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1. Introduction. Let G he a countable group and let A = {au ax, ■ ■ ■ }

(diCG) generate G. Consider the random walk on G in which every step con-

sists of right multiplication by a,- or its inverse ar1, each with probability

pi (pi = 0, 2 JZi pi= 1). This does not mean that p,- is the total probability of

multiplying by any element which equals a,- in G. It may be, for instance,

that ai = aj with j^i (or ai = aT1). In this case the total probability of multi-

plying by at is at least pi+pj (resp. 2pj). We say that P = {pi, p2, • ■ ■ } is a

probability distribution on the set of generators A. This random walk defines

a Markov chain whose possible states are the elements of G. The transition

probability from gi to g2 (g\CG, g2CG) is given by the probability that g2 is

reached in one step from gx. Since G is countable we can number the possible

states 1,2, • • • and represent the Markov chain by its matrix of transition-

probabilities, M(G, A, P), say (cf. [l] for terminology).

Several connections are derived between the spectrum of the matrix

M(G, A, P) and the structure of the group G. Some results deal with condi-

tions on the spectrum to contain the value 1. Theorem 3 gives an interesting

characterization of finitely generated free groups in terms of the upper bound

of the spectrum of M(G, A, P).
Since at every step the probability of right multiplication by a, equals

the probability of right multiplication by ar1, the transition probabilities

from gi to g2 and from g2 to gi are equal and M(G,A, P) is symmetric. Further-

more, the entries of M are nonnegative and in every row the sum of all

entries is 1. Denote the dimension of M by r(M) (or r when no confusion is

possible); r is a positive integer or + =o . M represents a linear operator on the

r dimensional Hilbert space 77 of vectors y = {yi, y2, • • • } (yi complex num-

bers) with ||y|| =( JZA \y%\ 2)1/2< oo. As usual we define the norm of an r-

dimensional matrix X (with complex valued entries) by

(1.1) norm(X) =      sup      ||Xy'||
114 = 1; veH

(y' is the transposed vector of y). For hermitian matrices X = ||x,y||

(1.2) norm (X) S sup JZ | *,-y| [6].
«     y

The spectrum of X is the set of all complex numbers such that X—X7 does
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not have an inverse with finite norm, where / is the identity matrix of the

same dimension as X. The spectral radius of X is defined as

Sup | A|  •
XG spectrum of X

The spectrum is always a compact set [2, p. 52]. Since Af is symmetric its

spectrum is real and one can put

(1.3) \(G, A,P) = max X.
Xe spectrum oi M(G,A,P)

We shall first give some formulae and analytical properties of \(G, A, P)

and then connect it with the structure of G.

2. Analytic properties of \(G, A, P). Because Af is hermitian with norm

(Af) S 1 (by (1.2)), one can introduce the spectral measure or spectral matrix

of Af in the usual way (cf. [2; 5 and 7]). There exists therefore a matrix

<r(p) =||crty(p)|| of functions of the real variable p such that <r,y(p) is continuous

from the right and the total variation of tr,-,-(/*) on (-», + co) is at most

equal to 1 for all i and/. Furthermore the spectrum of Af is the set of all real

values X where at least one of the functions ati(p) is not constant, that is

(2.1) X £ spectrum of Af <=^ there does not exist an e > 0

such that crij(p) is constant on [X —e, X + e](2) for all i and j.

The operator cr^) —cr(p2) (u,2 Spx) is a projection on a subspace of H and

thus the matrix ||ci.,(Mi) —<r.y(p2)|| is hermitian and idempotent. From this one

easily concludes that the spectrum of Af is already determined by the diag-

onal elements of ||<r,-y(p)||, i.e.

Lemma 2.1. XCEspectrum of Mothere does not exist an e>0 such that au(u)

is constant on [X —e, X + e] for all i.

Proof. The sufficiency of the condition follows immediately from (2.1).

For the necessity it suffices (again by (2.1)) to prove that atj(px) — cr^(p2) j^O

implies aa(ux) — cr,-,Gu2) 5^0. But since ||cr,-y(p2) — <r,-y(p2)|| is hermitian and idem-

potent if /i25=/A, one has

o-u(pi) — a-a(pi) = i,i entry of [o-(pi) — a(p2)]2

= X [<r,-k(ui) — Cik(pi)][cki(tiX) — o-ki(ii2)]

(2.2) *
=   2J   [°~ik(Pl)   —   0-ik(pi)][dik(pX)   —   CTik(pi)\

k

=    I  O-ij(pi)   —  CTij(pi) |2

and the lemma follows. a(p.) = ||ffy(p)|| is called the spectral matrix of Af. It is

well known that

(2) Square brackets denote closed intervals, round ones denote open intervals.
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. . /• +»

(2.3) mu   =   I      AdffudJ)
J -00

where

(2.4) M   = ||w,y || = the reth power of the matrix M.

