bond (see also [3] and [4]). In a
future publication we shall discuss analyticity properties of θ(p)9 and show that for
the bond percolation on 7L2 considered here, the Sykes and Essam critical
probability also equals \. This result was already obtained in [16] under some
unverified assumptions.

Sykes and Essam also argued that the critical probability for the symmetric
triangular lattice equals the root in (0,1) of 1 — 3p + p3. We hope that the present
method can be carried over to other lattices. In particular we hope that it can be
used to complete the argument of [16] for the triangular lattice.2

2. Proofs

We first introduce some notation and collect some useful results. The recent
monograph [15] by Smythe and Wierman contains all the results which we need,
with their proofs. As much as possible we adopt the notation of [15].

A path on J f̂ is a sequence (vQ9 eί9 υί9 . . ., ev, vv) with each vt a vertex in 3? , vί+ί

adjacent to vi9 0 ̂  i < v, and et the edge connecting u._ 1 and i . Such a path is called
open (dosed) if all its edges are open (respectively closed). Throughout this paper a
path will always be understood to be self-avoiding. If £ is a path or subgraph of X we
denote by |ί| its carrier, i.e.,

\t\ = {zeΊR2 :z is a vertex of t or belongs to an edge of i}. (2.1)

The analogous convention will be used for subgraphs of the dual lattice «£?*. 3? *
has a vertices the vectors ι;* = (x*, y*) with x* = n + ̂ ,y* = m + ̂ ,n9m integers, and
as edges the segments connecting two adjacent vertices.

T(m,n) denotes the "sponge" consisting of all vertices and bonds in the
rectangle

2 Since this paper was completed John Wierman has carried out this argument for bond percolation
on the triangular and honeycomb lattice, and L. Russo proved an analogous result for site percolation
onZ2.
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^(m, n) denotes the probability that there is an open connection between the left
and right edge of T(m, n) :

Sp(m,ri) = Pp{3 open path r = (v0, el9 ...,έ?v, vv)cT(m,n)

with v. = (x., y.), χ0 = 1, χv = n} . (2.2)

Of course the subscript p in (2.1) refers to the probability measure, according to
which each edge is open with probability p. These crossing probabilities satisfy the
trivial inequalities

+ l ) , (2.3)

,n) (2.4)

(see [15], Eqs. (2.1) and (2.2)). It is also not too difficult to show that

Sp(m,n) + Sβ(n-l,m+l)=l (g=l-p) (2.5)

and

,n+l) = $ (2 6)

(see [15], Theorem 2.2, and last line of p. 42 or [14], Theorem 4.1). Far more
difficult is the following inequality of Seymour and Welsh [14], Lemmas 5.2 and
5.3, [15], Lemmas 3.3 and 3.4,

S/2n, 4n) ̂  Sp(2n, 6n) £ Γ(Sp(2n, 2n)) , (2.7)

where the function Γ( ) is defined by

(2.8)

Let pfl, pr and ps be as in (1.2), (1.10), and (1.11). Seymour and Welsh [14],
Theorem 2.1, and independently Russo [12], Theorem 2 and Sect. 5, proved

Also, [14], p. 244

Pτ = Ps (2.10)

([15], Chap. 3 gives a good exposition of these results). In view of these results
Theorem 1 will follow once we show that p<\ implies

lim^(2k,2k+1) = 0. (2.11)
k->oo *

Indeed, if 2k~ l ̂  n < 2k, then by (2.3)

whereas by (2.11) and (2.7)

Γ(Sp(2\ 2fe))-»0 and hence Sp(2\

By (2.3)-(2.5) this implies
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In turn, by (2.7) we obtain Sβ(2k,6.2*)-»l, and once more by (2.3)-(2.5)

Sp(2\2k-ί) = l-Sq(2k-1-l,2k+l)^l-Sq(2k-2,6.2k-2)^0.

Thus (2.11) implies

lim S (n,n) = 0 and p^ps = l-pH.
n-> oo

If this holds for all p<f, then pH^2 which together with Harris' bound (1.4) yields
Theorem 1. We shall prove Theorem 1 by proving (2.11) for p<f.

Consider a path r = (v0,e1, ...,ev,vv) in T(m,n) which is a minimal connection
between the left and right edge of T(m,ri), i.e., if vί = (xί9yi) then

x0 = l,xv = n, l<x f <n for I r g i ^ v — 1,

and l^y^n for O ^ i ^ v . (2.12)

Such a path will be called a left-right crossing of T(m, n). Any such crossing divides
the open rectangle

(2.13)

into two components ([11], Theorems V.11.7, 8). Let C+(r) = C+(r; m, n) be the
part of C(m, n) "above r", i.e., the interior domain of the simple closed curve
consisting of r, followed vby the segment {n} x Lyv,m + £] of the right edge of C,
followed by the upper edge of C, [l,rc]x{ra + ̂ } (reversed), followed by the
segment {l}x[x 0 > m +2] (a^so reversed) of the left edge of C. C~(r), the part
"below r" is defined similarly. If v+ and v~ lie in C+(r), respectively C~(r), then any
continuous curve in C(m,n) from v+ to v~ must intersect r. We shall write C+(r)
and C~(r) for the closure of C+(r), respectively C~(r).3

We shall need the fact that if there exists any open left-right crossing, then there
exists a lowest open left-right crossing. Russo [13], Aizenman [1], and Higuchi
[8] recently exploited with great ingenuity the existence of similar extremal open
paths in the proof of the non-existence of non-translation invariant Gibbs states in
the two-dimensional Ising model.

