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INFORMATION PERCOLATION AND CUTOFF

FOR THE STOCHASTIC ISING MODEL

EYAL LUBETZKY AND ALLAN SLY

1. Introduction

Glauber dynamics is one of the most common methods of sampling from the
high-temperature Ising model (notable flavors are Metropolis-Hastings or heat-bath
dynamics) and at the same time provides a natural model for its evolution from
any given initial configuration.

We introduce a new framework for analyzing the Glauber dynamics via “infor-
mation percolation” clusters in the space-time slab, a unified approach to studying
spin-spin correlations in Z

d over time (depicted in Figs. 1 and 2 and described
in Section 1.2). Using this framework, we make progress on the following.

(i) High-temperature vs. infinite-temperature: It is believed that when the in-
verse-temperature β is below the critical βc, the dynamics behaves qualitatively
as if β = 0 (the spins evolve independently). In the latter case, the continuous-
time dynamics exhibits the cutoff phenomenon1 with an O(1)-window as shown by
Aldous [2] and refined in [6,11]; thus, the paradigm described earlier suggests cutoff
at any β < βc. Indeed, it was conjectured by Peres in 2004 (see [16, Conjecture
1] and [17, Question 8, page 316]) that cutoff occurs whenever there is O(logn)-
mixing.2 Moreover, one expects the cutoff window to be O(1).

Best-known results on Z
d: Cutoff for the Ising model in the full high-temperature

regime β < βc was only confirmed in dimensions d ≤ 2 [20], and only with a bound
of O(log log n) on the cutoff window.

(ii) Warm start (random, disordered) vs. cold start (ordered): Within the exten-
sive physics literature offering numerical experiments for spin systems, it is common
to find Monte Carlo simulations at high temperature started at a random (warm)
initial state where spins are independently sampled (“disordered”); cf. [15, 31]. A
natural question is whether this accelerates the mixing for the Ising model, and if
so by how much.

Best-known results on Z
d: None to our knowledge—sharp upper bounds on total-

variation mixing for the Ising model were only applicable to worst-case starting
states (usually via coupling techniques).

The cutoff phenomenon plays a role also in the second question: Indeed, when-
ever there is a cutoff, one can compare the effect of different initial states x0 on
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1Sharp transition in the L1-distance of a finite Markov chain from equilibrium, dropping quickly

from near 1 to near 0.
2This pertains to β < βc, since at β = βc the mixing time for the Ising model on (Z/nZ)d is at

least polynomial in n by results of Aizenman and Holley [1, 13] (see [13, Theorem 3.3]), whereas
for β > βc it is exponential in nd−1 (cf. [23]).
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Figure 1. Information percolation clusters for the two-
dimensional (2D) stochastic Ising model: showing the largest 25
clusters on a {1, . . . , 200}2 × [0, 20] space-time slab. (Color avail-
able online.)

the asymptotics of the corresponding mixing time t
(x0)
mix (ε) independently of ε, the

distance within which we wish to approach equilibrium. (For more on the cutoff
phenomenon, discovered in the early 1980s by Aldous and Diaconis, see [3, 5].)

1.1. Results. Our first main result confirms the earlier conjecture by Peres that
Glauber dynamics for the Ising model on Λ = (Z/nZ)d, in any dimension d, exhibits
cutoff in the full high temperature regime β < βc. Moreover, we establish cutoff
within an O(1)-window (as conjectured) around the point

(1.1) tm = inf
{
t > 0 : mt(v) ≤ 1/

√
|Λ|

}
,

where mt(v) is the magnetization at the vertex v ∈ Λ at time t > 0, i.e.,

(1.2) mt(v) = EX+
t (v)

with (X+
t ) being the dynamics started from the all-plus starting state (by transla-

tional invariance we may write mt for brevity). Intuitively, at time tm the expected

value of
∑

v X
+
t (v) becomes O(

√
|Λ|), within the normal deviations of the Ising

distribution, and we expect mixing to occur. For instance, in the special case β = 0
we have mt = e−t and so tm = 1

2 log |Λ|, the known cutoff location from [3, 6, 11].

Theorem 1. Let d ≥ 1 and let βc be the critical inverse temperature for the Ising
model on Z

d. Consider continuous-time Glauber dynamics for the Ising model on
the torus (Z/nZ)d. Then for any inverse-temperature β < βc the dynamics exhibits
cutoff at tm as given in (1.1) with an O(1)-window. Moreover, there exists C =
Cβ,d > 0 so that for any fixed 0 < ε < 1 and large n,

tmix(1− ε) ≥ tm − C log(1/ε) ,

tmix(ε) ≤ tm + C log(1/ε) .

This improves on [20] in two ways: (a) A prerequisite for the previous method
of proving cutoff for the Ising model on lattices (and all of its extensions) was that
the stationary measure would satisfy the decay-of-correlation condition known as
strong spatial mixing, valid in the full high temperature regime for d ≤ 2. However,
for d ≥ 3 it is known to hold only for β small enough3; Theorem 1 removes this
limitation and covers all β < βc (see also Theorem 3). (b) A main ingredient in the
previous proofs was a reduction of L1-mixing to very-fine L2-mixing of sub-cubes

3At low temperatures on Z
d (see the discussion preceding Theorem 3) there might not be strong

spatial mixing despite an exponential decay-of-correlations (weak spatial mixing); however, one
expects to have strong spatial mixing for all β < βc.
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INFORMATION PERCOLATION FOR THE ISING MODEL 731

Figure 2. Top view of information percolation clusters for the 2D
stochastic Ising model: sites of a 200× 200 square color-coded by
their cluster size (increasing from red to white). (Color available
online.)

of poly-logarithmic size, which was achieved via log-Sobolev inequalities in time
O(log log n). This led to a sub-optimal O(log log n) bound on the cutoff window,
which we now improve to the conjectured O(1)-window.

The lower bound on the tmix(1 − ε) in Theorem 1 is realized from the all-plus
starting configuration; hence, for any d ≥ 1 this is (as expected) the worst-case
starting state up to an additive O(1)-term,

t
(+)
mix (ε) = tm +O

(
log(1/ε)

)
for any β < βc and 0 < ε < 1 .(1.3)

This brings us to the aforementioned question of understanding the mixing from
specific initial states. Here the new methods can be used to give sharp bounds,
and in particular to compare the warm start using the uniform (disordered) dis-
tribution to various deterministic initial states. We next demonstrate this on the
one-dimensional (1D) Ising model (we treat higher dimensions, and more generally
any bounded-degree geometry, in the companion paper [22]), where, informally, we
show that

• The uniform starting distribution is asymptotically twice faster than the
worst-case all-plus;

• Almost all deterministic initial states are asymptotically as bad as the
worst-case all-plus.

Formally, if μ
(x0)
t is the distribution of the dynamics at time t started from x0, then

t
(x0)
mix (ε) is the minimal t for which μ

(x0)
t is within distance ε from equilibrium, and

t
(u)
mix(ε) is the analogue for the average 2−|Λ|∑

x0
μ
(x0)
t (i.e., the annealed version,

as opposed to the quenched t
(x0)
mix for a uniform x0).

Theorem 2. Fix any β > 0 and 0 < ε < 1, and consider continuous-time Glauber
dynamics for the Ising model on (Z/nZ). Letting tm = 1

2θ log n with θ = 1 −
tanh(2β), the following hold:

1. (Annealed) Starting from a uniform initial distribution: t
(u)
mix(ε) ∼ 1

2 tm.
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732 EYAL LUBETZKY AND ALLAN SLY

2. (Quenched) Starting from a deterministic initial state: t
(x0)
mix (ε) ∼ t

(+)
mix (ε) ∼ tm

for almost every x0.

Unlike the proof of Theorem 1, which coupled the distributions started at worst-
case states, in order to analyze the uniform initial state one is forced to compare
the distribution at time t directly to the stationary measure. This delicate step is
achieved via the coupling from the past method [28].

Remark. The bound on t
(x0)
mix (ε) applies not only to a typical starting state X0 but

to any deterministic X0 which satisfies that 1/
∑

v(EXtm(v))
2 is sub-polynomial in

n—e.g., O((logn)100)—a condition that can be expressed via X0(Ytm) where Yt is
a continuous-time random walk on Zn; see Proposition 6.5.

As noted earlier, the new framework relaxes the strong spatial mixing hypothesis
from previous works into weak spatial mixing (i.e., exponential decay-of-correlation,
valid for all β < βc in any dimension). This has consequences also for low tem-
peratures : There it is strongly believed that in dimension d ≥ 3 (see [23, Section
5] and [4]) under certain non-zero external magnetic fields (some fixed h �= 0 for
all sites) there would be weak but not strong spatial mixing. Using the periodic
boundary conditions to preclude boundary effects, our arguments remain valid also
in this situation, and again we obtain cutoff.

Theorem 3 (low temperature with external field). The conclusion of Theorem 1
holds in (Z/nZ)d for any large enough fixed inverse-temperature β in the presence
of a non-zero external magnetic field.

We now discuss extensions of the framework toward showing universality of cut-
off, whereby the cutoff phenomenon—believed to be widespread, despite having
been rigorously shown only in relatively few cases—is not specific to the underly-
ing geometry of the spin system, but instead occurs always at high temperatures
(following the intuition behind the aforementioned conjecture of Peres from 2004).
Specializing this general principle to the Ising model, one expects the following to
hold:

On any locally finite geometry the Ising model should exhibit cutoff
at high temperature (i.e., cutoff always occurs for β < cd where cd
depends only on the maximum degree d).

The prior technology for establishing cutoff for the Ising model fell well short of
proving such a result. Indeed, the approach in [20], as well as its generalization
in [21], contained two major provisos:
(i) heavy reliance on log-Sobolev constants to provide sharp L2-bounds on local

mixing (see [7–9,29]); the required log-Sobolev bounds can in general be highly
nontrivial to verify (see [14, 23–26,32, 33]).

(ii) an assumption on the geometry that the growth rate of balls (neighborhoods)
is sub-exponential; while satisfied on lattices (linear growth rate), this rules out
trees, random graphs, expanders, etc.

Demonstrating these limitations is the fact that the required log-Sobolev inequal-
ities for the Ising model were established essentially only on lattices and regular
trees, whereas on the latter (say, a binary tree) it was unknown whether the Ising
model exhibits cutoff at any small β > 0, due to the second proviso.
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INFORMATION PERCOLATION FOR THE ISING MODEL 733

In contrast with this, the earlier mentioned paradigm instead says that, at high
enough temperatures, cutoff should occur without necessitating log-Sobolev in-
equalities, geometric expansion properties, etc. Using the new framework of in-
formation percolation we can now obtain such a result. Define the non-transitive
analogue of the cutoff-location tm from (1.1) to be

(1.4) tm = inf
{
t > 0 :

∑
v mt(v)

2 ≤ 1
}
,

with mt(v) = EX+
t (v) as in (1.2). The proof of the following theorem—which,

apart from the necessary adaptation of the framework to deal with a non-transitive
geometry, required several novel ingredients to obtain the correct dependence of β
on the maximal degree—appears in a companion paper [22].

Theorem 4. There exists an absolute constant κ > 0 so that the following holds.
Let G be a graph on n vertices with maximum degree at most d. For any fixed
0 < ε < 1 and large enough n, the continuous-time Glauber dynamics for the Ising
model on G with inverse-temperature 0 ≤ β < κ/d has

tmix(1− ε) ≥ tm − C log(1/ε) ,

tmix(ε) ≤ tm + C log(1/ε) .

In particular, on any sequence of such graphs the dynamics has cutoff with an
O(1)-window around tm.

The companion paper further extends Theorem 2 to any bounded-degree graph
at high temperature: the mixing time is at least (1 − εβ)tm from almost every
deterministic initial state x0, yet from a uniform initial distribution it is at most
( 12 + εβ)tm, where εβ can be made arbitrarily small for β small enough.

In summary, on any locally finite geometry (following Theorems 1 and 2 for
Z
d) one roughly has that (1) the time needed to couple the dynamics from the

extreme initial states, X+
t and X−

t , via the monotone coupling (a standard upper
bound on the mixing time) overestimates tmix by a factor of 2; (2) the worst-case
mixing time tmix, which is asymptotically the same as when starting from almost
every deterministic state, is another factor of 2 worse compared to starting from
the uniform distribution.

1.2. Methods: Red, green, and blue information percolation clusters.
The traditional approach for obtaining sharp mixing results for the Ising model
has been two-fold: one would first derive certain properties of the stationary Ising
measure (ranging from as fundamental as strong spatial mixing to as proprietary
as interface fluctuations under specific boundary conditions); these static proper-
ties would then drive a dynamical multi-scaled analysis (e.g., recursion via block-
dynamics/censoring); see [23].

We propose to analyze the spatial and temporal aspects of the Glauber dynamics
simultaneously by tracking the update process for the Ising model on (Z/nZ)d in
the (d+1)-dimensional space-time slab. Following is an outline of the approach for
heat-bath dynamics4; formal definitions of the framework (which is valid for a class
of Glauber dynamics that also includes, e.g., Metropolis) will be given in Section 2.