The integral in (2.3) is a Lebesgue-Stieltjes integral and by Lemma 2.1 may

be written as

, x /»M-o
. . (n) I n

(2.5) Wii     =     I /l  dffu(n)
J X'-O

where X' and X are the lower and upper bound of the spectrum of 717 respec-

tively. Since in our Markov chain

m[f = Prob. of returning to state i at the wth step, given that one

starts in state i

(2-6) =Prob. of returning to the group identity at the reth step, given

that one starts at the group identity,

mjfj is independent of i. Consequently, au(u) is independent of i [7, pp. 179,

97] and we shall write

(2.7) ffo(p-) = ffu(n)        for all i.

Go(p) is a real and nondecreasing function of p (cf. (2.2)) and from Lemma 2.1

it follows that for every e>0

(2.8) cro(X + e) - <ro(X - e) > 0    and    <r0(X' + e) - <r0(X' - e) > 0.

It then follows that

(2.9) max (| X' | , | X | ) =  lim sup [«« ]      = [radius of convergence of m(x)\~1
n

where

(2.10) m(x) = Zj ma x     Wltn    ma   = !•
n-0

From (2.5) and the fact that mfiAo for all re, it follows that

(2.11) X = max (| X'| ,  | X | ).

Lemma 2.2.

\(G, A, P) = lim sup [mu ]

= [radius of convergence of m(x)]~1 =     sup     yM(G, A, P)y'
Wv\\ = i-,v<eH

= norm M(G, A, P).
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Proof. The first two equalities follow from (2.9) and (2.11). The other

equalities are well known [2, pp. 41 and 55].

Combining this lemma with (1.2) we get immediately

(2.12) \(G, A,P) S 1.

Lemma 2.3. If A and B are two hermitian matrices of bounded norm and the

same dimension, then

Xj = spectral radius of %A + (1 — £)F

is a convex function of i- [4].

Proof. Using the triangle inequality for the norm one has

X,{1+(i-^f, = norm (,M + 7,(1 - Zi)B + (1 - i?)M + (1 - t,)(1 - h)B)

S  I n \  norm (%XA + (1 - $X)B)

+ | 1 - T, |   norm (frA + (1 - fc)2J) =   [ r, \ X£l +  | 1 - v | \H.

li one takes 0^77^1 the lemma follows.

3. Connections between \(G, A, P) and the structure of G. Unless other-

wise stated we assume that G is countable and generated by A = [ax, a2, • • •} ;

if A7 is a normal subgroup of G then G/N can be generated by the cosets

axN, aiN, ■ ■ ■ . We usually say, a bit loosely, that G/N is also generated by

A. For P= {px, pi, • • • }, we put

(3.1)    P{a,|P} = pi = probability of right multiplying with a, according to

P, at any given step.

We only consider symmetric random walks, that is, the probabilities of right

multiplication with at and a\~l are always equal, e denotes the identity element

of G.

Lemma 3.1. Let N be a normal subgroup of G and consider G as well as G/N

as generated by A. Then \(G, A, P) S \(G/N, A, P).

Proof. (3)

X(G)=lim sup [Probability of returning to e at the reth step given

,,  -, "      that one starts at e]11"

^lim sup [Probability of reaching some element of N at the wth

n      step, given that one starts at e]ll" = \(G/N).

The probabilities above are the probabilities corresponding to the random-

(3) We drop some of the arguments in M{G, A, P) and X(G, A, P) if no confusion is to be

expected.
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walk on G, defined by A and P, and (3.2) is an immediate application of

Lemma 2.2.

If one considers the group G as defined by a set of relations between the

elements of A (cf. [3, vol. I, p. 129]) then Lemma 3.1 may be expressed as "The

introduction of new relations does not decrease X(G)."

Lemma 3.2. Put A' ={e, au a2, ■ • • } and let for 0^£^1 P'(£) be the

probability distribution on A' defined by

P{e\P'}=~

(3-3) , ,    i    i
P{a,|P'} = (1-{)P{_<|P} = (1-0*.

Then

(3.4) \(G, A', P') = £ + (1 - Q\(G, A, P).

Proof. Since we multiply according to P' by e or e~x = e each with proba-

bility £/2(4) at every step, and with a,- or a"1 with probability (1— £)py

= (l-{)P{o,-|P}, one has M(G, A', P') =£7+(l-£)7l7(G, A, P) where 7 is
the identity matrix with the same dimension as M(G, A, P).

Lemma 3.3. Let 77 be generated by the infinite set B={bi,b2, • ■ • } and let

Q={oi, q2, ■ • • } be a probability distribution on 73. Then for every e>0 there

exists a finite k such that

| X(77, 73, Q) - X(77, 73, Qj)\   S*

where Qk is defined by

I     k

(3.5a) P{bi | Qk} = qi / 2 JZ qi fori Si Sk,
I      ,=i

(3.5b) P{ii\Qk} =0 fori> k.