Lemma 1. If there exist an open left-right crossing ofT(m9n), then there exists an
open left-right crossing R = R(m,n) such that no left-right crossing4 sCC~(R) with
sή=R is open. Moreover R is unique and any open left-right crossing s must satisfy

sCC+(R) and RcC~(s). (2.14)

This lemma is fairly intuitive and was in fact used without proof in [12],
Lemma 3, and [14], Lemma 5.2. We give a formal proof in the Appendix. In the
sequel we shall use the notation [R(m, n) = r} to indicate that there exists an open
left-right crossing of Γ(m, n\ and that the lowest such crossing equals r. It is crucial
for our argument that the event {R = r} depends only on the open- or closedness of

3 In general we use A to denote the closure of a set A in the plane
4 Strictly speaking we should write \s\ CC~(R) and similarly in (2.14). We shall often abuse notation
and write sC^4 for |
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the edges in C~(r). Indeed for a fixed left-right crossing r, {R = r} occurs if and only
if r is open, but any left-right crossing seC~(r), sΦr, contains a closed edge.

Clearly

Sp(2k,2k+1) = P{3 open left-right crossing of T(2k,2k+1)}

= P{3 open left-right crossing of T(2fc+1,2fe+1)
which lies in T(2k,2k+1)}

= P{jR(2*+1,2*+1) exists and lies in T(2\2k+1)}. (2.15)

To prove (2.11) we now introduce an artifice. Let p<^ be fixed. Choose an integer
K and 0<p l 5p2, ...,pκ<l such that

p = i Π f t . (2 16)
i = l

We shall determine whether an edge e is open in (κ+ 1) stages, rather than as usual
in one stage. We take binomial variables Jt(e), Q^Ϊ ^K, such that all random
variables

are independent, and such that

We call e l-open if J0(e) J1(e)...Jl(e) = l, or equivalently if JQ(e) = J1(e)
)=if Clearly

(2.17)

P{e is /-open}= |p1...pI, (2.18)

and in particular, by (2.16),

P{e is κ>open}=:p. (2.19)

Thus, for our choice of parameters, the distribution of the configuration of κ-open
edges is the same as of the configuration of open edges in the original problem
when P{eis open} = p. We may therefore replace "open" by "/c-open" in (2.15)
without changing the problem. We shall write R{(m, n) for the lowest /-open left-
right crossing of T(m, n), if it exists. Thus Rt is defined in the same way as .R in
Lemma 1, but with "open" replaced by "/-open". We shall now see that Theorem 1
reduces to the following proposition.

Proposition 1. There exists a constant y0>0, independent of K, pl9 ...9pκ and l^κ,
and a kQ such that for fe^fc0, 0^/<κ, and for each left-right crossing r of
Γ(2*+1,2fc+1) which is contained in T(2k,2k+1) one has

P {3(1 + l)-open left-right crossing of

T(2 fc+1,2 fc+1)|^(2 fc+1,2 fc+1)-r}^l-70. (2.20)



Bond Percolation 47

Before starting on the proof of this proposition we show how it implies (2.11).
We note that any (/+ l)-open path is also /-open. Therefore, if Rκ(2k+ *, 2k+ 1) exists,
so do ^0(2/c+1,2k+1,..,KK_1(2 f e+1,2k+1). Moreover, by Lemma 1 (with "open"
replaced by "/-open"), the /-open crossing Rl+1 must lie in

C + (̂ ) = C+CR,;2k + 1,2k + 1) and RlcC-(Rl+1) = C~(Rl+1 ;2k+1,2k+1).

Thus if Iφ**1^**1) exists, and lies in Γ(2*,2fc+1), then also

r> Cjk+l Ofc+lΛ p /"> fc+1 O f c + l ΛKθ(Z >Z h .. ,-K/-i(/ ,4 )

must lie in T(2fc,2fe+1). Therefore,

Sp(2k,2k+1) = P{RK(2k+1,2k+1) exists and lies in T(2\2k+ί)}

= P{R0(2\2k+1) exists and lies in T(2\2k+ί)}
K- 1

l+1P{Rl+1(2k+\2k+l) exists and lies in

exist and lie in T(2k,2k+1)}

exist and lie in T(2k,2fe+1)}

= Kγi P{Rl+1(2k+1,2k+1)Qxists\Rl(2k+\2k+l)
1 = 0

exists and lies in T(2k,2k+1)}

^(i-y0)
κ

Since y0 is independent of K and p1? ...,pκ, we can take K arbitrarily large, so that

fc-^oo

will follow.
Before we can turn to the proof of Proposition 1 proper, we need one extra bit

of preparation. We already introduced Jδf *, the dual lattice of g. We shall use e*
or /* to denote generic edges of JSf *, u*9 v* or w* to denote vertices of JS?*. One
trivially sees that each edge e* of JSf * crosses exactly one edge e of JSf. We shall say
that e* and this e correspond to each other. We shall call e* /-open (/-closed) if the
corresponding ee£? is /-open (/-closed). We write T*(m,ri) for the collection of all
vertices and edges of JSf * in the rectangle

As a graph T*(ra, n) is isomorphic to T(n— 1, ra-f 1). Now consider a fixed left-right
crossing r of T(2k+1,2k+1) and let s* = (wξ,e*,...9e*,w*) be a path in
T*(2k+1,2k+1) which starts at the upper edge
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and "goes down" until it first enters C~(r) = C~(r;2Λ + 1,2 f c + 1). To be precise, if
wf = (xf,yf), then we assume

and

w*eC», 0<i<ρ,

w*eC» or y*=^.