As a first step, we wish to formulate the dynamics (Xt) so that the update pro-
cess, viewed backward in time, would behave as subcritical percolation in (Z/nZ)d×

4A single-site heat-bath update replaces a spin by a sample from the Ising measure conditioned
on all other spins.
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734 EYAL LUBETZKY AND ALLAN SLY

R+; crucially, establishing this subcritical behavior will build on the classical fact
that the site magnetization mt (defined in (1.2)), decays exponentially fast to 0 (the
proof of which uses the monotonicity of the Ising model; see Lemma 2.1). Recall
that each site of (Z/nZ)d is updated via a Poisson point process, whereby every
update utilizes an independent unit variable to dictate the new spin, and the prob-
ability of both plus and minus is bounded away from 0 for any fixed β > 0 even
when all neighbors have the opposing spin. Hence, we can say that with probability
θ > 0 bounded away from 0 (explicitly given in (2.4)), the site is updated to a ±1
fair coin flip independently of the spins at its neighbors, to be referred to as an
oblivious update.

Clusters definition. For simplicity, we first give a basic definition that will be useful
only for small β. Going backward in time from a given site v at time t, we reveal
the update history affecting Xt(v): in case of an oblivious update we “kill” the
branch, and otherwise we split it into its neighbors, continuing until all sites die
out or reach time 0 (see Figure 1). The final cluster then allows one to recover
Xt(v) given the unit variables for the updates and the intersections of the cluster
with the initial state x0.

Note that the dependencies in the Ising measure show up in this procedure when
update histories of different sites at time t merge into a single cluster, turning the
spins at time t into a complicated function of the update variables and the initial
state. Of course, since the probability of an oblivious update θ goes to 1 as β → 0,
for a small enough β the aforementioned branching process is indeed subcritical,
and so these clusters should have an exponential tail (see Figure 2). For β close
to the critical point in lattices, this is no longer the case, and one needs to refine
the definition of an information percolation cluster—roughly, it is the subset of
the update history that the designated spin truly depends on (e.g., in the original
procedure described earlier, an update can cause the function determining Xt(v)
to become independent of another site in the cluster, whence the latter is removed
without being directly updated).

The motivation behind studying these clusters is the following. Picture a typical
cluster as a single strand, linking between “sausages” of branches that split and
quickly dye out. If this strand dies before reaching time 0, then the spin atop
would be uniform, and otherwise, starting, e.g., from all-plus, that spin would be
plus. Therefore, our definition of the cutoff time tm has that about

√
|Λ| of the

sites reach time 0; in this way, most sites are independent of the initial state, and
so Xt would be well mixed. Further seen now is the role of the initial state x0,
opening the door to non-worst-case analysis: one can analyze the distribution of
the spins atop a cluster in terms of its intersection with x0 at time 0.

Red, green, and blue clusters. To quantify the preceding, we classify the clusters
into three types: informally,

• a cluster is Blue if it dies out very quickly both in space and in time;
• a cluster is Red if the initial state affects the spins atop;
• a cluster is Green in all other situations.

(See Section 2 for formal definitions and Figure 3 for an illustration of these for
the Ising model on Z/nZ.) Once we condition on the green clusters (to be thought
of as having a negligible effect on mixing), what remains is a competition between
red clusters—embodying the dependence on the initial state x0—and blue ones,
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INFORMATION PERCOLATION FOR THE ISING MODEL 735

Figure 3. Information percolation clusters in Glauber dynamics
for the 1D Ising model: red (reaching time zero), blue (dying out
quickly), and green clusters on n = 256 sites. (Color available
online.)

the projection on which is just a product measure (independent of x0). Then,
one wants to establish that red clusters are uncommon and “lost within a sea of
blue clusters.” This is achieved via a simple yet insightful lemma of Miller and
Peres [27], bounding the total-variation distance in terms of a certain exponential
moment; in our case, an exponential of the intersection of the set of vertices in Red

clusters between two identically and independently distributed (i.i.d.) instances of
the dynamics. Our main task—naturally becoming increasingly more delicate as β
approaches βc—will be to bound this exponential moment, by showing that each
red set behaves essentially as a uniformly chosen subset of size O(e−cs

√
|Λ|) at time

tm + s; thus, the exponential moment will approach 1 as s → ∞, implying mixing.

Flavors of the framework. Adaptations of the general framework can be used in
different settings:
• To tackle arbitrary graphs at high enough temperatures (Theorem 4), a blue
cluster is one that dies out before reaching the bottom (time 0) and has a singleton
spin at the top (the target time t), and a red cluster is one where the spins at
the top have a nontrivial dependence on the initial state x0.

• For lattices at any β < βc, the branching processes encountered are not suffi-
ciently subcritical, and one needs to boost them via a phase in which (roughly)
some of the oblivious updates are deferred, only to be sprinkled at the end of
the analysis. This entails a more complicated definition of blue clusters, referring
to whether history dies out quickly enough from the end of that special phase,
whereas red clusters remain defined as ones where the top spins are affected by
the initial state x0.

• For random initial states (Theorem 2) we define a red cluster as one in which the
intersection with x0 is of size at least 2 and coalesces to a single point before time
0 under coupling from the past. The fact that pairs of sites surviving to time 0
are now the dominant term (as opposed to singletons) explains the factor of 2
between the annealed/worst-case settings (cf. the two parts of Theorem 2).
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736 EYAL LUBETZKY AND ALLAN SLY

1.3. Organization. The rest of this paper is organized as follows. In Section 2
we give the formal definitions of the previously described framework, while Section
3 contains the modification of the general framework tailored to lattices up to
the critical point, including three lemmas analyzing the information percolation
clusters. In Section 4 we prove the cutoff results in Theorems 1 and 3 modulo these
technical lemmas, which are subsequently proved in Section 5. The final section,
Section 6, is devoted to the analysis of non-worst-case initial states (random vs.
deterministic, annealed vs. quenched) and the proof of Theorem 2.

2. Framework of information percolation

2.1. Preliminaries. In what follows we set up standard notation for analyzing
the mixing of Glauber dynamics for the Ising model; see [20] and its references for
additional information and background.

Mixing time and the cutoff phenomenon. The total-variation distance between two
probability measures ν1, ν2 on a finite space Ω—one of the most important gauges
in Markov chain Monte Carlo (MCMC) theory for measuring the convergence of a
Markov chain to stationarity—is defined as

‖ν1 − ν2‖tv = max
A⊂Ω

|ν1(A)− ν2(A)| = 1
2

∑
σ∈Ω

|ν1(σ)− ν2(σ)| ,

i.e., half the L1-distance between the two measures. Let (Xt) be an ergodic finite
Markov chain with stationary measure π. Its total-variation mixing-time, denoted
tmix(ε) for 0 < ε < 1, is defined to be

tmix(ε)
�
= inf

{
t : max

x0∈Ω
‖Px0

(Xt ∈ ·)− π‖tv ≤ ε
}
,

where here and in what follows Px0
denotes the probability given X0 = x0. A

family of ergodic finite Markov chains (Xt), indexed by an implicit parameter n, is
said to exhibit cutoff (this concept going back to the works [2,10]) iff the following
sharp transition in its convergence to stationarity occurs:

(2.1) lim
n→∞

tmix(ε)

tmix(1− ε)
= 1 for any 0 < ε < 1 .

That is, tmix(α) = (1+o(1))tmix(β) for any fixed 0 < α < β < 1. The cutoff window
addresses the rate of convergence in (2.1): A sequence wn = o

(
tmix(e

−1)
)
is a cutoff

window if tmix(ε) = tmix(1 − ε) + O(wn) holds for any 0 < ε < 1 with an implicit
constant that may depend on ε. Equivalently, if tn and wn are sequences with
wn = o(tn), we say that a sequence of chains exhibits cutoff at tn with window wn

if ⎧⎨
⎩

lim
γ→∞

lim inf
n→∞

max
x0∈Ω

‖Px0
(Xtn−γwn

∈ ·)− π‖tv = 1 ,

lim
γ→∞

lim sup
n→∞

max
x0∈Ω

‖Px0
(Xtn+γwn

∈ ·)− π‖tv = 0 .

Verifying cutoff is often quite challenging; e.g., even for the simple random walk
on a bounded-degree graph, no examples were known prior to [19], while this had
been conjectured for almost all such graphs.
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INFORMATION PERCOLATION FOR THE ISING MODEL 737

Glauber dynamics for the Ising model. Let G be a finite graph G with vertex-set V
and edge-set E. The Ising model on G is a distribution over the set Ω = {±1}V of
possible configurations, each corresponding to an assignment of plus/minus spins
to the sites in V . The probability of σ ∈ Ω is given by

(2.2) π(σ) = Z−1eβ
∑

uv∈E σ(u)σ(v)+h
∑

u∈V σ(u) ,

where the normalizer Z = Z(β, h) is the partition function. The parameter β is
the inverse temperature, which we always take to be non-negative (ferromagnetic),
and h is the external field, taken to be 0 unless stated otherwise. These definitions
extend to infinite locally finite graphs (see, e.g., [18, 23]).

The Glauber dynamics for the Ising model (the Stochastic Ising model) is a
family of continuous-time Markov chains on the state space Ω, reversible with
respect to (w.r.t.) the Ising measure π, given by the generator

(2.3) (L f)(σ) =
∑
u∈Λ

c(u, σ) (f(σu)− f(σ)) ,

where σu is the configuration σ with the spin at u flipped and c(u, σ) is the rate of
flipping (cf. [18]). We focus on the two most notable examples of Glauber dynamics,
each having an intuitive and useful graphical interpretation where each site receives
updates via an associated i.i.d. rate-one Poisson clock:
(i) Metropolis : Flip σ(u) if the new state σu has a lower energy (i.e., π(σu) ≥

π(σ)); otherwise perform the flip with probability π(σu)/π(σ). This corre-
sponds to c(u, σ) = exp (2βσ(u)

∑
v∼u σ(y)) ∧ 1.

(ii) Heat-bath: Erase σ(u) and replace it with a sample from the conditional
distribution given the spins at its neighboring sites. This corresponds to
c(u, σ) = 1/ [1 + exp (−2βσ(u)

∑
v∼u σ(v))].

It is easy to verify that these chains are indeed ergodic and reversible w.r.t. the Ising
distribution π. Until recently, sharp mixing results for this dynamics were obtained
in relatively few cases, with cutoff only known for the complete graph [12,16] prior
to the works [20, 21].

2.2. Update history and support. The update sequence along an interval (t0, t1]
is a set of tuples (J, U, T ), where t0 < T ≤ t1 is the update time, J ∈ Λ is the site to
be updated and U is a uniform unit variable. Given this update sequence, Xt1 is a
deterministic function of Xt0 , right-continuous w.r.t. t1. (For instance, in heat-bath
Glauber dynamics, if s is the sum of spins at the neighbors of J at time T , then
the update (J, U, T ) results in a minus spin if U ≤ 1

2 (1− tanh(βs)), and in a plus
spin otherwise.)

We call a given update (J, U, T ) an oblivious update iff U ≤ θ for

(2.4) θ = θβ,d := 1− tanh(Δβ) where Δ = 2d is the vertex degree ,

since in that situation one can update the spin at J to plus/minus with equal
probability (that is, with probability θ/2 each via the same U) independently of
the spins at the neighbors of the vertex J , and a properly chosen rule for the case
U > θ legally extends this protocol to the Glauber dynamics. (For instance, in
heat-bath Glauber dynamics, the update is oblivious if U ≤ 1−θ/2 or U ≥ 1−θ/2,
corresponding to minus and plus updates, respectively; see Figure 4 for an example
in the case d = 1.)

The following functions will be used to unfold the update history of a set A at
time t2 to time t1 < t2:
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738 EYAL LUBETZKY AND ALLAN SLY

Figure 4. Heat-bath dynamics for the 1D Ising model, marking
oblivious updates by ⊕ and � and non-oblivious updates by � and
� to denote σ(i) → σ(i−1)∧σ(i+1) and σ(i) → σ(i−1)∨σ(i+1).
(Color available online.)

• The update function Fupd(A, t1, t2): The random set that, given the update
sequence along the interval (t1, t2], contains every site u ∈ Λ that A “reaches”
through the updates in reverse chronological order; that is, every u ∈ Λ such that
there exists a subsequence of the updates (Ji, Ui, Ti) with increasing Ti’s in the
interval (t1, t2], such that J1, J2, . . . is a path in Λ that connects u to some vertex
in A.

• The update support function Fsup(A, t1, t2): The random set whose value, given
the update sequence along the interval (t1, t2], is the update support ofXt2(A) as a
function ofXt1 ; that is, it is the minimal subset S ⊂ Λ which determines the spins
of A given the update sequence (this concept from [20] extends more generally
to random mapping representations of Markov chains; see Definition 4.1).

The following lemma establishes the exponential decay of both these update
functions for any β < βc. Of these, Fsup is tied to the magnetization mt whose
exponential decay, as mentioned in Section 1.2, in a sense characterizes the one
phase region β < βc and serves as a keystone to our analysis of the subcritical
nature of the information percolation clusters. Here and in what follows, for a
subset A ⊂ Z

d and r > 0, let B(A, r) denote the set of all sites in Z
d with L∞

distance at most r from A.

Lemma 2.1. The update functions for the Ising model on Λ = (Z/nZ)d satisfy the
following for any β < βc. There exist some constant cβ,d > 0 such that for any
Λ′ ⊂ Λ, any vertex v ∈ Λ′ and any h > 0,

(2.5) P(Fsup(v, t− h, t) �= ∅) = mh ≤ 2e−cβ,dh

with mh = mh(v) as defined in (1.1), whereas for 
 > 20dh,

(2.6) P(Fupd(v, t− h, t) �⊂ B(v, 
)) ≤ e−� .