Proof. Put Mk = M(H, B, Q)-M(H, 73, Qj). For every row, the sum of

the absolute values of the entries of Mk in that row tends to zero if k—* oo.

In fact for every row this sum is

i)2_Ji/2__.?i-il+ i) Hi-
,=i       L  '       ,=i J      ,=*+i

The lemma follows now from (1.2) and Lemma 2.2. Note that X(77, 73, Qj)

= \(Hk, Bk, Qj) where Bk={bi,b2, • • ■ ,bk}, Hk the subgroup of 77generated

by Bk and Qk is defined by (3.5a).
Let G again be generated by A and let 77 be a subgroup of G generated

(4) We make the artificial distinction between e and e"1 to keep (3.3) in agreement with our

conventions (cf. §1).
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by B= {bi, b2, • ■ • } (&i£C7). Denote the smallest normal subgroup of G,

containing H by N and G/N by K. We consider K also as generated by A.

One has the following

Theorem 1. If P= {px, pi, ■ ■ • } and Q= {qx, q2, ■ ■ ■ } are probability

distributions on A = {ax, a2, • • • } and B = {bx, bi, • • • } respectively and P

assigns positive probability to every element of A, i.e.

(3.6) p,->0

and

(3.7) X(H,B,Q)<1,

then

(3.8) X(K, A, P) > X(G, A, P).

Proof. We may restrict ourselves to the case where B is a finite set, say

B = \bi, bi, ■ ■ • , bk). For, if B is infinite we can replace Q by a probability

distribution Qk such that X(Hk, Bk, Qk) <1 (cf. Lemma 3.3). If Nk is the small-

est normal subgroup of G containing Hk, then Nk C. N and thus G/N

=G/Nk/N/Nk and so by Lemma 3.1 it would suffice to show

X(G/Nk, A, P) >(G, A, P).

Assume therefore that B has k (< oo) elements. Choose now a fixed £ (0<£<1),

put A'' = {e, ax, a2, • • • } and define P'=P'(^) as in Lemma 3.2. By Lemma

3.2, (3.8) is equivalent to

(3.9) X(K,A',P')>X(G,A',P').

Every bj can be written as a product of the form aJJ • • • a\\ (e}■ = +1 or —1).

Fix one such representation for every bj, say Wj (1 SjSk). Thus Wj stands for

only one product of elements of A and their inverses and does not denote any

word equal to bj in G. Let Wj be the product of l, elements of A or their in-

verses and put

(3.10) I =  max /,-,
i^j&k

(3.11) M(G) = [M(G, A', P')]>,

(3.12) M(K) = [M(K, A', P')]h

Introduce the set C which generates G as well as K.

(3.13) C = {e*a,\ ■ • ■ a'Jl"| 0 S m S I, atj £ A, ty = + 1 or — l}.

Define the probability distribution R on C by(6)

(5) In accordance with footnote 4 we have to take P{e!|7?} =|'/2.
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(7 \ l—m

m/ y_i

Since / consecutive steps in the random walk on G defined by P'onA' amount

to right multiplication by an element of C or its inverse, with the probability

assigned to it by R, one has

(3.15) M(G) = M(G, C, R);       M(K) = M(K, C, 7c).

Therefore, if

(3.16) 1(G) = \(G, C, 7c);       %(K) = \(K, C, R)

it follows from Lemma 2.2 that

\(G) = [\(G, A', P')}1    and    X(7l") = [\(K, A', P')]1.

Consequently it suffices to show

(3.17) X(70>X(G).

The set C = {el~l>Wj\ 1 SjSk} is contained in C and so we can define a

probability distribution S on C by

P{e'-hWj | S} = P{bj | Q} = qj, l_i_i,

P{e a;, • • • a,)l™| S} = 0 for all elements e a,-' • • • a,-,_™ £ C — C.

By (3.6) P[c|P} >0 for every c£C so that an a>0 exists such that

(3.19) (1 + a)P{c\ R} - aP{c\s} ^ 0 for every c£ C.

Fix a>0 such that (3.19) is satisfied and define for 0^77 :S1 the probability

distributions T(rj) on C by

P{c\T(V)} = (1 - V)[(l + a)P{c\ R}  -aP{c\s}]

(3.20) + t,P{c| S}  = (1 -7,)(1 + a)P{c | 7?}

+ (t; — a(l — t?))P{c| S} for every c £ C.

7(1) equals S, so that the random walk defined by 7(1) and C on G is the

same as the one defined by S and C, which in turn is the random walk defined

by Q and 73 on 77. Thus

(3.21) X(G, C, S) = X(77, 73, Q) < 1.