Note that the last_condition of (2.23) means w*eC~(r), and since w*e J?f * it cannot
lie on r, i.e., w*eC~(r)\r. Since e* goes from C+(r)-C+(r;2 f c + 1,2 f e + 1) to C~(r)\r it
must cross r. Thus there is a unique edge β in r which is crossed by e* we shall
denote this edge by φ*). A path s* satisfying (2.22) and (2.23) is a cross-cut of
C+(r) and divides C+(r) into two components, a "left" and a "right" one, which we
shall denote by FL(r,s*) and VR(r,s*) (see [11], Theorems V.I 1.7 and 11.8). If
vQ = (l,y0) denotes the left-endpoint of r and a is the intersection of e* and φ*)
[i.e., the midpoint of e* as well as of φ*)], then the boundary of VL consists of the
simple curve made up of the segment from (l,2 fc+1 +%) to (I,y0) = v0, followed by
the piece of r from v0 to α, followed by s* from a to w$, and then the segment from
w*=(;x*,2k+1+|) to the starting point (l,2k+1+£); see Fig. 1. The boundary of
VR can be described similarly. Since VL and VR are the two components of
C+(r)\s* it is impossible to connect any point bL in VL to a point bR in VR by a
continous curve ip :[0, l]->C+(r), without intersecting 5*. The same remains true if
we allow bL to be in KL, fo* in VR and φ in C+(r). This is easily seen by observing
that ψ(t) must lie in VLr\ VR where

We call a weak cut-set (with respect to r) any path 5* in T*(2k+ \ 2fc+ x) which
satisfies (2.22) and (2.23) and for which

e*, β*, . . ., e*Q_ 1 are 0-closed . (2.24)

We call s* an (l+l)-strong cut set (with respect to r) if it is a weak cut set with
respect to r, and in addition

el is (/+l)-closed, or equivalently JZ+1(Φ*)) = 0. (2.25)

In step (i) below we shall use the following simple observation : Call a path
ί*=(w*,e*, ...,ej,wj) a top-bottom crossing of T*(2/c+1,2k+1) if it is a minimal
connecting path on £?* of the upper and lower edge of T*(2fc+1,2k+1), i.e., again
with wf = (xf,yf), (2.22) holds with ρ replaced by λ, as well as

Such a path connects5 w*e^C+(r)\aC~(r) to w*edC~~(r)\dC+(r), and except for its
endpoints lies in C(2k+ ί, 2k+ 1). It therefore must intersect r, and if ρ is the smallest

5 dA denotes the boundary of A for a set A in the plane
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D(3')

A (i)

DO MI

Fig. 1. The left-right crossing rand the cut set 5* are drawn in solid lines. The lines indicate the
boundaries of D ( 3 l ~ l ) , respectively, D(3l). The path if is drawn as

index for which e* intersects r, then the initial piece s* = (w5,e*, ...,e*,w*) of ί*
satisfies (2.22) and (2.23). In particular, if e*,..., e*_ 1 are 0-closed, then s* is a weak
cut-set with respect to r.

Just as we could find a lowest open left-right crossing in Lemma 1, we can find
a left-most weak cut set. We formulate this as Lemma 2, whose proof is almost
identical to that of Lemma 1 (see Appendix).

Lemma 2. Let r be a fixed left-right crossing of T(2/c+1,2k+1). // there exists any
weak cut set with respect to r in T*(2k+1,2fc), then there exists a weak cut set with
respect to r, S* = S*(r,k) say, in T*(2fc+1,2k) such that there exists no weak cut set
with respect to r in FL(S*, r)nT*(2k+1,2fe), other than 5*. Moreover, S* is unique,
and if t* is any weak cut set with respect to r in T*(2k+1

9 2
k\ then ί* (minus the last

half of its last edge) belongs to VR(S*, r).
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We stress that we restrict ourselves to cut sets in T*(2fe+1,2fc), the left half of
T*(2fe+1,2fc+1), just as we have concentrated on left-right crossings in T(2k,2k + 1),
the lower half of T(2k+ 1

9 2
k+1). The reasons for this will become apparent later [see

(2.34) and (2.35)]. Use of the notation {S*(r, fc) = s*} means that there exists a weak
cut set with respect to r in T*(2fc+ 1, 2k) and S*, the left most such cut set, equals s*.
Also, the event {S*(r,/c) = s*} depends only on the 0-open- or closedness of the
edges e* in FL(r,s*), since {S*(r, k) = s*} occurs if and only if 5* is a weak-cut with
respect to r, and any path t* in T*(2fc+ 1

9 2
k)nFL(s*, r) from E* to C~(r), other than

s*5 has a 0-closed edge. Translated in terms of the J^e), this means that for fixed r,
the event {S*(r,/c) = s*} depends only on the collection

{JΌ(e):\e\nVL(r9s*)*β}. (2.27)

Proof of Proposition i. We first state the principal steps and show how these imply
Proposition 1. After that the individual steps will be proven.