Proof. The left-hand equality in (2.5) is by definition, whereas the right-hand in-
equality was derived from the weak spatial mixing property of the Ising model using
the monotonicity of the model in the seminal works of Martinelli and Olivieri [24,25]
(see Theorem 3.1 in [24] as well as Theorem 4.1 in [23]); we note that this is the
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0.41 x2 ∧ x4

0.74 (x1 ∨ x3) ∧ x4

0.59 x4

0.25 x3 ∧ x5

0.19 x1 ∧ x3 ∧ x5

x1 x2 x3 x4 x5

Figure 5. Update support for heat-bath dynamics for the 1D
Ising model at β = 0.4 (θ ≈ 0.34); the zoomed-in part shows the
update history with the root spin as a deterministic function of the
leaves. (Color available online.)

main point where our arguments rely on the monotonicity of the Ising model. As
it was shown in [13, Theorem 2.3] that limt→∞

−1
t logmt = gap where gap is the

smallest positive eigenvalue of the generator of the dynamics, this is equivalent to
having gap be bounded away from 0.

We therefore turn our attention to (2.6), which is a consequence of the finite
speed of information flow vs. the amenability of lattices. Let W denote the set of
sequences of vertices

W =
{
w̃ = (w1, w2, . . . , w�) : w1 = v, ‖wi−1 − wi‖1 = 1

}
.

For Fupd(v, t − h, t) �⊂ B(v, 
) to hold there must be some w ∈ W and a sequence
t > t1 > · · · > t� > t − h so that vertex wi was updated at time ti. If this event
holds, call it Mw̃. It is easy to see that

P(Mw̃) = P(Po(h) ≥ 
) ≤ e−�(log(�/h)−1) ,

where the last transition is by Bennet’s inequality. By a union bound over W we
have that for 
 > 20dh,

P (Fupd(v, t− h, t) �⊂ B(v, 
)) ≤ (2d)� exp(−
(log(
/h)− 1)) ≤ e−� ,

thus establishing (2.6) and completing the proof. �

2.3. Red, green, and blue clusters. In what follows, we describe the basic
setting of the framework, which will be enhanced in Section 3 to support all β <
βc. Consider some designated target time t� for analyzing the distribution of the
dynamics on Λ = (Z/nZ)d. The update support of Xt�(v) at time t is

Hv(t) = Fsup(v, t, t�) ,

i.e., the minimum subset of sites whose spins at time t determine Xt�(v) given the
updates along (t, t�]. Developing {Hv(t) : t ≤ t�} backward in time, started at time
t�, gives rise to a subgraph Hv of the space-time slab Λ× [0, t�], where we connect
(u, t) with (u, t′) (a temporal edge) if u ∈ Hv(t) and there are no updates along
(t′, t], and where we connect (u, t) with (u′, t) (a spatial edge) when u ∈ Hv(t),
u′ /∈ Hv(t), and u′ ∈ Hv(t − δ) for any small enough δ > 0 due to an update at
(u, t) (see Figure 5).
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Figure 6. Red, blue, and green information percolation clusters
as per Definition 2.3. (Color available online.)

Remark 2.2. An oblivious update at (u, t) clearly removes u from Hv(t − δ);
however, the support may also shrink due to non-oblivious updates: the zoomed-
in update history in Figure 5 shows x1, x3 being removed from Hv(t) due to the
update x3 → x2 ∨ x4, as the entire function then collapses to x4.

The information percolation clusters are the connected components in the space-
time slab Λ× [0, t�] of the aforementioned subgraphs {Hv : v ∈ Λ}.

Definition 2.3. An information percolation cluster is marked Red if it has a
nonempty intersection with the bottom slab Λ × {0}; it is Blue if it does not
intersect the bottom slab and has a singleton in the top slab, v × {t�} for some
v ∈ Λ; all other clusters are classified as Green. (See Figure 6.)

Observe that if a cluster is blue, then the distribution of its singleton at the top
does not depend on the initial state x0; hence, by symmetry, it is ( 12 ,

1
2 ) plus/minus.

Let ΛRed denote the union of the red clusters, and let HRed be its collective
history—the union of Hv(t) for all v ∈ ΛRed and 0 ≤ t < t� (with analogous
definitions for blue/green). A beautiful short lemma of Miller and Peres [27] shows
that, if a measure μ on Ω is constructed by sampling a random variable R ⊂ Λ and
using an arbitrary law for its spins and a product of Bernoulli( 12 ) for Λ\R, then the

L2-distance of μ from the uniform measure is bounded by E2|R∩R′|−1 for two i.i.d.
copies R,R′. (See Lemma 4.3 for a generalization of this, as we will have a product
of complicated measures.) Applied to our setting, if we condition on HGreen and
look at the spins of Λ \ ΛGreen, then ΛRed can assume the role of the variable R,
as the remaining blue clusters are a product of Bernoulli( 12 ) variables.

In this conditional space, since the law of the spins of ΛGreen, albeit potentially
complicated, is independent of the initial state, we can safely project the configu-
rations on Λ \ ΛGreen without increasing the total-variation distance between the
distributions started at the two extreme states. Hence, a sharp upper bound on
worst-case mixing will follow by showing for this exponential moment

(2.7) E

[
2|ΛRed∩Λ′

Red
| ∣∣ HGreen

]
→ 1 in probability as n → ∞ ,

by coupling the distribution of the dynamics at time t� from any initial state to
the uniform measure. Finally, with the green clusters out of the picture by the
conditioning (which has its own toll, forcing various updates along history so that
no other cluster would intersect with those nor become green), we can bound the
probability that a subset of sites would become a red cluster by its ratio with the
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probability of all sites being blue clusters. Being red entails connecting the subset
in the space-time slab, hence the exponential decay needed for (2.7).

Example 2.4 (Red, green, and blue clusters in the 1D Ising model). Consider
the relatively simple special case of Λ = Z/nZ to illustrate the approach outlined
earlier. Here, since the vertex degree is 2, either an update writes a new spin
independently of the neighbors (with probability θ) or, by symmetry, it takes the
spin of a uniformly chosen neighbor. Thus, the update history from any vertex v
is simply a continuous-time simple random walk that moves at rate 1− θ and dies
at rate θ; the collection of these for all v ∈ Λ forms coalescing (but never splitting)
histories (recall Figure 3).

The probability that Fsup(v, 0, t) �= ∅ (the history of Xt(v) is nontrivially sup-
ported on the bottom of the space-time slab) is therefore e−θt, which becomes
1/
√
n once we take t = tm = 1

2θ log n. If we ignore the conditioning on the green
clusters (which poses a technical difficulty for the analysis—as the red and blue
histories must avoid them—but does not change the overall behavior by much),
then P(v ∈ ΛRed ∩ Λ′

Red
) = P(Hv(0) �= ∅)2 = e−2θt� by the independence of the

copies ΛRed,Λ
′
Red

. Furthermore, if the events {v ∈ ΛRed ∩ Λ′
Red

}v∈Λ were mutu-
ally independent (of course they are not, yet the intuition is still correct), then

E[2|ΛRed∩Λ′
Red

|] = E
[∏

v(1 + �{v∈ΛRed∩Λ′
Red

})
]
would translate into∏

v

E

[
1 + �{v∈ΛRed∩Λ′

Red
}

]
=
(
1 + e−2θt�

)n ≤ exp
(
ne−2θt�

)
,

which for t� = tm + s is at most exp(e−2θs). As we increase the constant s > 0,
this last quantity approaches 1, from which the desired upper bound on the mixing
time will follow via (2.7).

The example demonstrated earlier (modulo conditioning on HGreen and depen-
dencies between sites) how this framework can yield sharp upper bounds on mixing
when the update history corresponds to a subcritical branching process. However,
in dimension d ≥ 2, this stops being the case midway through the high temperature
regime in lattices, and in Section 3 we describe the additional ideas that are needed
to extend the framework to all β < βc.

3. Enhancements for the lattice up to criticality

To extend the framework to all β < βc we will modify the definition of the
support at time t for t > tm, as well as introduce new notions in the space-time slab
both for t > tm and for t < tm within the cutoff window. These are described in
Sections 3.1 and 3.2, resp., along with three key lemmas (Lemmas 3.1–3.3) whose
proofs are postponed to Section 5.

3.1. Post mixing analysis: Percolation components. Let λ > 0 be some
large enough integer, and let s� > 0 denote some larger constant to be set last. As
illustrated in Figure 7, set

t� = tm + s� ,

for k = 0, 1, . . . , λ let
τk = tm + ks�/λ ,

and partition each interval (τk−1, τk] for k = 1, . . . , λ into the subintervals

Ik = (τk−1, τk − 1] , I ′
k = (τk − 1, τk] .
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I′
λ

Iλ

I′
λ−1

Iλ−1

.

.

.
I′
1

I1

1

s�/λ

τλ = t�

τλ−1

.

.

.
τ1

τ0 = tm

Figure 7. Regular phases (Ik) and deferred phases (I ′
k) of the

update history in the range t > tm: no vertices are removed from
the support along the deferred phases (marked by shaded regions).
(Color available online.)

We refer to Ik as a regular phase and to I ′
k as a deferred phase.

Definition (the support Hv(t) for t > tm). Starting from time t� = tm + s� and
going backwards to time tm we develop the history of a vertex v ∈ V rooted at time
t� as follows:

• Regular phases (Ik for k = 1, . . . , λ): For any τk−1 < t ≤ τk − 1,

Hv(t) = Fsup(Hv(τk − 1), t, τk − 1) .

Note that an oblivious update at time t to some w ∈ Hv(t) will cause it to
be removed from the corresponding support (so w /∈ Hv(t − δ) for any small
enough δ > 0), while a non-oblivious update replaces it by a subset of its
neighbors. We stress that w may become irrelevant (thus ejected from the
support) due to an update to some other, potentially distant, vertex z (see
Remark 2.2).

• Deferred phases (I ′
k for k = 1, . . . , λ): For any τk − 1 < t ≤ τk,

Hv(t) = Fupd(Hv(τk), t, τk) .

Here vertices do not leave the support: an update to w ∈ Hv(t) adds its 2d
neighbors to Hv(t− δ).

Recalling the form (Ji, Ui, Ti) of updates (see Section 2.2), let the undeferred ran-
domness U be the updates along (tm, t�] excluding the uniform unit variables Ui

when Ti ∈ ∪kI ′
k, and let the deferred randomness U ′ denote this set of excluded

uniform unit variables (corresponding to updates in the deferred phases).

Remark. Observe that this definition of {Hv(t) : t > tm} is a function of the
undeferred randomness U alone (as the deferred phases I ′

k involved Fupd as opposed
to Fsup); thus, Xt� may be obtained from Xtm by first exposing U , and then
incorporating the deferred randomness U ′ along the deferred phases I ′

k.

Remark. The goal behind introducing the deferred phases I ′
k is to boost the

subcritical behavior of the support Hv(t) toward an analog of the exponential
moment in (2.7). In what follows we will describe how the set of sites with Hv(tm) �=
∅ are partitioned into components (according to proximity and intersection of their
histories); roughly put, by exposing U but not U ′ one can identify, for each set of
vertices B in such a component, a time t in which HB(t) is suitably “thin” (we
will refer to it as a “cut-set”) so that—recalling that a branch of the history is
killed at rate θ > 0 via oblivious updates—one obtains a good lower bound on
the probability of arriving at any configuration for the spin-set HB(t) (which then
determines Xt�(B)) once the undeferred randomness U ′ is incorporated.
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t�

tm

B1

A1

B2

A2

B3

A3

B4

A4

B5

A5

B6

A6

B7

A7

s2�

Figure 8. Components A = {Ai} and B = {Bi} corresponding
to {Υi}. Each Υi joins vertices of Υ via history intersection; Υ4

and Υ7 also join vertices via final proximity and initial proximity,
resp. (Color available online.)

Blocks of sites and components of blocks. Partition Z
d into boxes of side-length s2�,

referred to as blocks. We define block components, composed of subsets of blocks,
as follows (see Figure 8).

Definition (Block components). Given the undeferred update sequence U , we say
that u ∼ v if one of the following conditions holds:

(1) History intersection: Hu(t) ∩ Hv(t) �= ∅ for some t ∈ (tm, t�].
(2) Initial proximity: u, v belong to the same block or to adjacent ones.
(3) Final proximity: There exist u′ ∈ Hu(tm) and v′ ∈ Hv(tm) belonging to

the same block or to adjacent ones.
Let Υ = {v : Hv(tm) �= ∅} be the vertices whose history reaches tm. We partition
Υ into components {Υi} via the transitive closure of ∼. Let HΥi

(t) = ∪v∈Υi
Hv(t),

let Ai be the minimal set of blocks covering HΥi
(tm), and let Bi be the minimal set

of blocks covering HΥi
(t�) = Υi. The collection of all components {Ai} is denoted

A = A(U), and the collection of all components {Bi} is denoted B = B(U).

We now state a bound on the probability for witnessing a given set of blocks. In
what follows, let W(S) denote the size, in blocks, of the minimal lattice animal5

containing the block-set S. Further let {R � S} denote the event for some i the
block-sets (R,S) satisfy R = Ai ∈ A and S = Bi ∈ B; i.e., R,S correspond to the
same component, some Υi, as the minimal block covers of HΥi

(t) at t = tm, t�.

Lemma 3.1. Let β < βc. There exist constants c(β, d), λ0(β, d) such that, if λ > λ0

and s� > λ2, then for every collection of pairs of block-sets {(Ri, Si)},

P

(⋂
i

{Ri � Si}
)

≤ exp

[
− c

s�
λ

∑
i

W(Ri ∪ Si)

]
.