Since 77 CA7, multiplication by an element of 77 amounts in K = G/N to

multiplication by the identity. Therefore (using Lemma 2.2)

(3.22) X(K,C,T(1))=\(K,C,S) = 1,

and (using Lemma 3.2)

(3.23) X(7i:, C, 7(7,)) = „ + (1 - t,)X(X, C, 7(0)).
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But by Lemmas 2.3, 3.1, and (3.21) till (3.23) for 77>0

X(G, C, T(r,)) S (1 - v)X(G, C, 7X0)) + 77X(G, C, T(l))

(3.24) = (1 - V)X(G, C, T(0)) + VX(G, C, S)

< (1 - V)X(K, C, T(0)) + v = X(K, C, T(v)).

In particular, for 77=a/(l+a), T(in) equals R so that

(3.25) X(G) = X(G, C, R) < X(K, C, R) = X(K).

In fact

X(K, C, R) - X(G, C,R) = X (k, C, T (7^)) ~ X (G> C> T (jTa))

(3.26) ^-?-[l-X(G,C,S)]
1 + a

= -"-*- [1 - MH, B, Q)].
1 + a

The theorem now follows.

Theorem 1 has a number of corollaries. Let us call probability distribu-

tions which assign a positive probability to every element of A, strictly posi-

tive probability distributions.

Corollary 1. If the spectrum corresponding to the random walk on G, de-

fined by a strictly positive probability distribution P on A contains the value 1,

then the spectrum corresponding to a random walk on any subgroup H CG,

defined by any probability distribution Q on any set B of generators of H con-

tains 1.

Proof. Using the notation of Theorem 1 the corollary says

X(G, A, P) = 1    implies    X(H, B, Q) = 1

if P is a strictly positive probability distribution on A. But by Theorem 1

and (2.12) X(H, B, Q) <1 would imply

X(G, A, P) < X(K, A, P) S 1

which contradicts the assumptions.

In particular with H=G, we get

(3.27) X(G, A, P) = 1    implies   X(G, B, Q) = 1

for a strictly positive probability distribution P and any B and Q. In view

of this we shall often write X(G) = 1 or X(G) < 1 without further specification of

the set of generators and the probability distribution. We should keep in
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mind though, that (3.27) is only valid if P is strictly positive. X(G) = 1

(X(G) <1) means therefore: There exists (does not exist) a strictly positive

probability distribution P on A such that X(G, A, P) = l. By the above,

whether or not X(G) = 1, is solely determined by the structure of G and it would

be interesting to characterize all groups G for which X(G) = 1. Only some

partial results in this direction are obtained here (Corollaries 3 and 4, and

Theorem 5).

Corollary 2. Let N be a normal subgroup of G and consider K = G/N as

generated by A. If\(N) = 1, then X(7<7, A, P) =X(G, A, P).

Proof. By Lemma 3.1

(3.28) \(G, A,P) S\(K, A,P).

On the other hand, it follows from (2.5), (2.8), and (2.11) that for every

e>0 and sufficiently large re

i, i entry of [M(K, A, P) ]2" = Probability of returning to the identity

at the 2reth step, given that one starts at the identity, in the random

(3.29) walk on K defined by A and P = Probability of reaching some ele-

ment of N at the 2reth step, given that one starts at e, in the random

walk on G defined by A and P^ [(l-e)X(7<:, A, P)]2".

Given an e>0 choose re such that (3.29) is satisfied and put for 6£Ar.

2pn(b) = Conditional probability of reaching b or o_1 at the 2reth step,

given that one starts at e and that one reached some element of N at

the 2wth step, in the random ralk on G, defined by A and P

(3 • 30) Prob. of going from e to b or 6_1 in 2re steps in the

random walk on G, defined by A and P

Prob. of going from e to some element of N in 2re steps

in the random walk on G, defined by A and P

If bCN then also &_1£7V. Select from every pair (6, &_1) one element (if

6 = ft-1 we take that one element). Let B he the set of selected elements. Then

(3.31) P{b\Pn} = pn(b) for b £73

defines a probability distribution Pn on B. Since X(7V) = 1, one has by Corol-

lary 1, \(N, B, Pn) = 1 and for sufficiently large m

, . Probability of returning to e at the 2mth step, given that one starts

in e in the random walk on TV, defined by 73 and Pn^(l— e)2m.

It is clear that
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Probability of returning to e at the (2n-2m)th step, given that one

starts in e in the random walk on G defined by A and P ^ [Probability

of reaching some element of N at the 2reth step, given that one starts

at e in the random walk on G defined by A and P]2m. Probability of

returning to e at the 2?reth step given that one starts at e in the ran-

dom walk on N defined by B and Pn.

Consequently by (3.29) and (3.32)

(2n.2m),„ „. r,. .     ,„       .      _si2n>2m,. . im

mu       (G, A, P) ^ [(1 - e)\(K, A, P)]       (1 - e)

and

(3.33) X(C7, A, P) ^ (1 - t)2X(K, A, P).