Step (i) : The following inequality holds : for every left-right crossing r of
T(2k+1,2k+1), fe^l, and l^κ one has

P{3 weak cut set with respect to r which lies in

(2.28)

Step (ii) : For each integer τ there exists akί=k1(τ) such that for /c^fe 1 ? l^κ and
for each left-right crossing r of Γ(2k+1,2k+1) which lies in T(2fc,2k+1), and each
path s* in T*(2fc+1,2k) which satisfies (2.22) and (2.23) one has

P{3 at least τ weak cut sets with respect to r with distinct

final edges|K/(2 fc+1,2 fc- f l) = r,S*(r,/c)-s*}^f (2.29)

Step (Hi): For each left-right crossing r of Γ(2*+1,2k+1), each path s* in
T*(2fe+1,2k) satisfying (2.22) and (2.23), τ^l, l^κ-1 one has

P{3 (/ + l)-strong cut set with respect to r|R/(2k + 1,2k + 1) = r

S*(r, /c) = s*, 3 at least τ weak cut sets with respect to r

with distinct final edges} ̂ .l — pτ

l+ί. (2.30)

We show now that (2.28H2.30) imply (2.20) with yQ=yJ4. As we observed,
Rl+ί if it exists, must lie in C+(Rl) and since Rl+ 1 connects the left and right edges
of C(2fc+1,2k+1) it must intersect any cut set with respect to R^ in particular, any
(/+l)-strong cut set, assuming such a cut set exists. This is impossible, since the
edge of Rl+1 which intersects an (/+l)-strong cut set has to be (ί+l)-open
[because it belongs to #/ + 1] as well as (/+ l)-closed [because it crosses an (/ + !)-
strong cut set]. Thus

P{3 (/+l)-open left-right crossing of

Ί(2k+ \ 2k+ x)| jRz(2k+ \ 2k+ *) = r}

^ 1 — P{3 (/+ l)-strong cut set with respect to

r|Λz(2k + 1,2k + 1) = r}. (2.31)
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On the other hand, for any left-right crossing r of T(2k+1,2k+1),

P{3 (/+l)-strong cut set with respect to r|JRz(2*+1,2*+1) = r} (2.32)

is at least as large as the inf over paths s* in τ*(2k+ 1, 2fe) which satisfy (2.22) and
(2.23), of the product of the left hand sides of (2.28)-(2.30). Thus, for k^ k(τ) (2.32) is
at least i 'y1(l-pf+1) and by (2.31), the left hand side of (2.20) is at most

It remains to take τ(ΐ) such that

p*\ g \ and then k0 = max {k(τ(l)) :l^κ-l}.

We turn to the proofs of (2.28)-(2.30). For brevity we write Rt instead of
Rz(2k+1,2k+1).

Proof of Step (i). As in Russo [13], Aizenman [1], and Higuchi [8] we use a sort
of generalized form of the strong Markov property with respect to Rl (a set valued
random variable, rather than the usual kind of stopping time). As we observed just
after (2.25), the left hand side of (2.28) is bounded below by

P{3 top-bottom crossing ί* of τ*(2fe+1,2k+1) which lies

in T*(2k+1,2k) and has J0(ef) = 0 for all edges

ef of ί* with interior ( e f ) c C + ( r ) \ R l = r} . (2.33)

However, the edges e* of j£f* with interior ( e f } c C + (r) only cross edges e oί ̂  with
interior (e) C C+(r). All these edges are independent of the edges in C~(r), and as we
pointed out after Lemma 1, the event {R^r} depends only on edges e in C~(r).
Consequently, the conditional probability in (2.33) is the same as the uncon-
ditional probability

P{3 top-bottom crossing ί* of τ*(2 fe+1,2 fe+1) which lies in

Γ*(2fc+1,2fc) and has j0(e*) = Q for all edges ef of ί*

with interior (et)cC+(r)}

^P{3 top-bottom crossing ί* of τ*(2k+1,2fe+1) which lies in

Γ*(2k+1,2*) and has all its edges 0-closed}

-^1/2(2fc-l,2fc+1 + l).

The last equality holds, because

P{e* is 0-closed} = P{e* is 0-open}=|,

and T*(2*+1,2*) is isomorphic to T(2k~ l,2k + 1 + l). Finally, by (2.3), (2.4), (2.7),
and (2.6)

(2.28) follows by combining these inequalities.