Cut-sets of components. The cut-set of a component Ai is defined as follows. For
k = 1, . . . , λ let

χi,k = HΥi
(τk) ,

Ξi,k =
∏

v∈χi,k

(
1
4θTv,k

)
,

where θ = 1 − tanh(2dβ) is the oblivious update probability, and Tv,k is the time
elapsed since the last update to the vertex v within the deferred phase I ′

k until τk,
the end of that interval. That is, Tv,k = (τk − t) ∧ 1 for the maximum time t < τk
at which there was an update to v. With this notation, the cut-set of Ai is the pair

5A lattice animal is a connected subset of sites in the lattice.
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(ki, χi) where ki is the value of 1 ≤ k ≤ λ minimizing Ξi,k and χi = χi,ki
. The

following lemma will be used to estimate these cut-sets.

Lemma 3.2. Let β < βc. Let S be a set of blocks, let χk(S) = HS(τk), and let
Ξk(S) =

∏
v∈χk(S)

(
1
4θTv,k

)
where Tv,k is the time that elapsed since the last update

to the vertex v within the deferred phase I ′
k until τk. If λ is large enough in terms

of β, d, and s� is large enough in terms of λ, then

E

[
min
k

{
(Ξk(S))

−4 : 1 ≤ k ≤ λ
}]

≤ 2λ+3e|S| .

3.2. Pre-mixing analysis: Percolation clusters. Going backwards from time
tm to time 0, the history is defined in the same way as it was in the regular phases
(see Section 3.1); that is, for any 0 < t ≤ tm,

Hv(t) = Fsup(Hv(tm), t, tm) .

Further recall that the set of sites Υ = {v : Hv(tm) �= ∅} were partitioned into
components Υi (see Section 3.1), and for each i we let Ai be the minimal block-set
covering HΥi

(tm).

Definition (Information percolation clusters). We write Ai ∼ Aj if the supports of
these components satisfy either one of the following conditions (recall thatB(V, r) =
{x ∈ Z

d : minv∈V ‖x− v‖∞ < r}):
(1) Intersection: Fsup(Ai, t, tm) ∩ Fsup(Aj , t, tm) �= ∅ for some 0 ≤ t < tm.
(2) Early proximity: Fsup(Ai, t, tm)∩B(Aj, s

2
�/3) �= ∅ for some tm−s� ≤ t ≤ tm,

or the analogous statement when the roles of Ai, Aj are reversed.

We partitionA = {Ai} into clusters C(1), C(2), . . ., according to the transitive closure
of the earlier relation, and then classify these clusters into three color groups:

• Blue: a cluster C(k) consisting of a single Ai (for some i = i(k)) which dies
out within the interval (tm − s�, tm] without exiting the ball of radius s2�/3
around Ai,

C(k) = {Ai} ,
⋃

v∈Ai

Fsup(v, tm − s�, tm) = ∅ ,

⋃
t>tm−s�, v∈Ai

Fsup(v, t, tm) ⊂ B(Ai, s
2
�/3) .

• Red: a cluster C(k) containing a vertex whose history reaches time 0,⋃
v∈Ai∈C(k)

Fsup(v, 0, tm) �= ∅ .

• Green: all other clusters (neither red nor blue).

Let ARed be the set of components whose cluster is red, and let HRed be the
collective history of all v ∈ ARed going backwards from time tm, i.e.,

HRed =
{
Hv(t) : v ∈ ARed , t ≤ tm

}
,

setting the corresponding notation for blue and green clusters analogously.
For a generic collection of blocks C, the collective history of all v /∈ C is defined

as

H −
C =

{
Hv(t) : v /∈ ∪{Ai ∈ C} , t ≤ tm

}
,
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and we say H −
C is C-compatible if there is a positive probability that C is a cluster

conditioned on H −
C .

Central to the proof will be to understand the conditional probability of a set of
blocks C to be a single red cluster as opposed to a collection of blue ones (having
ruled out green clusters by conditioning on HGreen) given the undeferred random-
ness U and the history up to time tm of all the other vertices,

(3.1) ΨC = sup
X

P
(
C ∈ Red | H −

C = X , {C ∈ Red} ∪ {C ⊂ Blue} , U
)
.

The next lemma bounds ΨC in terms of the lattice animals for C and the individual
Ai’s; note that the dependence of this estimate for ΨC on U is through the geometry
of the components Ai. Here and in what follows we let |x|+ = x ∧ 0 denote the
positive part of x.

Lemma 3.3. Let β < βc. There exists c(β, d), s0(β, d) > 0 such that, for any
s� > s0, any large enough n and every C ⊂ A, the quantity ΨC from (3.1) satisfies

ΨC ≤ s4d�√
|Λ|

e
4
∑

i |Ai|−cs�

∣∣∣W(C)−
∑

Ai∈C W(Ai)
∣∣∣+

.(3.2)

4. Cutoff with a constant window

4.1. Upper bound modulo Lemmas 3.1–3.3. Let U be the undeferred ran-
domness along (tm, t�] (the update sequence excluding the uniform unit variables
of updates in the deferred phases ∪λ

k=1I ′
k). Let d̄(t,U) be the coupling time condi-

tioned on this update sequence, that is,

d̄(t,U) = sup
x0,y0

‖Px0
(Xt ∈ · | U)− Py0

(Xt ∈ · | U)‖
tv

.

Toward an upper bound on d̄(t,U) (which will involve several additional definitions;
see (4.4)), our starting point would be to consider the notion of the support of a
random map, first introduced in [20]. Its following formulation in a more general
framework appears in [21]. Let K be a transition kernel of a finite Markov chain.
A random mapping representation for K is a pair (g,W ) where g is a deterministic
map and W is a random variable such that P(g(x,W ) = y) = K(x, y) for all x, y
in the state space of K. It is well-known that such a representation always exists.

Definition 4.1 (Support of a random mapping representation). LetK be a Markov
chain on a state space ΣΛ for some finite sets Σ and Λ. Let (g,W ) be a random
mapping representation for K. The support corresponding to g for a given value of
W is the minimum subset ΛW ⊂ Λ such that g(·,W ) is determined by x(ΛW ) for
any x, i.e.,

g(x,W ) = fW (x(ΛW )) for some fW : ΣΛW → ΣΛ and all x.

That is, v ∈ ΛW if and only if there exist x, x′ ∈ ΣΛ differing only at v such that
g(x,W ) �= g(x′,W ).

Lemma 4.2 ([21, Lemma 3.3]). Let K be a finite Markov chain and let (g,W ) be
a random mapping representation for it. Denote by ΛW the support of W w.r.t. g
as per Definition 4.1. Then for any distributions ϕ, ψ on the state space of K,

‖ϕK − ψK‖
tv

≤
∫

‖ϕ|ΛW
− ψ|ΛW

‖
tv

dP(W ).
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To relate this to our context of seeking an upper bound for d̄(t,U), recall that
(as remarked following the definition of the regular and deferred phases in Section
3) Hv(t) for t > tm is a function of the undeferred randomness U alone. Hence,
both the Ai’s and their corresponding cut-sets (ki, χi) are completely determined
from U . Letting Zχ denote the joint distribution of Xτki

(χi) for all the components

Ai, we can view (Xt� ∈ · | U) as a random function of (∪iXτki
(χi) | U) whose

randomness arises from the deferred updates U ′ (using which Xt�(v) for v ∈ Υi can
be deduced from Xτki

(χi),U , while Xt�(v) for v /∈ Υ is completely determined by

U). It then follows from Lemma 4.2 that

d̄(t�,U) ≤ E

[
sup
x0,y0

‖Px0
(Zχ ∈ · | U)− Py0

(Zχ ∈ · | U)‖
tv

∣∣∣ U] .(4.1)

Conditioning on HGreen in the main term in (4.1), then taking expectation,

sup
x0,y0

‖Px0
(Zχ ∈ · | U)− Py0

(Zχ ∈ · | U)‖
tv

≤ sup
HGreen

sup
x0,y0

∥∥Px0

(
Z ′
χ ∈ · | HGreen, U

)
− Py0

(
Z ′
χ ∈ · | HGreen, U

)∥∥
tv

,(4.2)

where Z ′
χ is the joint distribution of Xτki

(χi) for Ai /∈ AGreen, i.e., the projec-

tion onto cut-sets of blue or red components. (The previous inequality replaced
the expectation over HGreen by a supremum, then used the fact that the values
of {Xτki

(χi) : Ai ∈ AGreen} are independent of the initial condition, and so tak-
ing a projection onto the complement spin-set does not change the total-variation
distance.)

Now let νi be the distribution of the spins at the cut-set of Ai when further
conditioning that Ai is blue, i.e.,

νi =
(
Xτki

(χi) ∈ ·
∣∣ HGreen, U , Ai ∈ ABlue

)
,

and further set
ν∗i = min

x
νi(x) , ν =

∏
i:Ai /∈AGreen

νi .

The right-hand side of (4.2) is then clearly at most

2 sup
HGreen

sup
x0

∥∥Px0

(
Z ′
χ ∈ · | HGreen, U

)
− ν

∥∥
tv

≤ 2 sup
HGreen

sup
x0

[ ∥∥Px0

(
Z ′
χ ∈ · | HGreen, U

)
− ν

∥∥
L2(ν)

∧ 1
]
.(4.3)

At this point we wish to appeal to the following lemma—which generalizes [27,
Proposition 3.2], via the exact same proof, from unbiased coin flips to a general
distribution—bounding the L2-distance in terms of an exponential moment of the
intersection between two i.i.d. configurations.

Lemma 4.3. Let {Λi : i ∈ I} be a partition of Λ, and let νi (i ∈ I) be a measure
on {±1}Λi . For each S ⊂ I, let ϕS be a measure on {±1}∪i∈SΛi . Let μ be a
measure on configurations in Ω = {±1}Λ obtained by sampling a subset S ⊂ I via
some measure μ̃, then sampling ∪i∈SΛi via ϕS and setting each Λi for i /∈ S via an
independent sample of νi. Letting ν =

∏
i∈I νi,

‖μ− ν‖2L2(ν) ≤
[∑
S,S′

( ∏
i∈S∩S′

min
xi∈{±1}Λi

νi(xi)

)−1

μ̃(S)μ̃(S′)

]
− 1 .
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Proof. For any S ⊂ I, let xS denote the projection of x onto ∪i∈SΛi. With this
notation, by definition of the L2(ν) metric (see, e.g., [30]) one has that ‖μ−ν‖2L2(ν)+

1 =
∫
|μ/ν − 1|2dν + 1 is equal to∑

x∈Ω

μ2(x)

ν(x)
=
∑
x∈Ω

1∏
νi(xi)

∑
S,S′

μ̃(S)μ̃(S′)ϕS(xS)ϕS′(xS′)
∏
i/∈S

νi(xi)
∏
i/∈S′

νi(xi)

by the definition of μ. This can in turn be rewritten as∑
S,S′

( ∑
xS∩S′

ϕS(xS∩S′)ϕS′(xS∩S′)∏
i∈S∩S′ νi(xi)

)( ∑
x(S∪S′)c

∏
i∈(S∪S′)c

νi(xi)

)

·
( ∑

xS\S′

ϕS(xS\S′ | xS∩S′)

)( ∑
xS′\S

ϕS′(xS′\S | xS′∩S)

)
μ̃(S)μ̃(S′)

=
∑
S,S′

( ∑
xS∩S′

ϕS(xS∩S′)ϕS′(xS∩S′)∏
i∈S∩S′ νi(xi)

)
μ̃(S)μ̃(S′) ,

which is at most∑
S,S′

( ∏
i∈S∩S′

min
xi∈{±1}Λi

νi(xi)

)−1( ∑
xS∩S′

ϕS(xS∩S′)ϕS′(xS∩S′)

)
μ̃(S)μ̃(S′)

≤
∑
S,S′

( ∏
i∈S∩S′

min
xi∈{±1}Λi

νi(xi)

)−1

μ̃(S)μ̃(S′) . �

Applying the previous lemma to the quantity featured in (4.3) yields∥∥Px0

(
Z ′
χ ∈ · | HGreen, U

)
− ν

∥∥2
L2(ν)

≤ E

[ ∏
Ai∈ARed∩A

Red
′

1

ν∗i

∣∣∣HGreen, U
]
− 1 ,

where ARed and ARed
′ are two i.i.d. samples conditioned on HGreen and U . Com-

bining the last inequality with (4.1), (4.2), and (4.3), we conclude the following:

d̄(t�,U) ≤ 2 sup
HGreen

sup
x0

[(
E

[ ∏
Ai∈ARed∩A

Red
′

1

ν∗i

∣∣∣ HGreen, U
]
− 1

) 1
2

∧ 1

]
.(4.4)

Note that the expectation is only w.r.t. the update sequence along the interval
(0, tm]. Indeed, the variables ARed and ARed

′ do not depend on the deferred ran-
domness U ′, which in turn is embodied in the measures νi (and consequently, the
values ν∗i ).

The expectation in the right-hand side of (4.4) is treated by the following lemma.

Lemma 4.4. Let β > βc, let ARed and ARed
′ denote the collection of components

within red clusters in two independent instances of the dynamics, and define ΨC as
in (3.1). Then

E

[ ∏
Ai∈ARed∩A

Red
′

1

ν∗i

∣∣∣ HGreen, U
]
≤ exp

[ ∑
C∩C′ =∅

ΨCΨC′

∏
Aj∈C

1

ν∗j

∏
Aj∈C′

1

ν∗j

]
.