Since (3.33) is valid for every e>0, the corollary follows.

Let L CZG be a subgroup of G, generated by C and Q a probability dis-

tribution on C. As in Corollary 2 let Af be a normal subgroup of G with

X(N) = 1. Considering L/Lf^N^LN/N also as generated by C, Corollary 2

implies X(L/LC\N, C, Q) =X(LN/N, C, Q) =X(L, C, Q) since by Corollary 1,
also X(L{~\N) = 1. If K = G/N, then we have from Theorem 1, Corollary 2

and the above

Theorem 2. For a strictly positive probability distribution P on A

X(K, A,P)> X(G, A, P)

if and only if X(N) <1(6). If L is a subgroup of G, generated by C and Q a
probability distribution on C, then

X(L/L C\ N, C, Q) > X(L, C, Q)    implies X(K, A, P) > X(G, A, P).

Theorem 2 provides us with a necessary and sufficient condition for the

upper bound of the spectrum to increase upon the introduction of new rela-

tions in the group (cf. remark after Lemma 3.1). This apparently depends

on the structure of Af.

Corollary 2 can be slightly generalized, e.g. "If G has a finite normal

series

G = Go D Gi D • ■ ■ D Gk = (e)

withX(Gi/Gi+i) = l (OSiSk-1), then X(G) = 1." This follows by induction,
as X(Gt-i) = 1 implies X(G/) = 1 by Corollary 2. Similarly,

"If Nx, N2, ■ ■ ■ , Nk are a finite number of normal subgroups of G with

X(G/7Y,) = 1 (ISiSk) then

(6) N is here considered as a subgroup of G. Whether \(N) <1 or not is therefore deter-

mined by the relations valid in G.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



346 HARRY KESTEN [August

k

\(G/N) = 1,    where    N = D Ni."
1=1

This follows also by induction, once it is shown for k = 2. But for k = 2 G/Ni

£_ G/N P N2/Ni/Ni P TV, and iV./TVi P /V2 __ NiN2/N2 C G/7V2 so that

\(Ni/NiC\Ni) = l.
Combinatorially the last statement can be formulated as

lim [Probability of reaching some element of TVy at the 2reth step, given that

"-*00 one starts in e]1'2" = 1

for 1 Sj S k implies

lim [Probability of reaching some element of N at the 2reth step, given that

n-*°° one starts in e]ll2" = l.

By induction one also proves:

"If Ni, ■ ■ ■ , Nk are normal subgroups of G and TV is the smallest normal

subgroup of G containing TVi, • • • , Nk then \(Nj) = • • • =\(Nj) = 1 implies

\(N) = 1."

We only have to prove it for k = 2. But then N = NXN2 and

\(NiNj)=\(NiN2/Nj)

= X(Ay/V1P/VT2) = l.

4. Computation of X(G) for some examples.

Lemma 4.1. Let G be a direct product Gi<8> ■ • - ®Gk (k finite). Suppose Gi

is generated by A{= {aa, ai2, ■ • • }. Define P on A =U{:_i Ai by

(4.1) p{ aij I p} = p^ (2 E Z Pn = 1)

and Pi on A, by

(4.2) P{oy| P,}   =  pij/pi

where pi = 2 JZj Pa- Then

k

(4.3) X(G, X, P) = £ 2piX(Gi, „,-, Pt).
i-l

Proof. Denote the diagonal element of the spectral matrices of

M(d, Ai, Pj) and M(G, A, P) by <r,(p) and a(u) respectively. Since n*-i Si
= e (giCG) if and only if g, equals the identity for every i and since g,£G,

and gjCGj commute for *?-/, one has, using (2.5) for every G,-
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Probability of returning to e at the wth step given that one starts at e,

in the random walk on G, defined by A and P

(4.4) = £ —^- (2p,f • • • (2Pk)Xk f Pildcn(pi)
XiO-.Xi-t-+xk—n   Xi!  •  •  • x*! J

• • ■   j   pk dcrk(pk)

=   I ' ' "    I   (2piMi + • • ' + 2pkPk)"do-x(px) • ■ • do-k(pk).

Clearly the lim  sup of  the  (l/re)th  power of  the above  probability is

2p,X(Gi, Ai, Pi)+ ■ ■ ■ +2pkX(Gk, Ak, Pk) and the lemma follows.

Lemma 4.2. If A= {a} and P assigns probability 1/2 to a, then X(G, A, P)
= 1.

Proof. Probability of returning to e at the 2reth step given that one

starts at e, in the random walk on G defined by A and P ^ Probability of

multiplying re times by a and re times by a~l

1
a-1 = C2n,„4-" ~ •

(xre)1'2

Since lim,,^ (l/(7rre)1/2)1/2n = 1, the lemma follows.