52 H. Kesten

Proof of Step (ii). This step needs a further kind of separating set, or cut set. Let r
be a fixed left-right crossing of T(2 fc+1,2 fe+1) which lies in Γ(2*,2fc+1), and
s* = (w*,e*, ...,e*,w*) a fixed path in T*(2fc+1,2fc) satisfying (2.22) and (2.23). We
consider the annuli A*(i) = A*(i9w*) in <£* centered at w* + ( |, |), consisting of all
vertices and edges of <g* in D(3I)\(3ί~ 1), where D(3') is the closed square bounded
by portions of the lines

[recall w* = (x*9y*); see Fig. 1].
We take

Since we assumed rcT(2k,2k+1) and s*eT*(2fc+1,2k), we have x*^2fc, 3>J^
so that D(3l) and >l*(ΐ) do not intersect the top or right edge of C(2k+1,2k+1), i.e.,

x* + 3l<2k+1, y* + 3l<2k+1. (2.35)

Now let G* = G*(i;r,s*) be a connected subgraph of «£?* which is contained in
A*(i) and which separates w* from oo, i.e., has the following property:

G* is connected and any continuous curve from w*

to the exterior of D(3l) must intersect G* . (2.36)

It is again quite intuitive that in this case G* contains a path on Jδf* which
connects s* to r through VR(r, s*). Again we only formulate the lemma here, and
leave its proof for the Appendix.

Lemma 3. Let r be a left-right crossing of T(2fc+1,27c+1) which is contained in
T(2fe,2fc+1), 5* a path in T*(2k+1,2k) satisfying (2.22) and (2.23). Let i satisfy (2.34)
and let G*(ΐ) be a subgraph of &* in A*(i, w*) which has property (2.36). Then there
exists a path t* = (u*J*,...J?,u*) in G*nΓ*(2k+1,2 fe+1) such that

u* is a vertex of s* , (2.37)

Λ*, «?,.., /Λ^uί-iC^r^*), (2.38)

/λ* crosses an edge of r . (2.39)

With this lemma it is not hard to complete step (ii), by means of another
application of the analogue of the strong Markov property, quite similar to step (i).
Fix r, a left-right crossing of T(2k+ 1,2k+1) which lies in T(2fe, 2k+ 1), fix a path s* in
T*(2k+1,2k) which satisfies (2.22) and (2.23) and assume £/ = £,(2k+1, 2k+1) = r,
5* = S*(r, fc) = 5*, and let G*(z) be a subgraph of y4*(z) = A*(i,w*) which has
property (2.36) as well as

all edges of G*(ί) whose interior lies in VR(r, s*) are 0-closed . (2.40)
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Then, by Lemma 3 there exists a path t f = ( u $ t i , f f t i 9 >»9f*ί9ufti) in A*(i) with the
properties (2.37)-(2.39). Since we assumed (2.40) it also satisfies

/;*; is 0-closed , 1 ̂  j ^ λ - 1 . (2.41)

Moreover, u* - is some vertex of 5*, say u* f = w*(ί). Then the path

«**, ...,^V !,<, = < „/*„ ...,Λ*,M* ;) (2.42)

consists of an initial piece of s* followed by if. It begins on E* [by (2.22)], its last
edge crosses r [by (2.39)] and all its other edges are in C+(r) [by (2.23) and (2.38);
note β(i)ή=ρ} since w*φA*(ίj]. All edges, but the last one of the path in (2.42) are
0-closed [since we assumed 5* = 5* to be a weak cut set, and on account of (2.41)],
so that this path is a weak cut set with respect to r. Also its last edge is in A*(ϊ), and
different A*(ί) are disjoint. It follows from this that the left hand side of (2.29) is
bounded below by

{ 1 O
at least τ of the annuli A*(i, w*) with 2^ί<k- - contain

Iog3

a subgraph G*(i) which satisfies (2.36) and (2.40) [K^r, S* = si . (2.43)

The event in (2.43) only involves the 0-open- or closedness of edges e* in VR(r, s*).
In other words, it is determined by the collection

{ JQ(e) : interior (e) C VR(r, s*)} .

On the other hand the event {̂  = r, S* = s} only involves the random variables

r)} (2.44)

and those of (2.27), by our comments after Lemmas 1 and 2. Thus, as in step (i), the
conditional probability in (2.43) is the same as the unconditional probability.

JP^at least τ of the annuli A*(i) with 2^i<k— — contain
I log 3

a subgraph G*(ι') which satisfies (2.36) and (2.40)

least τ of the annuli A*(i) with 2^ί<k- — - contain
log 3

a subgraph G*(0 with property (2.36) and all its edges 0-closed>. (2.45)

It was proved by Seymour and Welsh [14], Lemma 5.4 (see also [15], Lemma 3.5)
that

P{A*(i) contains a subgraph G*(0 with property (2.36)

and all its edges 0-closed}

^/2(l-(l-y)1/2)64, (2.46)

where

[cf. (2.6)].
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Thus, the right hand side of (2.46) is at least

Since the A*(i) are disjoint, the right hand side of (2.45) is bounded below by a
right tail of the binomial distribution with success probability y29 to wit by

Σ (Nk(i-r2f ~ j , (2.4?)
J = τ U /

where

As fe->oo and hence N-*oo, (2.47) tends to 1, and (2.29) follows.