One should emphasize the dependence of the bound given by this lemma on
HGreen and U : The dependence on HGreen was eliminated thanks to the supremum
in the definition of ΨC . On the other hand, both ΨC and ν∗j still depend on U .
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748 EYAL LUBETZKY AND ALLAN SLY

Proof of Lemma 4.4. We first claim that, if {YC} is a family of independent
indicators given by

P(YC = 1) = ΨC ,

then, conditioned on HGreen, one can couple the distribution of ARed to {YC : C ⊂
A \ AGreen} in such a way that

(4.5) {C : C ∈ Red} ⊂ {C : YC = 1} .
To see this, order all C ⊂ A\AGreen arbitrarily as {Cl}l≥1 and let Fl correspond to
the filtration that successively reveals �{Cl∈Red}. Then P(Cl ∈ Red | Fl−1) ≤ ΨCl

since

P(Cl ∈ Red | Fl−1) ≤ supX P (Cl ∈ Red | Fl−1, {Cl ∈ Red} ∪ {Cl ⊂ Blue} ,
H −

Cl
= X

)
,

and in the new conditional space the variables {Cj ∈ Red}j<l are measurable since
(i) the event {Cj ∈ Red} for any Cj disjoint from Cl is determined by the condi-

tioning on H −
Cl
;

(ii) any Cj nontrivially intersecting Cl is not red under the conditioning on {Cl ∈
Red} ∪ {Cl ⊂ Blue}.

This establishes (4.5).
Consequently, our next claim is that for a family {YC,C′} of independent indica-

tors given by

P(YC,C′ = 1) = ΨCΨC′ for any C, C′ ⊂ A \ AGreen ,

one can couple the conditional distributions of ARed and ARed
′ given HGreen in

such a way that

(4.6)
∏

Ai∈ARed∩A
Red

′

1

ν∗i
≤

∏
C,C′⊂A\AGreen

C∩C′ =∅

(
1 + YC,C′

( ∏
Aj∈C

1

ν∗j

∏
Aj∈C′

1

ν∗j
− 1

))
.

To see this, take {YC} achieving (4.5) and {Y ′
C} achieving its analog for Red

′.
Letting {(Cl, C′

l)}l≥1 be an arbitrary ordering of all pairs of potential clusters that
intersect (C, C′ ⊂ A \ AGreen with C ∩ C′ �= ∅), associate each pair with a variable
Rl initially set to 0, then process them sequentially:

• If (Cl, C′
l) is such that for some j < l we have Rj = 1 and either Cj ∩ Cl �= ∅

or C′
j ∩ C′

l �= ∅, then we skip this pair (keeping Rl = 0).

• Otherwise, we set Rl to be the indicator of {Cl ∈ Red, C′
l ∈ Red

′}.
Observe that, if Fl denote the natural filtration corresponding to this process, then
for all l we have

P(Rl = 1 | Fl−1) ≤ P(YCl
= 1, YC′

l
= 1) = ΨCΨC′ ,

since testing if Rl = 1 means that we received only negative information on {YCl
=

1} and {YC′
l
= 1}; this implies the existence of a coupling in which {l : Rl = 1} ⊂

{l : YCl,C′
l
= 1}. Hence, if Ai ∈ ARed ∩ ARed

′ , then Ai ∈ Cl ∩ C′
l for some l where

YCl
= YC′

l
= 1, so either YCl,C′

l
= 1 or else YCj ,C′

j
= 1 for a previous pair (Cj , C′

j)

in which Cj = Cl or C′
j = C′

l (a nontrivial intersection in either coordinate will not
yield a red cluster). Either way, the term 1/ν∗i is accounted for in the right-hand
side of (4.6), and (4.6) follows.
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Taking expectations in (4.6) within the conditional space given HGreen,U , and
using the definition (and independence) of the YC,C′ ’s, we find that

E

[ ∏
Ai∈ARed∩A

Red
′

1

ν∗i

∣∣∣ HGreen, U
]
≤

∏
C∩C′ =∅

(
1 + ΨCΨC′

∏
Aj∈C

1

ν∗j

∏
Aj∈C′

1

ν∗j

)

≤ exp

[ ∑
C∩C′ =∅

ΨCΨC′
∏

Aj∈C

1

ν∗j

∏
Aj∈C′

1

ν∗j

]
. �

Corollary 4.5. Let β > βc. With the earlier defined ΨC and Ξj’s we have

d̄(t�) ≤ 4

(
E

[ ∑
C∩C′ =∅

ΨCΨC′

∏
Aj∈C

1

Ξj

∏
Aj∈C′

1

Ξj

])1/2

.(4.7)

Proof of Corollary 4.5. Plugging the bound from Lemma 4.4 into (4.4), and
then integrating over the undeferred randomness U , produces an upper bound on
the total-variation distance at time t�,

d̄(t�) ≤ 2E

[(
exp

[ ∑
C∩C′ =∅

ΨCΨC′

∏
Aj∈C

1

Ξj

∏
Aj∈C′

1

Ξj

]
− 1

)1/2

∧ 1

]
,

where E denotes expectation w.r.t. U , and we used the observation that ν∗j ≥ Ξj

by construction. Indeed, ν∗j denotes the minimal measure of a configuration of the
spins in the cut-set χj of a blue component Aj given U ,HGreen at time τkj

(where
kj is the index of the phase optimizing the choice of the cut-set). Clearly, any
particular configuration η ∈ {±1}χj can occur at time τkj

if every x ∈ χj were to
receive an oblivious deferred update—with the appropriate new spin of ηx—before
its first splitting point in the deferred phase I ′

kj
. Since oblivious updates occur at

rate θ, this event has probability at least 1
2 (1 − exp(−θTx)) ≥ 1

4θTx where Tx is
the length of the interval between τkj

and the first update to x in I ′
kj
, and the

inequality used 1 − e−x ≥ x − x2/2 ≥ x/2 for x ∈ [0, 1] (with x = θTx ≤ 1). The
independence of the deferred updates therefore shows that ν∗j ≥ Ξj .

Since
√
ex − 1 ≤ 2

√
x for x ∈ [0, 1], the inequality (

√
ex − 1∧1) ≤ 2

√
x holds for

all x ≥ 0; thus, Jensen’s inequality allows us to derive (4.7) from the last display,
as required. �

It now remains to show that the expectation over U on the right-hand side
of (4.7) is at most ε(s�) for some ε(s�) > 0 that is exponentially small in s�, which
will be achieved by the following lemma.

Lemma 4.6. Let β > βc. With the earlier defined ΨC and Ξj’s we have

E

[ ∑
C∩C′ =∅

ΨCΨC′

∏
Ai∈C

1

Ξi

∏
Ai∈C′

1

Ξi

]
≤ e−

1
5 cs�/λ .

Proof of Lemma 4.6. We begin by breaking up the sum over potential clusters
C, C′ in the left-hand side of the sought inequality as follows: first, we will root a
single component A ∈ C ∩ C′; second, we will enumerate over the partition of these
clusters into components: C = {Aij} and C′ = {Aik}; finally, we will sum over the
the block-sets {Bi} that are the counterparts (via U) at time t� to the block-sets
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750 EYAL LUBETZKY AND ALLAN SLY

{Ai} at time tm. Noting that the event {Ai � Bi}—testing the consistency of
{Ai} and {Bi}—is U-measurable, we have

E

[ ∑
C∩C′ =∅

ΨCΨC′

∏
Aj∈C

1

Ξj

∏
Aj∈C′

1

Ξj

]
(4.8)

≤
∑
A

∑
C={Aij

}�A

C′={Aik
}�A

∑
{Bj}
{B′

k}

E

[(∏
j

�{Aij
�Bj}

1

Ξij

)
ΨC

(∏
k

�{Aik
�B′

k}
1

Ξik

)
ΨC′

]
.

Recall from (3.1) that Lemma 3.3 provides us with an upper bound on ΨC in terms
of the components {Aij} of C and uniformly over U . Letting Ψ̄{Aij

} denote this

bound (i.e., the right-hand side of (3.2)) for brevity, we can therefore deduce that
the expectation in the last display is at most

E

[(∏
j

�{Aij
�Bj}

1

Ξij

)(∏
k

�{Aik
�B′

k}
1

Ξik

)]
Ψ̄{Aij

}Ψ̄{Aik
} .

Hölder’s inequality now implies that the last expectation is at most[
P

(⋂
j

{Aij � Bj}
)
E

[∏
j

1

Ξ4
ij

]
P

(⋂
k

{Aik � B′
k}
)
E

[∏
k

1

Ξ4
ik

]] 1
4

,

and when incorporating the last two steps in (4.8) it becomes possible to factorize
the terms involving C, C′ and altogether obtain that

E

[ ∑
C∩C′ =∅

ΨCΨC′

∏
Ai∈C

1

Ξi

∏
Ai∈C′

1

Ξi

]
(4.9)

≤
∑
A

[ ∑
C={Aij

}
A∈C

∑
{Bj}

P

(⋂
j

{Aij � Bj}
) 1

4

E

[∏
j

1

Ξ4
ij

] 1
4

Ψ̄{Aij
}

]2

.

The term P(
⋂

j{Aij � Bj}) is bounded via Lemma 3.1. The term E[
∏

j Ξ
−4
ij

]

is bounded via Lemma 3.2 using the observation that one can always restrict the
choice of phases for the cut-sets (only worsening our bound) to be the same for
all the components, whence

∏
j Ξij identifies with a single variable Ξ whose source

block-set at time t� is ∪jBj . Finally, Ψ̄{Aij
} corresponds to the right-hand side

of (3.2) from Lemma 3.3, in which we may decrease the exponent by a factor λ
(only relaxing the bound as λ > 1). Altogether, for some c = c(β, d) > 0 (taken as
c1
4 ∧ c2 where c1, c2 are the constants from Lemmas 3.1 and 3.3, respectively) the
last expression is at most

∑
A

( ∑
C={Aij

}
A∈C

∑
{Bj}

2λ+3s4d�√
|Λ|

e
−c(s�/λ)

(
|W(C)−

∑
W(Aij

)|++
∑

W(Aij
∪Bj)

)
+4

∑
|Aij

|+ 1
4

∑
|Bj |

)2

.(4.10)
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It is easy to see that since |W (C) −
∑

j W(Aij )|+ ≥ 1
2 (W (C) −

∑
j W(Aij ∪ Bj)),

we have that∑
j

W(Aij ∪Bj) +
∣∣∣W (C)−

∑
j

W(Aij )
∣∣∣+ ≥ 1

2
W(C) + 1

2

∑
j

W(Aij ∪Bj) .

Since each of the summands |Aij | and |Bj | in the previous exponent is readily
canceled by W(Aij ∪Bj), we deduce that if cs�/λ is large enough, then (4.10) is at
most

22λ+6s8d�
|Λ|

∑
A

( ∑
C={Aij

}
A∈C

∑
{Bj}

exp

[
− c

4

s�
λ
W

(
C ∪

⋃
j

Bj

)])2

.(4.11)

Now, the number of different lattice animals containing κ blocks and rooted at a
given block X is easily seen to be at most (2d)2(κ−1), since these correspond to trees
on κ vertices containing a given point in Z

d, and one can enumerate over such trees
by traveling along their edges via a depth-first search: beginning with 2d options
for the first edge from the root, each additional edge has at most 2d options (at
most 2d− 1 new vertices plus one edge for backtracking, where backtracking at the
root is regarded as terminating the tree). The bound on the number of rooted trees
(and hence the number of rooted lattice animals) now follows from the fact that
each edge is traversed precisely twice in this manner.

Next, enumerate over collections of blocks {Aij , Bj} with W(C) = S and
∑

j W

(Aij ∪Bj) = R:

• There are at most (2d)2(S−1) ways to choose C containing A by the previous
lattice animal bounds.

• There are at most 2S choices of blocks Dj ∈ C so that each Dj ∈ Aij will
be in a distinct Aij .

• There are at most 2R choices of rj representing W(Aij ∪Bj) since
∑

j rj =
R.

• For each j there are at most (2d)2(rj−1) choices of minimal lattice animals
of size rj rooted at Dj which will contain Aij ∪ Bj . Together, this is at

most (2d)
∑

j 2(r−1) ≤ 2R.
• For each lattice animal there are 2rj ways to assign the vertices to be either
in or not in Aij and 2rj choices to be either in or not in Bj . In total this

gives another 4R choices.
Altogether, we have that the number of choices of the {Aij , Bj} collection is at

most 2S8R(2d)2(S+R). Thus,

∑
C={Aij

}
A∈C

∑
{Bj}

exp

[
− c

4

s�
λ

(
W(C) +

∑
j

W(Aij ∪Bj)
)]

≤
∑

S,R≥1

e−
c
4

s�
λ (S+R)2S8R(2d)2(S+R) ≤ e−

c
5

s�
λ ,

provided s� is large enough compared to d. Plugging this in (4.11) finally gives

E

[ ∑
C∩C′ =∅

ΨCΨC′

∏
Ai∈C

1

Ξi

∏
Ai∈C′

1

Ξi

]
≤ 22λ+6s8d�

|Λ|
∑
A

e−
2
5 cs�/λ ≤ e−

1
5 cs�/λ ,
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where the last inequality holds whenever, e.g., s� ≥ λ2 and λ is large enough in
terms of β, d. �

Combining Corollary 4.5 and Lemma 4.6 shows that d̄(t�) ≤ 4 exp[− 1
10cs�/λ],

and so in particular, once we fix λ larger than some λ0(β, d), the total-variation
distance at time t� will decrease in s� as O(exp[−c′s�]) for some c′(β, d) > 0,
concluding the proof. �

4.2. Lower bound on the mixing time. We begin with two simple lemmas,
establishing exponential decay for the magnetization in time and for the correlation
between spins in Xt in space.