Theorem 3. Let G be generated by A = {ax, ■ ■ ■ , ah} with 1 <h< oo, and

P be defined on A by

(4.5) P\ai\ P) = 1/2A (1 SiS h).

Then G is a free group with free generators ax, o2, • • • , ah if and only if

(2h - IV'2
(4.6) X(G, A, P) = (--77-J     •

ire this case the spectrum of M(G, A, P)  is the interval [ — (2h — 1/h2)112,

+ (2h-l/h2yi2]and

(2h - IX1'2
(4.7) minX(G, A,Q) = X(G, A, P) = (-——)

Q \    h2    /
%

where Q runs through all probability distributions on A.

Proof. Let us first suppose that G is free and A is a set of free generators

for G (cf. [3, vol. I, p. 124 ff.] for terminology). Put

mM = Probability of returning to e at the reth step given that one starts at e

in the random walk on G defined by P and A.
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y(n> _ Probability of returning for the first time to e at the reth step given

that one starts at e in the random walk on G defined by P and A.

00 00

m(x) = JZ mMx"        (taking w(0) = 1), r(x) = JZ rwx".
n=0 n=l

Then m(x) = 1/(1 -r(x)) [l, p. 243]. By a word (cf. [3, vol. I, p. 124 ff.] for

the terminology) of re letters we mean a product

Oil • ■ ■ aJKn = + 1 or  — 1; atj £ A)

of elements of A or their inverses (the order of the factors is of course im-

portant). By a left segment of k letters of aJJ • • • a£) (kSn), we mean the

partial product aJJ • • • a'*. It may happen that in a word w = a\ • • • a£

2 consecutive factors a'ja^'+j occur with a,-J. = a,;+1ey= — ey+i. Then we can

"reduce" w by cancelling these factors. A word which allows no further re-

ductions is called reduced. Every word w is equal to exactly one reduced

word w' -l(w), the length of w is the number of letters in w'. The empty word

has length 0 and represents the identity e. A word w equals the identity if

and only if, by successive reductions, it can be reduced to the empty word.

r(n) = (l/2h)"X number of words of re letters equal toe in the free group G,

which have no left segment of less than re letters equal to e.

Obviously rCn)=0 for odd re. Every word w of 2« letters, equal to e can be

mapped on a path in the plane from (0, 0) to (re, re) along the lattice points,

and not passing through any point (k, k) with 1 SkSn— 1. The mapping is

constructed in the following way: For every letter we record a horizontal or

vertical step of length 1. Let wk denote the left segment of k letters of w. If

l(wj) =l(wk-j)+l we record a horizontal step for the &th letter of w. If l(wj)

= l(wk-i) — 1 we record a vertical step. The words of 2re letters equal to e

with no left segment of less than 2re letters equal to e correspond to paths

which are on the diagonal (the line through (0, 0) and (re, re) only in (0, 0)

and (re, re)). There are «_1C2„_2,n-i such paths [l, p. 246]. How many words

are mapped on a fixed path? The first step is horizontal no matter which of

the 2h possibilities for a«{ (»=1, • • • , h; d= +1 or —1) is realized. If the

&th step is horizontal and does not start on the diagonal it corresponds to

(2h—l) possibilities for the £th letter, namely every afk except the inverse

of the last letter of the reduced form of the segment of (k — 1) letters. A \ _rti-

cal step corresponds to only one possibility, namely the inverse of the last

factor in the reduced form of the segment of (k — 1) letters. Since every path

from (0, 0) to (re, re) has re horizontal and re vertical steps

/1\2" 1
r(2„) = (—)  — c2n-2,n-i2h(2h - ly-n"

\2h/     re
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and

h - (h2 - (2h - l)*2)1'2
(4.8) r(x) =-'—!—,

2h - 1

2h - 1

h - 1 + (h2 - (2k - l)x2F'2
(4.9)

(h2 - (2ft - l)x2y'2 - (ft - 1)

1 - x2

(4.6) follows now from (4.9) and Lemma 2.2. Application of the inversion

formula in [7, p. 96] gives for ao(pt), the diagonal element of the spectral

matrix of M(G, A, P),

r /2ft - i\i/2
o   ta), <_(__)    ,

1     r" (2ft - 1 - Fft2)1'2
cro(p)  = \-| -dt

IT    •/_((2»-l))/J»V1 1 — t2

/2ft - iy2 /2ft - n1'2
•—(—)  s's + (—) •

/2ft - iy2

Therefore the spectrum is the whole interval

r     /2ft - 1\1/2 /2ft - IX1'2"!

H—) ■  +(—) J'
Now let the probability distribution ()(£) on A be defined by

P{'i\QiQ] =iq,

(410) P{-.|G(D}-d-©«,

P{at\QiQ] = <?••> SSiSh, 2q+2 2Zqi= I-
»=3

According to Lemma 2.3 X(G7, Q, (?(£)) is a convex function of £ and as long

as ai and a2 play the same role, X(G, A, Q(%)) is symmetric around £=1/2. A

convex function of £, symmetric around £ = 1/2, attains its minimum at

£ = 1/2. Therefore, if A is a set of free generators for the free group G, the

probability distribution P which assigns equal probabilities to every gener-

ator minimizes X(G, A, Q) i.e.