Proof of Step (in). This is very easy indeed. The event {R^r} is defined in terms
of the random variables in (2.44), whereas any condition about weak cut sets with
respect to r involves only the {J0(β):^eT(2k+1,2k+1)}. Thus neither of these
involve the Jl+l(e). However, if sj, ...9s* are τ paths satisfying (2.22) and (2.23)
which are also weak cut sets, and with the distinct last edges e*(ρ(l)), . . ., £*(ρ(τ)),
then at least one of these paths will be a strong cut set with respect to r, as soon as
one of the edges e*(ρ(l)), ...9e*(ρ(τ)) is (7+l)-closed. Conditionally on any infor-
mation on the [J0(e), ..., Jz(e):eeJS?}, the probability of at least one of
e*(ρ(l)), ...,e*(ρ(τ)) being (/+l)-closed is l-#+1. This proves (2.30). Π

The proof of Proposition 1 and Theorem 1 is complete.

Proof of Theorem 2. (1.5) and (1.6) are immediate from the definition of pH and
Theorem 1, except when p = j. But θ(^) = 0 was already proved by Harris [7]. (1.7)
is a special case of Theorem 1 of [10], whereas (1.8) is in Remark 4 of [10], now
that we know PT = PH = ̂  (see also [15], p. 61).

As for (1.9), if the infinite open cluster does not contain any vertices v of ££ with
\v\^n9 then by Whitney's theorem (see [15], Theorem 2.1) there exists a closed cut
set on 3? * which separates the infinite open component on JS? from the subgraph
of ££ containing all edges and vertices within distance n from the origin. As in
Lemma 3 this implies that there exists a path on <£* connecting some point
(0, / + f) on the y-axis with some point (m + ̂ ,0) on the x-axis, /,m^rc, and with all
its edges closed. Such a path contains at least / edges, and the probability of an
edge e* of Jδf * being closed is q = 1 — p. Thus, the left hand side of (1.8) is at most

Σ Pp{3 closed path on g* starting at (0,/ + £) and

containing vertices at distance ^l from (

= Σ Pqfi open path on ί£ starting at 0 and containing vertices
l^n

at distance ^ / from 0}

^2{l-e-c^}-1e-Cl(q)n

[by (1.7)].
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Appendix

We give here the purely topological proofs of Lemmas 1-3. They involve only
standard (but tedious) arguments.

Proof of Lemma i. Let r1 and r2 be two left-right crossings of T(m, n). We first show
that one can find a left-right crossing r such that

r C C'(rl m, n)nC~(r2 m, n) (A.I)

and

McKMr,!. (A.2)

This part of the proof has nothing to do with the open-ness of any of these
crossings. However, if r1 and r2 are open, then r will be open as well, since ( A.2)
implies that each edge of r is an edge of r A or of r2. For the remainder of this proof
we suppress the m, n from the notation.

To construct the desired r, assume that |r2| contains some point z from C~(r^).
[If no such z exists, then r2cC+(r1), and we can take r = r l 5 as will be apparent
from the proof below.] We follow r2 from z backwards to the left edge E± of
C = C(m,n);

Then there exists a first point, b say, at which we hit r1 or £x. b is necessarily a
vertex of J5f on rx or Er Similarly, going forward from z along r2 we will hit rx or

E2 = {(x,jO:x = n,^3>^m + i}, (A.3)

the right edge of C, at some vertex c. Denote the polygonal curve consisting of the
piece of r2 between b and c, excluding the endpoints b and c themselves, by ρ. By
construction ρ is disjoint from |rj and dC and contains the point
Therefore

For the sake of argument assume b and c belong to IrJVE^uE^ A simple
modification of the argument suffices if beE1 and/or ceE2. Denote by r1 the path
which starts at the initial point of r1 on E19 follows r1 till it reaches b or c (c may be
reached before b on rj, then follows ρ till c (respectively b) and then continues
along rί to its endpoint on E2. ̂  is a path on ££ with initial (end) point on E1

(respectively £2) and no other point on dC, and since IρlnlrJ^O, rί is also
selfavoiding. Thus r1 is a left-right crossing of C with

In fact, f1 Cl r ju lρ l , so that even

?ιCC-(rι). (A.5)

We claim that (A. 5) implies

rJ (A.6)
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and

C-^KC-^). (A.7)

To see this, let zί = (f , m + ̂ ). z1 is a point of C, near the upper left hand corner of C,
but above the line y = m. Thus, zi can be connected to

E3 = {(χ9y):l£x£n,y = m + $ } 9 (A.8)

the upper edge of C, by the vertical segment {f} x [w + ̂ ,ra + |], which does not
intersect r t. Since E3 is part of dC + (r1) but _disjoint from dC~(r^ we have
z1eC+(r1). Similarly z1eC+(r1). Now let z2eC+(r1). Then there exists a con-
tinuous curve <j0 from z2 to z1? such that φ belongs to C+(rί), except possibly for its
initial point z2_[in case z 2eδC + (r1)]. In particular, φ has at most the point z2 in
common with C~(r1). By virtue of (A.5) φ also has at most the point z2 in common
with r1. Thus, φ intersects dC+(rί) at most in z2, while its endpoint z1 lies in
C+(r1). Thus z2eC+(r1). This proves the second inclusion of (A.6) since z2 was
arbitrary in C+(r1). The first inclusion in (A.6) is true by definition, and (A.7) is
immediate from (A.6) and

C-(r1) = C\C+(r1)cC\C+(r1) = C-(r1).