Lemma 4.7. There exist c1(β, d) and c2(β, d) such that for all 0 < h < t,

mt ≤ c1e
−c2hmt−h.

Proof. By Lemma 2.1,

E
∣∣Fupd(v, t− h, t)

∣∣2 ≤ |B(v, 20dh)|2 +
n∑

k=20dh

k2dP (Fsup(v, tm − h, tm) �⊂ B(v, k))

≤ |B(v, 20dh)|2 +
n∑

k=20dh

k2de−ck = O(h2d) .

Then by Cauchy-Schwarz,

E
∣∣Fsup(v, t− h, t)

∣∣ ≤ E
[∣∣Fupd(v, t− h, t)

∣∣�{Fsup(v,t−h,t) =∅}
]

≤
(
E

[∣∣Fupd(v, t− h, t)
∣∣2]P(Fsup(v, t− h, t) �= ∅)

)1/2

≤ O(hde−ch/2) .

If Fsup(v, 0, t) �= ∅, then Fsup(u, t− h, t) �= ∅ for some u ∈ Fupd(v, t− h, t). Using
the translational invariance of the torus (which implies that all vertices have the
same magnetization),

mt = P(Fsup(v, 0, t) �= ∅) ≤ E
[∣∣Fupd(v, t− h, t)

∣∣]P(Fsup(v, t− h, t) �= ∅)
≤ O(hde−ch/2)mt−h ,

as claimed. �

Lemma 4.8. There exist c1(β, d), c2(β, d) > 0 so that starting from any initial
condition X0,

Cov(Xt(u), Xt(v)) ≤ c1 exp(−c2|u− v|) for any t > 0 and u, v ∈ Λ .

Proof. Let E denote the event that the supports of u and v intersect, that is,

E =

{ ⋃
0<t′<t

(Fsup(v, t
′, t) ∩ Fsup(v, t

′, t)) = ∅
}
.

Let X ′
t and X ′′

t be two independent copies of the dynamics. By exploring the
histories of the support we may couple Xt with X ′

t and X ′′
t so that on the event E

the history of v in Xt is equal to the history of v in X ′
t and the history of u in Xt

is equal to the history of u in X ′′
t . Hence,

E [Xt(v)Xt(u)] = E
[
X ′

t(v)X
′′
t (u) +

(
Xt(v)Xt(u)−X ′

t(v)X
′′
t (u)

)
�E
]

≤ E [X ′
t(v)]E [X ′′

t (u)] + 2P(E),
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and so Cov(Xt(v), Xt(u)) ≤ 2P(E). Define the event

Kv,r =
{
Fsup

(
v, t− r

40ed , t
)
= ∅, Fupd

(
v, t− r

40ed , t
)
⊂ B

(
v, r

2

)}
.

By Lemma 2.1,

P(Kv,r) ≥ 1− exp(−c′ r
40ed ) .

If Kv,|u−v| and Ku,|u−v| both hold, then the histories of u and v do not intersect,
and so

P(E) ≤ P(Kc
v,|u−v| ∪Kc

u,|u−v|) ≤ 2 exp
(
−c′ |u−v|

40ed

)
.

This completes the proof, as it implies that

Cov(Xt(v), Xt(u)) ≤ 2P(E) ≤ 4 exp
(
−c′ |u−v|

40ed

)
. �

We are now ready to prove the lower bound for the mixing time. To lower
bound the total variation distance at time tm − h we take the magnetization as a
distinguishing statistics. By Lemma 4.7,

E

[∑
v∈Λ

X+
tm−h(v)

]
= |Λ|mtm−h ≥ c1e

c2h|Λ|mtm = c1e
c2h

√
|Λ| ,

while Lemma 4.8 implies that

Var

(∑
v∈Λ

X+
tm−h(v)

)
=

∑
u,v∈Λ

Cov(X+
t (u), X+

t (v)) = |Λ|
∑
u∈Λ

c1e
−c2|u−v| ≤ c′|Λ|

for some c′ = c′(β, d) > 0. By Chebyshev’s inequality,

P

(∑
v∈Λ

X+
tm−h(v) >

1

2
|Λ|mtm−h

)
≥ 1−

Var
(∑

v∈Λ X+
tm−h(v)

)
1
2E

[∑
v∈Λ X+

tm−h(v)
] ≥ 1− c′e−2c2h.

Now if σ is a configuration drawn from the stationary distribution, then E[
∑

v∈Λ

σ(v)] = 0, and since X+
t converges in distribution to the stationary distribution,

Var

(∑
v∈Λ

σ(v)

)
= lim

t→∞
Var

(∑
v∈Λ

X+
t (v)

)
≤ c′|Λ| .

Hence, by Chebyshev’s inequality, the probability that the magnetization is at least
1
2 |Λ|mtm−h satisfies

P

(∑
v∈Λ

σ(v) >
1

2
|Λ|mtm−h

)
≤ c′e−2c2h.

Thus, considering this as the distinguishing characteristic yields

dtv(X
+
t , π) ≥ P

(∑
v∈Λ

X+
tm−h(v) >

1
2 |Λ|mtm−h

)

− P

(∑
v∈Λ

σ(v) > 1
2 |Λ|mtm−h

)
≥ 1− 2c′e−2c2h ,

concluding the proof of the lower bound. �
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5. Analysis of percolation components and clusters

5.1. Percolation component structure: Proof of Lemma 3.1. To each v ∈ Λ,

associate the column Qv = B(v, s
3/2
� )× (tm, t�] in the space-time slab Z

d × (tm, t�].
Recall that the history of vertices gives rise to edges in the previous space-time slab
as per the description in Section 3. Namely, if at time t there is a non-oblivious
update at site x we mark up to 2d intervals [(x, t), (y, t)] for x ∼ y, and if a site x
is born at time t′ and dies at time t′′, we mark the interval [(x, t), (x, t′′)]. Given
these marked intervals, we say that a column Qv is exceptional if it contains one of
the following:

• Spatial crossing: a path connecting (x, t) to (y, t′) for |x−y| ≥ 1
2s

3/2
� and some

t, t′ ∈ (tm, t�].

• Temporal crossing: a path connecting (v, t�) to B(v, s
3/2
� )× {tm}.

Equation (2.6) from Lemma 2.1 tells us that, even if all phases were deferred (i.e.,
the update support were ignored and vertices would never die), then the probability

of witnessing a spatial crossing of length s
3/2
� starting from a given site x during

a time interval of s� is at most exp(−s
3/2
� ) provided that s� > (20d)2. In lieu

of such a spatial crossing, the number of points reachable from (v, t�) at time
τk − 1 = t� − 1 (marking the transition between the deferred phase I ′

k and the

regular phase Ik) is O(s
3d/2
� ). By Equation (2.5) from that same lemma, there

exists some c1 = c1(β, d) > 0 so that the probability that the history of a given u
would survive the interval Ik is at most 2 exp(−c1

s�
λ ). A union bound now shows

that, overall, the probability that Qv is exceptional is O(s
3d/2
� exp(−c1

s�
λ )), which

is at most exp(− c1
2

s�
λ ) if, say, s� ≥ λ2 and λ is large enough in terms of β, d.

Consider now the collection of block-set pairs {(Ri, Si)}. If Ri � Si on account
of some component Υji at times tm and t� (i.e., Υji is minimally covered by Si

while HΥji
(tm) is minimally covered by Ri), then every block S ∈ Si contains some

v ∈ Υji such that (v, t�) is connected by a path (arising from the aforementioned
marked intervals) to (Ri, tm) and every Ri contains some w ∈ HΥji

(tm) such that

(w, tm) is connected to (Si, t�). Moreover, the set of blocks traversed by these paths
necessarily forms a lattice animal (by our definition of the component Υji via the
equivalence relation on blocks according to intersecting histories or adjacency at
times tm or t�). We claim that for any block X in this lattice animal, either X
contains some vertex v such that Qv is exceptional, or one of its 2d neighboring
blocks does (and belongs to the lattice animal). Indeed, take x ∈ X such that there
is a path P from some v ∈ Si to some w ∈ Ri going through x (such a path exists

by the construction of the lattice animal). If P is contained in B(x, 1
2s

3/2
� )×(tm, t�],

and hence also in B(v, s
3/2
� ), then it gives rise to a temporal crossing in Qv and v

belongs either to a neighboring block of X or to X itself. Otherwise, P visits both

x and some y ∈ ∂B(x, 1
2s

3/2
� ) and in doing so gives rise to a spatial crossing in Qx,

as claimed.
It follows that if (Ri, Si) are the blocks corresponding to the components Υji for

all i, then there are pairwise disjoint lattice animals, with mi ≥ W(Ri ∪ Si) blocks
each (recall thatW(S) is the smallest number of blocks in a lattice animal containing
S), such that either each block contains some v for which Qv is exceptional or it has
a neighboring block with such a vertex v. Therefore, by going through the blocks
in the lattice animals according to an arbitrary ordering, one can find a subset
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S of at least
∑

mi/(2d + 1) blocks, such that each block in S contains a vertex
with an exceptional column. Similarly, we can arrive at a subset S′ ⊂ S of size at
least

∑
mi/(2d + 1)2 such that every pair of blocks in it has distance (in blocks)

at least 2. Since the event that Qv is exceptional depends only on the updates

within B(v, s
3/2
� ), the distances between the blocks in S′ ensure that the events of

containing such a vertex v are mutually independent. Hence, the probability that
a given collection of lattice animals complies with the event {Ri � Si} for all i is
at most exp[− c1

2
s�
λ (2d+ 1)−2

∑
mi], or exp(−c2

s�
λ

∑
mi) for c2 = c2(β, d).

Finally, recall from the discussion (4.11) that the number of different lattice
animals containing m blocks and rooted at a given block is at most (2d)2(m−1).
Combined with the preceding discussion, using mi ≥ W(Ri ∪ Si) we find that

P(∩i{Ri � Si}) ≤
∏
i

∑
mi≥W(Ri∪Si)

(2d)2mie−c2
s�
λ mi

≤ exp

[
− c2

2

s�
λ

∑
i

W(Ri ∪ Si)

]

if for instance s� ≥ 4λ log(2d)/c2, readily guaranteed when s� ≥ λ2 for any λ that
is sufficiently large in terms of β, d. �

5.2. Cut-sets estimates: Proof of Lemma 3.2. Partition the space-time slab
Λ× (tm, t�] into cubes of the form Q× (t, t+ r] where r is some large integer to be
later specified (its value will depend only on β and d) and Q ⊂ Z

d is a box of side-
length r2. We will refer to Q+× (t, t+r] for Q+ := B(Q, r3/2) as the corresponding
extended cube. Let us first focus on some regular phase Ik. Similar to the argument
from the proof of Lemma 3.1 (yet modified slightly), we will say that a given cube
Q× (t, t+ r] is exceptional if one of the following conditions is met:

• Spatial crossing: the cube has a path connecting (x, t′) to (y, t′′) for some
x, y ∈ Q such that |x− y| ≥ r3/2.

• Temporal crossing: the extended cube has a path connecting (x, t+ r) to (y, t)
for some x, y ∈ Q+.

As before, the probability that a given cube contains a spatial crossing is
O(r2d exp(−r3/2)) provided that r > (20d)2, by the bound from Equation (2.6).
Similarly, the probability of the aforementioned temporal crossing within the reg-
ular phase is O(r2d exp(−c1r)) for some c1 = c1(β, d) > 0 by Equation (2.5).
Combining the two, the probability that a cube is exceptional is at most exp(−c2r)
for some c2 = c2(β, d) > 0 if r is large enough in terms of β, d.

Next, break the time interval Ik = (τk−1, τk − 1] into length-r subintervals
Ik,1, . . . , Ik,m (so that m = s�

(λ−1)r ) in reverse chronological order, i.e.,

Ik,l = (τk − lr − 1, τk − (l − 1)r − 1] (l = 1, . . . ,m) .

Further let Ik,0 = τk − 1, and let Yk,l for l = 0, . . . ,m count the number of cubes
Q × Ik,l (boxes when l = 0) that, at time t = τk − (l − 1)r − 1 (the end of the
subinterval Ik,l), intersect the history of S.

Our next goal is now to bound the exponential moments of Yk,m, the number
of cubes intersecting the history of S at time τk−1, which will be achieved by the
following claim.
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Claim 5.1. For any k = 1, . . . , λ, the previously defined variables (Yk,l) satisfy

E
[
eaYk,m

]
≤ 1 +

(
3
4

)m
exp

[
( 23 )

maYk,0

]
for any 0 < a < 1

3 .(5.1)

Proof. Throughout the proof of the claim we drop the subscript k from the Yk,l’s
and simply write (Yl).

If v ∈ Q × τk − (l − 1)r − 1 belongs to the history-line, we can trace its origin
in the cube Q× Ik,l−1 and necessarily either that cube is exceptional or one of its
2d neighbors is (as otherwise there will not be a path from v making it to time t�).
Hence, Yl+1 ≤ (2d+1)Xl+1, where Xl+1 counts the number of exceptional cubes in
the kth subinterval. Moreover, starting from Yl cubes covering the history, the set of
exceptional cubes counted by Xl+1 is composed of Yl lattice animals—each rooted
at one of those Yl cubes. So, if Yl = a for some integer a and we consider lattice
animals of sizes w1, . . . , wa (cubes) for each of these, the number of configurations
for these lattice animals would be at most (2d)2

∑
wi as was noted in the proof

of Lemma 3.1. Out of these, we can always extract a subset of (
∑

wi)/(2d + 1)
cubes which are pairwise non-adjacent, whereby the events of being exceptional are
mutually independent.