/2ft - IN1/2
min X(G, A,Q)= X(G, A,P) = (~-^-j    •
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We still have to prove that X(G, A, P) = ((2h-l)/h2)1'2 implies that A

is a set of free generators for G. Let 77 be the free group generated by the set

of h free generators C={cx, ■ • ■ , ch} and define P' on C by

(4.11) P{a\ P'} = P{a,| P] = 1/2A.

G=77/TV where TV is a normal subgroup of 77 [3, vol. I, p. 128]. The iso-

morphism maps at onto the coset CiN. It A is not a set of free generators for

G, then TV contains at least one reduced word w = c\ • • • c\° (e,= +1 or — 1,

p a positive integer) which is not equal in 77 to the identity. Moreover we

may assume

(4.12) Cj t^ dp i.e. ii t^ ip or ii = i„ but ti ^ - «,

for, wCN implies cjj • • • c£cJ|£7V and if c\ = cjl" we can replace w by

ck ' ' ' cZl\- Let M he the smallest normal subgroup of 77, containing w.

Then

(4.13) X(G, „,, P) = \(H/N, C, P') ^ X(77/M, C, P').

We can always choose cr, csCC and e, tj (each + 1), however, so that c'j^cj^1,

c'^cfy, e£5-e£,,, cj=^cj£ c'^c' (all these inequalities are meant in the same

sense as (4.12)). That is w' = c'rwcj' and w" =c]wcjv are also reduced words in

M and cr_ecj cannot be reduced. Thus w' and w" are 2 free generators for a

free subgroup LQM of 77 and by what we proved already X(L) <1. Since

LQM, however, \(L/LC\M) = 1 and by Theorem 2

/2A - 1\1/2
(4.14) X(77/il7, C, P') > X(77, C, P') = ^—£—j    •

From (4.13) and (4.14) it then follows that X(G, A, P) = ((2h- l)/h2y>2 im-
plies that A is a set of free generators for G. This completes the proof of

Theorem 3.

Remark. In the case described in the second part of Theorem 3 one can

give a lower bound for the increase of the spectral radius. In fact, one obtains

readily from (3.26) that

(2h - IV'2      4(1 - (3/4)1'2)
(4.15) \(G,A,P)-[-)     £-- .

\    i!    / (P+2)(2hy+2

(p has the same meaning as above).

For, X(G, ̂ 1,P)-((2A-1)A2)1'2^X(77/M, C, P')-((2h-l)/h2y2. For B in

Theorem 1 we now take {w', w"}; further k = 2, wi = w', w2 = w", l = p + 2.

We take P{w'| Q} =P{w"\ Q} =1/4, so that X(X, B, 0 = (3/4)1'2. Since
w' and w" can be written with the same number of letters (p + 2), we can take

4
£ = 0    and    a = - •

(2h)"+2 - 4
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Substitution in (3.26) gives

4(1 _ (3/4)1/2)
[X(H/M, C, P')]'+2 - [((2ft - l)/ft2)'/2]"+2 §; "   -

whence (4.15).

Theorem 3 states that the introduction of any relation in a free group H

on ft (l<ft<oo) generators increases the upper bound of the spectrum cor-

responding to the random walk defined by C and P'. Practically the same

proof shows that this is true for any strictly positive probability distribution

Q on C, I.e.

X(H/N, C, Q) > X(H, C, Q)

if Af is any normal subgroup of H, which does not consist of the identity only.

Corollary 3. If X(G) = 1, then G has no free subgroups on more than one

generator.

Proof. If there is a free subgroup on more than one generator, there

exists a free subgroup K on 2 free generators. By Theorem 3, X(K) < 1, which

is impossible by Corollary 1.

Theorem 4. If G is a finite group or if G is a countable abelian group then

X(G) = 1.

Proof. If G is finite, M(G, A, P) is a finite dimensional matrix and the sum

of the entries in a row is 1 for every row. Thus the spectrum of Af(C7, A, P)

contains the value 1. (2.12) then shows X(G, A, P) = 1. If G is a free abelian

group on a finite number of generators, then G is a direct product of a finite

number of cyclic groups and X(G) = 1 as a consequence of Lemmas 4.1 and

4.2. If G is a free abelian group on a countable number of generators we also

have to use Lemma 3.3. Since every abelian group is a factor group of a free

abelian group [3, vol. I, p. 143], the general case follows by Lemma 3.1.

Corollary 4. If G has a finite normal series G = GoEjGxE) • ■ ■ Z)Gk = (e)

such that Gi/Gi+X is a finite group or a countable abelian group (OSiSk — 1)

thenX(G) = l.