From (A.6) we see that any edge of r2 which belongs to C+(r1) still belongs to
C+(r1). However, some edge e of r2 which contains z now belongs to rίcC^(r1\
whereas the interior of e belonged to C~(r1). Thus, there are strictly fewer edges of
r2 with their interior in C"^) than in C (r^. We can now iterate this procedure.
If \r2\ still has a point z/eC~(r1), then we can modify r{ to an r2 such that

and so on. Since each time r2 has fewer edges below the new path, we obtain after a
finite number of steps a left-right crossing fλ such that

I^IC|r λ _ 1 |u | r 1 |c . . .C|r 1 |u | r 2 | , (A.9)

r,CC-(fΛ_ 1)c...CC-(r 1)cC-(r 1), (A.10)

and r2 has no more points in C~(rλ), i.e.,

We now take r = rλ. This r satisfies (A.I) and (A.2) by (A.9)-(A.ll). Indeed
(A. 11) implies

by the proof which led from (A.5) to (A.6) (with the roles of + and —
interchanged). Now that we found the crossing r which "lies below r1 and r2" we
proceed with the proof of Lemma 1 by induction. Assume that T(m, ή) has at least
one open left-right crossing, and let r l 5 r2, ...,rα be the collection of all open left-
right crossings of T(m,n); α is necessarily finite. If α = l, take R = rlt If α^2 first
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construct r as above. If α = 2, take R = r. If α ̂  3 construct from r and r3 a crossing,
r say, such that

and

|F |C|r |u |r 3 |c | r 1 |ur 2 |u |r 3 | .

Continuing in this way we finally obtain a left right crossing .R with

RC Π C-(r,), (A.13)
ί = l

W C U r. l (A. 14)
i = 1

K is open by virtue of (A. 14), and satisfies (2.14) by virtue of (A. 13) [and the
proof which led from (A.5) to (A.6)].

We have therefore proved the existence of an R with the properties stated in the
lemma. It remains to prove the uniqueness. This, however, is immediate. If .R' Φ .R
is an open left-right crossing with no other open left-right crossing in C~(R), then
R' must be one of the rt, so that RcC~(R') on account of (A. 13). This, however,
contradicts our assumption on R'. Π

Proof of Lemma 2. Except for a change in notation this proof is virtually identical
to that of Lemma 1. The principal change is that the collection r l 5 . . ., rα now has to
be replaced by s*5 . . ., s|, the collection of all weak cut sets with respect to r which
lie in T*(2*+1, 2fe). Anologously to (A.14) we will now have

so that automatically |S*| C T*(2*+ \ 2k). Q

Proof of Lemma 3. As before we write r = (v0,eί9 ...,ev,υv) and 5* = (w^, 9 . . , ,
w*). a is the intersection oϊe*, the last edge in 5*, and φ*), its corresponding edge
in 3? [φ*) belongs to r]. We shall write VR for VR(r, s*) in this proof. By definition
aedVR, so that we can pick a point z0eVR with |α — z0|<^. Since a — w* — \, we
have |z0 — w*|<l and

z0eF*ninterior (DίB1'"1)), i^2. (A. 15)

We take z1=(2k+1, 2 f c + 1+f), the upper right hand corner of C = C(2*+1, 2k+1).
Note that

Let G* = G*(z) be as in the lemma and define

F1 = |s*|u{z*e|G*|:3 continuous curve in |G*|nFΛ

connecting a vertex of 5* with z*} .
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Clearly Ft is closed; in fact it is a finite union of closed edges of Jδf *. We define a
further closed set of the same nature. Let e(s*) be the edge eγ of r, and let F be the
piece of r from the center a of ey on, i.e.,

r = (segment from α to υy + 1)u|(υy+1, ey + 2, ...,ev,ι>v)|.

Then we define

F2 = |F|u{z*e|G*|:3 continuous curve in |G*|nF*

connecting a point of r with z*} .

Now assume first that there exists a z*e|G*| which can be connected by
continuous curves in |G*|nF* to |s*| as well as to |F|. Then we can combine the
curves from z* to |s*| and from z* to |r| to obtain a continuous curve in |G*|nFR

connecting some point of s* with some point of F. The successive edges of G*
traversed by this curve yield a path ί* connecting |s*| with |F| and

|ί*\ last half edge of ί*|e|G*|n VRC |JSf*| n VRC\ T*(2k+\2k+1)\.