Combining these ingredients, and setting δ = 1
2c2(2d + 1)−2, if Fk,l is the σ-

algebra generated by the updates in the subintervals Ik,l′ for l′ ≤ l, then

E
[
eδrYl+1 | Fk,l

]
≤ E

[
e(2d+1)δrXl+1 | Fk,l

]
≤

∑
w1,...,wYl

exp
[[
(2d+ 1)δr + 2 log(2d)− c2(2d+ 1)−1r

]∑
wi

]

=

[∑
w

e−[(2d+1)δr−2 log(2d)]w

]Yl

≤
[∑

w

e−2dδrw

]Yl

≤ exp
[
e−δrYl

]
,(5.2)

where the last two inequalities hold provided that δr is sufficiently large, i.e., when
r is a large enough function of β and d. In particular, by Markov’s inequality this
implies that for any y > 0,

P (Yl+1 ≥ y | Fk,l) ≤ exp
[
e−δrYl − δry

]
≤ exp

[
1
4Yl − y

]
,

provided that δr is large. This enables us to complement the bound in (5.2) when
taking a small factor instead of δr; namely, for any 0 < a < 1 we have

E
[
eaYl+1 | Fk,l

]
=

∫ ∞

0

P
(
eaYl+1 ≥ t | Fk,l

)
≤
∫ ∞

0

(
1 ∧

exp
[
1
4Yl

]
t1/a

)
dt

= e
a
4 Yl + e

1
4Yl

∫ ∞

e
a
4
Yl

t−
1
a dt = e

a
4 Yl +

a

1− a
e

a
4 Yl =

e
a
4 Yl

1− a
.

When Yl ≥ 6, we can upper bound the last exponent by exp(− 3
2a+ 1

2aYl) and get

that for any 0 < a < 1
3 ,

E
[
eaYl+1 − 1 | Fk,l , Yl ≥ 6

]
≤ e−

3
2a

1− a
e

a
2 Yl − 1 ≤ 3

4

(
e

2
3aYl − 1

)
,

where the last inequality used 1 − a ≥ exp(− a
1−a ) ≥ exp(− 3

2a) for 0 < a < 1
3 ,

followed by the fact that ex/α − 1 ≤ α(e2x − 1) for any 0 < α ≤ 1 and x ≥ 0
thanks to Jensen’s inequality. On the other hand, if Yl ≤ 6, then again by Jensen’s
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inequality (now taking α = a/δr) and Equation (5.2),

E
[
eaYl+1 − 1 | Fk,l , Yl ≤ 6

]
≤ a

δr

(
ee

−δrYl − 1
)
≤ 3

4

(
e

2
3aYl − 1

)
,

with the last inequality justified since exp(e−δrYl) ≤ exp(6e−δr) ≤ 2 for large δr,
so its left-hand side is at most a/δr ≤ a/3 (again for large δr), while using Yl ≥ 1
in its right-hand side (when Yl = 0, both sides are 0) shows it is always at least
a/2.

We have thus established the previous relation for all values of Yl; iterating it
through the m subintervals of Ik yields (5.1), as required. �

Moving our attention to the deferred phase I ′
k, here we would like to stochasti-

cally dominate the number of vertices in the history at any given time by a rescaled
pure birth process Zk,t along a unit interval, where each particle adds 2d new ones
at rate 1 (recall that by definition particles do not die in deferred phases, and their
splitting rate is 1+tanh(−2dβ) < 1) and furthermore, every vertex receives an extra
update at time τk. Indeed, these can only increase the size of the history at τk − 1,
which in turn can only increase the quantity exp(

∑
i 4Ξi) (by introducing addi-

tional cut-vertices in deferred phases further down the history) that we ultimately
wish to bound.

Overestimating the splitting rate suffices for our purposes and simplifies the
exposition. On the other hand, introducing the extra update at time τk plays a
much more significant role: Let Mk denote the number of vertices in the history at
the beginning of each phase I ′

k. By the earlier discussion, the variables Mk in our
process dominate those in the original dynamics, and so (Ξk) � (Ξ+

k ) jointly, where

(5.3) Ξ+
k =

∏
v∈Mk

(
1
4θTv,k

)
for Tv,k ∼ (Exp(1) ∧ 1)

is the analog of Ξk in the modified process (the variable Tv,k corresponding to what
would be the update time to v ∈ Mk nearest to τk in I ′

k in lieu of the extra update
at time τk). Crucially, thanks to the extra updates, Ξ+

k depends only on Mk and
has no effect on the history going further back (and in particular on the Mj ’s for
j < k). Therefore, we will (ultimately) condition on the values of all the Mk’s,
and thereafter the variables (Ξ+

k ) will be readily estimated, being conditionally
independent.

Indexing the time 0 ≤ t ≤ 1 of the process Zk,t in reverse chronological order
along I ′

k (identifying t = 0 and t = 1 with τk, τk−1, resp.), the exponential moments
of Zk,1 can be estimated as follows.

Claim 5.2. For any k = 1, . . . , λ, the previously defined variables (Zk,t) satisfy

E
[
ea1Zk,1 | Zk,0

]
≤ exp

[
2e2da1Zk,0

]
for any 0 < a1 ≤ 1

2d log
(

1
1−e−3d

)
.(5.4)

Proof. Throughout the proof of the claim, put Zt as short for Zk,t for brevity.
One easily sees that for any α > 0,

d

dt
E

[
eα(t)Zt

]
= E

[[
α′(t)Zt + (e2dα(t) − 1)Zt

]
eα(t)Zt

]
since d

dtE[e
αZt | Zt] = limh→0 e

αZt(e2dα − 1)P(Zt+h �= Zt | Zt) for fixed α. Taking
α(t) to be the solution to α′(t) + exp[2dα(t)]− 1 = 0, namely,

α(t) =
1

2d
log

(
1

1− ζe−2dt

)
for ζ > 0 ,
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we find that exp[α(t)Zt] is a martingale and in particular

(5.5) E

[
eα(1)Z1 | Z0

]
= eα(0)Z0 .

Therefore, if we set

ζ = e2d
(
1− e−2da1

)
for 0 < a1 ≤ 1

2d
log

(
1

1− e−3d

)
,

then 0 < ζ ≤ e−d and so α(t) is real and decreasing along [0, 1] to α(1) = a1. For
this choice of parameters we obtain that

α(0) ≤ 1

2d
log

(
1

1− ζ

)
≤ 1

2d

e2d(1− e−2da1)

1− e−d
≤ 2e2da1 ,

using that 1/(1 − e−d) ≤ 2 for any d ≥ 1 and 1 − x ≤ e−x for x > 0. Overall, for
any small enough a1 in terms of d (as in the previous condition, matching the one
in (5.4)) we have by (5.5) that E[ea1Z1 | Z0] ≤ exp[2e2da1Z0]. �

Going through the regular phase will enable us to apply Claim 5.2 with a value
of a1 which is exponentially small in s�, let alone small enough in terms of d, easily
satisfying the upper bound of roughly e−3d/2d from the condition in (5.4).

Putting together the analysis of the deferred and regular phases I ′
k, Ik in the last

two claims, we can establish a recursion for Mk, the number of vertices in HS(τk).
Using Yk,0 ≤ Zk,1 while Mk ≤ r2dYk,m (by crudely taking the entire volume of each
of the cubes that survived to that point), and recalling (5.1), gives

E
[
eaMk | Fk+1

]
≤ 1 +

(
3
4

)m (
exp

[
2(er)2d

(
2
3

)m
aMk+1

]
− 1

)
as long as a < 1

3r
−2d (to have a′ = r2da qualify for an application of (5.1)). Setting

â = 1
4r

−2d(5.6)

and seeing as for large enough s� (and therefore large enough m) compared to r
and d, the pre-factor of Mk+1 is at most ( 34 )

m, we finally arrive at

E
[
eâMk | Fk+1

]
≤ 1 +

(
3
4

)m (
exp

[(
3
4

)m
âMk+1

]
− 1

)
,

Mλ ≤ s2d� |S| .(5.7)

We will now utilize (5.7) for a bound on the probability that the median of
the Mk’s exceeds a given integer b ≥ 0. More precisely, consider the event that the
median of {M0,M1, . . . ,Mλ−2}, which we denote as medk<λ−1Mk, exceeds b (it will
suffice for our purpose to consider this event—which excludes Mλ−1 before taking
the median—and it is convenient to do so since Mλ was pre-given as input, and
hence Iλ is exceptional compared to any other Ik, where we have better control
over Mk). To this end, notice that if max{Mk : k < λ} ≤ λb, then the event
{medk<λ−1Mk > b} necessitates at least (λ − 1)/2 values of 1 ≤ k ≤ λ − 1 for
which Mk−1 ≥ b even though Mk ≤ λb. Therefore,

P

(
med

k<λ−1
Mk > b

)
≤ P

(
max
k<λ

Mk ≥ λb

)
+ 2λ

[
sup
k<λ

P (Mk−1 > b | Mk ≤ λb)

]λ−1
2

.

(5.8)
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The first term in the right-hand side of (5.8) can be estimated via (5.7),

P

(
max
k<λ

Mk ≥ λb

)
≤
∑
k<λ

P
(
eâMk ≥ eâλb

)
≤ λ exp

[
−λâb+ ( 34 )

mâMλ

]

≤ λ exp

[
− λâb+ ( 34 )

m( s�r )
2d|S|

]
.

Similarly, for the second term, we get from (5.7) that for any k < λ,

P (Mk−1 > b | Mk ≤ λb) ≤ exp
[
−âb+ ( 34 )

mâλb
]
≤ exp

[
− 1

2 âb
]

provided that s� (and hence m) is large enough in terms of λ (so ( 34 )
mλ < 1

2 ).
Plugging these two inequalities in (5.8), while using that (λ − 1)/2 > λ/3 for λ
large and ( 34 )

ms2d� ≤ 1 for s� large enough in terms of r and λ, yields

P

(
med

k<λ−1
Mk > b

)
≤ 2λ+1 exp

[
− 1

6λâb+ |S|
]
.(5.9)

The final step is to derive the desired upper bound on mink{(Ξ+
k )

−4} from the
estimate (5.9) on the median of the Mk’s. Write

E

[
min
k

{
(Ξ+

k )
−4
} ∣∣ {Mk} , med

k<λ−1
Mk = b

]

=

∫
dtP

(
min
k

{
(Ξ+

k )
− 1

2

}
≥ t

1
8

∣∣∣ {Mk}, med
k<λ−1

Mk = b

)
,(5.10)

and consider some t > 1 and b ≥ 0 and condition on the event medk<λ−1Mk = b.
Revisiting (5.3), there are at least λ−1

2 values of k ∈ {0, . . . , λ− 1} such that

Ξ+
k �

b∏
j=1

(
1
4θTvj ,k

)
for i.i.d. Tvj ,k ∼ (Exp(1) ∧ 1) ,

whence, by the independence of the Tvj ,k’s, if T ∼ Exp(1) ∧ 1, then

E

[
(Ξ+

k )
− 1

2

]
≤
(
E

[
2√
θT

])b

.

The previous expectation (involving a single T ) is easily seen to be equal to∫
dxP

(
T <

4

θx2

)
= O

(∫
dx

θx2

)
< Cβ,d ,

for some Cβ,d > 1 depending only on θ. Hence, by Markov’s inequality, under the
previous conditioning we have

P

(
(Ξ+

k )
− 1

2 ≥ t1/8
)
≤ Cb

β,dt
−1/8 ,

and already the first 10 (say) out of these λ−1
2 values of k show that

P

(
min

k<λ−1

{
(Ξ+

k )
− 1

2

}
≥ t1/8

)
≤ (Cβ,d)

10bt−5/4 .

(Here we could replace 10 by any integer larger than 8, and it is convenient to use
an absolute constant rather than a function of λ so as to keep the effect of the
constant Cβ,d under control.) Using (5.10) we find that

E

[
min

k<λ−1

{
(Ξ+

k )
−4
} ∣∣ {Mk}, med

k<λ−1
Mk = b

]
≤
∫

dt
(Cβ,d)

10b

t5/4
= 4(Cβ,d)

10b ,
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and an integration with respect to P(medk<λ−1Mk = b) via (5.9) establishes that
as long as, say, λâ > 100 logCβ,d, we have

E

[
min

k<λ−1

{
(Ξ+

k )
−4
}]

≤ 2λ+3e|S| .

In summary, the required result holds for a choice of r = λ3d provided that λ is
large enough in terms of d, β (so r is large enough in terms of these as well, while (as
we recall that â = 1

4r
−2d) in addition λâ = 1

4r
d is large) and that s� is then large

enough in terms of λ (so m ≥ s�/(rλ) is large). For these choices, we may take,
e.g., s� ≥ λ10d, whence m ≥ sλ−(3d+1) ≥ √

s and all the previous requirements are
met for λ large enough in terms of d, β. �

5.3. Blue percolation clusters given the history of their exterior. In this
section we prove the following lower bound on the probability of a cluster to be
Blue given the update sequence U along the (tm, t�] and the complete history up
to time tm of every vertex in its exterior.