Proof. Apply the remark after Theorem 2 and Theorem 4.

In particular: "If G is solvable (cf. [3, vol. II ] for definition) thenX(G) =1."

It is possible to give a sufficient condition for X(G) = 1 in terms of the

expected length of the word reached after re steps. Let G again be generated

by A = {ax, a2, ■ ■ • } and P= {pi, pi, • • • } a probability distribution on A.

If w = a\ • • ■ a% (ey= + 1, a,y£^4) is a word of re letters, we define its length,

l(w) say, as the smallest integer k ior which there exists a word

w' = at\ • ■ • a,* (yt = + 1, ait £ A)
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of k letters such that w = w'. If w equals the identity, then l(w) =0. Suppose

now that the random walk starts at the identity; after re steps some word wn

of re letters is reached. l(wj) is a random variable whose expectation we denote

by

(4.16) En(G, A, P) = expected value of l(wn) in the random walk on G, de-

fined by P on A.

Theorem   5.   If G  is  generated  by  A = {ai, • ■ ■ ,   aT},   r finite,   and

P = {Pii ' ' " , Pr} is a strictly positive probability distribution on A and

En(G, A, P)
(4.17) lim inf —-———- = 0

re

then

X(G, A, P) = 1

(and consequently G has no free subgroups on more than 1 generator).

Proof. Write

(4.18) €„ = -
re

and

(4.19) p =   min  p,-.
IStgr

Since 0Sl(wj)/n one has

(l(Wn) ) 1
(4.20) Prob.  \- S 2tn\ =: — •

in ) 2

Given that we reached a word of length I at the wth step, there is a probabil-

ity of at least pl to return to the identity at the (re+/)th step. Therefore, if

w«' is the diagonal element of [il7(G, A, P)]k, it follows from (2.5) and

(4.20) that

1 [.u+i-H+i    (k)       [X(G, A, P)}"
— *2,«n < A       mu   S -•
2^       ~        tA 1-\(G,A,P)

Since lim inf e„ = 0, lim sup [p2«»"/2]l/" = 1. This proves that X(G, A, P) = 1.

It is clear that Theorem 5 is not valid if A is an infinite set, for we can

take a group G with X(G) < 1 and let A he the set of all elements in G (so that

l(wj) =0 or 1). Also it is possible to construct a group G with X(G) = 1 but

lim (E„(G, A, P))/n>0, so that (4.17) is not a necessary condition for

X(G,_l,P) = l.
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5. Unsolved problems. As mentioned in §3, it would be interesting to

find all groups with X(G) = 1. Especially, since for every finite group, the

spectrum contains 1. A weak form of the Burnside conjecture would be:

"If G is finitely generated and every element has bounded (or more general,

finite) order, then X(G) = 1." This would readily follow if one could prove the

converse of Corollary 3, i.e., "If G has no free subgroups on more than 1

generator, then X(G) = 1." However, the author was unable to prove or dis-

prove this. If this converse of Corollary 3 is not true, however, it might be

possible to construct a group G in which every element has finite order but

X(C7) <1. Such a group would disprove the generalized Burnside conjecture.

In fact one may try the following. Let G be a free group generated by the

free generators ax, ■ • ■ , ah and A and P as in Theorem 3. Then X(G, A, P)

= ((2ft —l)/ft2)1/2= 1— 2a, say. Order all possible words in G into a sequence,

say wx, Wi, • • • . One can then introduce a relation w\H = e and try to choose

nx such that X(G) increases by less than a/2. If such an nx is found one tries

to add the relation w%/ = e with re2 such that by this extra relation, the spec-

tral radius increases by less than a/22 etc. If for every i a proper re,- can be

found, then in the group with w"i = e (i=l, 2, • ■ • ) the spectral radius will

still be less than 1.

One can show that re can be chosen such that the relations a"= • • • =aj

= e increase X(G, A, P) arbitrary little, but the author has been unable to

do anything more along the above lines.

Even the statement: "If X(LP) = 1 for every proper subgroup H oi G, then

X(G) = 1," which is still weaker than the converse of Corollary 3 is not yet

proved or disproved.

6. Acknowledgments. The author wishes to thank Professor M. Kac for

suggesting the thesis problem and his valuable help during its investigation.

The author also had many helpful discussions with Professor W. Feit. Theo-

rem 5 was "inspired" by a discussion with Professor M. P. Schiitzenberger.

The research done during the summer of 1957 was supported by the Office

of the Naval Research.

Note added in proof. Since this paper was submitted, the author proved

that X(G) = 1 is equivalent to the existence of an invariant mean on G (cf.

Full Banach mean values on countable groups, Math. Scand. vol. 7 (1959)).

It seems that the Burnside conjecture has been disproved recently in

Russia.
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