Thus, f*cT*(2k+1,2k+1), and without loss of generality ί* can be taken self-
avoiding and such that (2.37)-(2.39) hold. In this situation the lemma holds. We
may therefore restrict ourselves to the situation where there is no z*e|G*| which
can be connected by continuous curves in |G*|nFK to |s*| as well as to |F|. This
situation, however, cannot arise as we shall now demonstrate. Indeed, in this
situation

Moreover, we can then connect z0 to zi by a continuous curve which does not
intersect F1? by connecting z0 to some point of z2eF\|s*| without hitting dVR

before z2 (this can be done since rcdVR, and VR has a simple structure), and then
continuing along F to the endpoint vv of r and proceeding along the right edge E2

of C(2k+ *, 2k+ *) [see (A.3) with n = m = 2k+ 1]. Similarly we can connect z0 and z1

by a continuous curve which does not intersect F2 by first going to some point
z3es*\|F| and then following 5* to the upper edge E3 of C(2fe+1, 2k+1) [see (A.8)
with n = m = 2k+l~] and £3 itself. By virtue of these facts and the connectedness of
F xnF 2 [see (A. 17)] and Alexander's separation lemma. [11], Theorem V.9.2,
there exists a continuous curve (p:[0, !]->]R2\F1uF2 connecting z0 with zί

without hitting F1uF2. φ begins at φ(0) = z0e VR and ends at φ(ί) = z1EdVR. Let

t = min{t:φ(t)εdVR}.

Then, φ([0,ϊ))c VR. We claim that also

φ([0,Z))n|G*| = 0. (A.18)

This is so, because (as we shall show)

and thus any point in the left hand side of (A.18) would have to lie in FίvF2,
which in fact is disjoint from φ. To prove (A. 19) we observe that 5* connects w* to
£3 which lies in the unbounded component of D(3l\ by (2.35). Thus, by (2.36), 5*
intersects G* at some point, say zf . Now if z*e|G*|nFK, then, by the connected-
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ness of G*, there exists a continuous curve ψ in G* from Z*E VR to z* es* C 5F7*. Let
zf be the first point on -ψ which lies in dVR. By definition of VR,

<9F*C|s*|uFu£2u£3, (A.20)

whereas z|eG*C^4*(0 which is disjoint from £2u£3 by (2.35). Thus Z|ES* or
zf er, so that the piece of i/? from z* to zj connects z* with s* or r in \G*\r\VR.
Thus, z*eF1uF2, which proves (A. 19), and hence (A. 18).

Now, φ(t)edVR, and since φ does not intersect FίvF2 (by construction),
φ(T)φ\s*\vr. By (A.20) this means φ(T)eE2uE3. But then the restriction of φ to
[0,ί] connects z0 with E2uE3, which lies in the exterior of D(3l), while φ restricted
to [0,ί] does not intersect |G*| [by (A. 18) and φ(ΐ)eE2uE3]. Since we can extend
φ in the beginning by the segment from w* to z0 without hitting G* [this segment
lies in the interior of Z^S1"1)] we found a curve which connects w* to the exterior
of D(3l) without hitting G*. Since this violates (2.36) the proof is complete.

References

1. Aizenman, M. : Translation in variance and instability of phase coexistence in the two dimensional
Ising system. Commun. Math. Phys. 73, 83-94 (1980)

2. Broadbent, S.R., Hammersley, J.M. : Percolation processes. I, II. Proc. Cambridge Philos. Soc. 53,
629-641 and 642-645 (1979)

3. Grimmett, G.R. : On the number of clusters in the percolation model. J. London Math. Soc., Ser. 2
13, 346-350 (1976)

4. Grimmett, G.R. : On the differentiability of the number of clusters per vertex in the percolation
model. Preprint (1979)

5. Hammersley, J.M. : Percolation processes. Lower bounds for the critical probability. Ann. Math.
Stat. 28, 790-795 (1957)

6. Hammersley, J.M. : Bornes superieures de la probabilite critique dans un processus de filtration. Le
calcul des probabilites et ses applications, pp. 17-37. Paris: Centre national de la recherche
scientifique 1959

7. Harris, T.E. : A lower bound for the critical probability in a certain percolation process. Proc.
Cambridge Philos. Soc. 56, 13-20 (1960)

8. Higuchi, Y. : On the absence of non-translationally invariant Gibbs states for the two-dimensional
Ising model. Preprint (1979)

9. Hiley, B.J., Sykes, M.F. : Probability of initial ring closure in the restricted random walk model of a
macromolecule. J. Chem. Phys. 34, 1531-1537 (1961)

10. Kesten, H. : On the time constant and path length of first passage percolation. To appear in Adv.
Appl. Probab. (1980)

11. Newman, M.H.A. : Topology of plane sets of points, 2nd ed. Cambridge: Cambridge University
Press 1951

12. Russo, L.: A note on percolation. Z. Wahrscheinlichkeitstheorie verw. Geb. 43, 39-48 (1978)
13. Russo, L. : The infinite cluster method in the two-dimensional Ising model. Commun. Math. Phys.

67, 251-266 (1979)
14. Seymour, P.D., Welsh, DJ. A. : Percolation probabilities on the square lattice. Ann. Discrete Math.

3, 227-245 (1978)
15. Smythe, R.T., Wierman, J.C. : First-passage percolation on the square lattice. In : Lecture Notes in

Mathematics, Vol. 671. Berlin, Heidelberg, New York: Springer 1978
16. Sykes, M.F., Essam, J.W. : Exact critical percolation probabilities for site and bond problems in

two dimensions, J. Math. Phys. 5, 1117-1127 (1964)
17. Welsh, D.J.A.: Percolation and related topics. Sci. Prog. (Oxford) 64, 65-83 (1977)

Communicated by E. Lieb

Received January 30, 1980