Lemma 5.3. There exists s0(β, d) > 0 so that for any s� > s0, any sufficiently
large n, and any C ⊂ A,

inf
H −

C

P

( ⋂
Ai∈C

{Ai ∈ Blue}
∣∣∣ H −

C , U
)

≥ e−
∑

Ai∈C |Ai| ,

where the infimum is over all C-compatible histories.

Proof. Since H −
C is C-compatible, the histories of all A ∈ A \ C do not enter

B(C, s2�/3) before time s�. Therefore, it is enough to verify for all Ai ∈ C that
∪tm−s�<t<tmFsup(Ai, t, tm) ⊂ B(Ai, s

2
�/3) and that Fsup(Ai, tm−s�, tm) = ∅. Since

these events depend on disjoint updates and do not depend on U ,
(5.11)

inf
H −

C

P

( ⋂
Ai∈C

{Ai ∈ Blue} | H −
C ,U

)

=
∏
Ai∈C

P

(
Fsup(Ai, tm − s�, tm) = ∅ ,

⋃
tm−s�<t<tm

Fsup(Ai, t, tm) ⊂ B(Ai, s
2
�/3)

)
,

and so we will treat the Ai’s separately. For any Ai we cover B(Ai, s
2
�/3) with a

set of tiles as follows. Let 0 = r0 < r1 < · · · < r� = n be such that rk − rk−1 ∈
{s4d� , 2s4d� }. For each u ∈ [s4d� ]d and k ∈ [
]d denote

Vk,u := {u1 + rk1−1 + 1, . . . , u1 + rk1
} × · · · × {ud + rkd−1 + 1, . . . , ud + rkd

},
where we embed {uj + rkj−1+1, . . . , uj + rkj

} into {1, . . . , n} modulo n. Let ∂Vk,u

denote the interior boundary of Vk,u, that is, the subset of vertices of Vk,u adjacent
to a vertex in its complement. Then by construction

1

|[s4d� ]d|
∑

u∈[s4d� ]d

∑
k∈[�]d

|∂Vk,u ∩B(Ai, s
2
�/3)| ≤

2d|B(Ai, s
2
�/3)|

s4d�
,

since in each vertex v and each coordinate i there are at most two choices of ui for
which v will be on the boundary of a block in coordinate i. Hence, it is possible for

us to choose some u ∈ [s4d� ]d such that
∑

k∈[�]d |∂Vk,u∩B(Ai, s
2
�/3)| ≤

2d|B(Ai,s
2
�/3)|

s4d�
.
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Let V denote the set of tiles Vk,u such that Vk,u ∩ B(Ai, s
2
�/3) �= ∅. Each block of

Ai is in at most 2d tiles, so |V| ≤ 2d|Ai|.
For each Vk ∈ V , let Ṽk denote an isomorphic copy of the graph induced by Vk

disconnected from everything else together with a graph bijection ϕk : Ṽk → Vk.
Let Λ̃i = ∪Vk∈V Ṽk, and let X̃t denote the Glauber dynamics on Λ̃i started from

the all-plus configuration at time tm − s� and run until time tm. Since the Ṽk are
disconnected, the projections of the chain onto each Ṽk are independent. We define
the update and support functions F̃upd and F̃sup analogously. Let Ẽk denote the
event that for all v ∈ Ṽk the following hold:

(1) The support function dies out by time s�, F̃sup(v, tm − s�, tm) = ∅.
(2) The update function does not travel too far,

F̃upd (v, tm − s�, tm) ⊂ ϕ−1
k

(
Vk ∩B(v, s2�/4)

)
.

(3) All vertices have at most 10s� updates in the interval [tm − s�, tm].

By Lemma 2.1 and the fact that the number of updates of a vertex in time s� is
Po(s�),

P(Ẽk) ≥ 1− |Ṽk|Ce−cs� ≥ exp(2−d−1) ,

for large enough s�.
Recall that we encode the dynamics Xt by a series of updates (Ji, Ui, Ti) for

vertices Ji ∈ Λ, unit variables Ui, and times Ti. If Si is the sum of spins of
the neighbors of Ji at time Ti, then the update sets the new spin of Ji to −1 if

Ui <
e−Siβ

e−Siβ+eSiβ
and to +1 otherwise. We couple the updates of X̃t to those of Xt

as follows. For v ∈ Ṽk such that ϕk(v) ∈ B(Ai, s
2
�/3), we couple the update times;

i.e., v has an update at time t ∈ [tm − s�, tm] in X̃ if and only if ψk(v) has one in
X. Furthermore, if in addition ϕk(v) �∈ ∂Vk, then we also couple the unit variable
of the update. Otherwise (the case ϕk(v) ∈ ∂Vk), the unit variables of the updates
are taken as independent.

Further recall that an update is oblivious if either Ui ∈ [0, e−2dβ

e−2dβ+e2dβ
] (the new

spin is −1 irrespective of the neighbors of Ji) or Ui ∈ [ e2dβ

e−2dβ+e2dβ
, 1] (similarly,

the new spin is +1). Let Rk denote the event that all updates of ϕk(v) ∈ ∂Vk ∩
B(Ai, s

2
�/3) are oblivious updates and that the updated values X̃t(v) and Xt(ϕ(v))

agree. This has probability e−2dβ

e−2dβ+e2dβ
for each update. Since on Ẽk there are at

most 10s�|∂Vk ∩B(Ai, s
2
�/3)| updates on ∂Vk ∩B(Ai, s

2
�/3), we have that

P(Rk | Ẽk) ≥ exp
[
−C1s�

∣∣∂Vk ∩B
(
Ai, s

2
�/3

)∣∣] ,
where C1 = 10 log e−2dβ+e2dβ

e−2dβ . Since these are independent for each k,

P(∩k∈V(Rk ∩ Ẽk)) ≥ exp
[
−2−d−1|V| − C1s�

∣∣∂Vk ∩B
(
Ai, s

2
�/3

)∣∣]
≥ exp

(
−1

2
|Ai| − C1s�

2d
∣∣B (

Ai, s
2
�/3

)∣∣
s4d�

)
≥ exp(−|Ai|) ,

provided that s� is sufficiently large, as |B(Ai, s
2
�/3)| ≤

(
5
3

)d
s2d� |Ai| and 2d|V| ≤

|Ai|. By Equation (5.11), to complete the lemma it therefore suffices to show that
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the event ∩k∈V(Rk ∩ Ẽk) implies

Fsup (Ai, tm − s�, tm) = ∅ ,(5.12) ⋃
tm−s�<t<tm

Fsup (Ai, t, tm) ⊂ B
(
Ai, s

2
�/3

)
.(5.13)

The updates on ∂Vk ∩B(Ai, s
2
�/3) are oblivious updates and hence do not examine

the values of their neighbors on the event Rk. Combining this with property (2) of

the definition of Ẽk and the construction of the coupling implies that for v ∈ Ṽk such
that ϕk(v) ∈ Ai, the support of ϕk(v) is contained in Vk. Hence, by the coupling
it follows that

Fsup (ϕk(v), t, tm) ⊂ ϕk

(
F̃upd (v, t, tm)

)
⊂ Vk ∩B(ϕk(v), s

2
�/3) ,

which implies (5.13). It remains to prove (5.12).
Knowing the updates of course allows one to determine the configuration at a

later time from the configuration of an earlier time. We then define Ỹ η
t (w) as

follows. It is the spin at time t ∈ [tm − s�, tm] of the vertex w ∈ F̃upd(v, t, tm)

generated from the Glauber dynamics with initial configuration η on F̃upd(v, tm −
s�, tm) at time tm − s� using the updates of X̃t. Note that, by the definition of

F̃upd, these are the only initial values that need to be specified. Define Y η
t in the

same way except with the updates of Xt instead of X̃t, where we take the domain
of η to be ϕk(F̃sup(v, tm − s�, tm)). As usual, + and − denote all the +1 and −1
initial conditions, respectively.

Since the initial condition for X̃t is all-plus, by the construction of the coupling
for every time t ∈ [t, tm] and vertex w ∈ F̃upd(v, t, tm) we have that

X̃t(w) = Ỹ +
t (w) = Y +

t (ϕk(w)) .

We claim that for all t and w ∈ F̃upd(v, t, tm), Ỹ
−
t (w) ≤ Y −

t (ϕk(w)). This can
be seen by induction applying the updates in turn. Let {(ti, wi)} denote the set
of updates in the update history of v in the interval [tm − s�, tm] ordered so that

tm − s� < t1 < t2 < · · · < tq < tm. For all updates with wi ∈ Ṽk \ ∂Ṽk this
follows by the fact that the updates use the same unit variables, the monotonicity
of the update rule, and the inductive assumption on the values of the neighbors.
For updates wi ∈ ∂Ṽk note that

Ỹ −
ti (wi) ≤ Ỹ +

ti (w) = Y +
ti (ϕk(wi)) = Y −

ti (ϕk(wi)) ,

where the first inequality is by monotonicity while the final equality is by the fact
that the boundary updates are oblivious ones. Hence, by induction, Ỹ −

tm(v) ≤
Y −
tm(ϕk(v)). We know that Ỹ +

tm(v) = Ỹ −
tm(v) by the definition of the support and

Ek, and so combining the previous results yields

Y +
tm(ϕk(w)) = Ỹ +

tm(v) = Ỹ −
tm(v) ≤ Y −

tm(ϕk(v)) ≤ Y +
tm(ϕk(v)) ,

so Y +
tm(ϕk(v)) = Y −

tm(ϕk(v)). This verifies (5.12), completing the proof. �

5.4. Red percolation clusters given the history of their exterior. This sec-
tion is devoted to the proof of the following upper bound on the probability of a
cluster to be Red given the update sequence U along the (tm, tm + s�] and the
history up to time tm of every vertex in its exterior.
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For any cluster of components C and each 
 ≥ 1 we define the relation

Ai ∼� Aj iff B
(
Ai, s

2
�

(
2�−2 + 1

4

))
∩B

(
Aj , s

2
�

(
2�−2 + 1

4

))
�= ∅

and extend the relation to an equivalence relation. Let V� denote the set of equiva-
lence classes given by the equivalence relation, and for each v ∈ V� let Av denote the
union of the components in v. We define L to be the largest 
 such that |V�| > 1.
We let V0 = C be the set of Ai.

Claim 5.4. For any cluster of components C,
L∑

�=0

2�|V�| ≥ W(∪Ai∈CAi)−
∑
Ai∈C

W(Ai) .

Proof. Let Âi denote a minimal lattice animal containing Ai so that Ai ⊂ Âi and
|Âi| = W(Ai). We construct a lattice animal covering ∪iAi by adding blocks to

∪iÂi as follows. Starting with 
 = 1 we add the minimum number of blocks needed
so that for all v ∈ V� all the Ai ∈ v are connected together. By definition, if
Ai ∼� Aj , then these can be connected with at most 2�−1 blocks. Thus, after
connecting together all sets of components at level 
−1 for each v ∈ V�, we need to
add at most 2�−1 (|{v′ ∈ V�−1 : v′ ⊂ v}| − 1) additional blocks to connect together
all the components of V�. Summing over 
 from 1 to L+ 1 we add a total number
of blocks of

L+1∑
�=1

∑
v∈V�

2�−1 (|{v′ ∈ V�−1 : v′ ⊂ v}| − 1) =

L+1∑
�=1

2�−1(|V�−1| − |V�|) ≤
L∑

�=0

2�|V�| .

Since adding
∑L

�=0 2
�|V�| blocks to Âi yields a connected component, the desired

result follows. �

Lemma 5.5. There exists c(β, d), s0(β, d) > 0 such that, for any s� > s0, any large
enough n and every C ⊂ A, the quantity ΨC from (3.1) satisfies

P
(
C ∈ Red | H −

C , U
)
≤ s4d�

mtm

e
3
∑

i |Ai|−cs�

∣∣∣W(C)−
∑

Ai∈C W(Ai)
∣∣∣+

.(5.14)

Proof. The bound is trivial for histories which are not C-compatible, so we may
restrict our attention to the supremum over C-compatible histories. Denote the
event E that the history of C does not intersect the history H −

C . The set of clusters
A depends only on U , and this is the only dependence on U in the bound. Given A,
the partition into clusters and their colors depends only on the updates in [0, tm].
Hence, we can view Red as a function Red(A). We can extend this definition to
any set of components and write Red(A′) to denote the set of red clusters had
the set of components instead been A′. Now if C ∈ Red(A), then one also has
C ∈ Red(C).

We let E(H) denote the event that the history of C does not intersect H ⊂
Λ× [0, tm], a space-time slab. If C is a cluster, then E(H −

C ) must hold. Exploring
the history of C we see that it does not depend on the history of its complement,
H −

C , until the point at which they intersect (since they depend on disjoint updates)
and hence

P(HC ∈ ·, E(H) | H −
C = H, U) = P(HC ∈ ·, E(H) | U) ≤ P(HC ∈ ·) .
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Since the event C ∈ Red(C) is HC-measurable we have that

P(C ∈ Red | H −
C , U) ≤ P(C ∈ Red(C), E(H −

C ) | H −
C , U) ≤ P(C ∈ Red(C)) .

Next, we bound P(C ∈ Red(C)). At least one vertex of C must have support at
time 0 so by a union,

P(C ∈ Red(C)) = P(Fsup(∪iAi, 0, tm)) ≤ s2d� mtm

∑
i

|Ai| = s2d�
1√
|Λ|

∑
i

|Ai| ;

this implies (3.2) in the case W(∪iAi)−
∑

i W(Ai) ≤ 0, which we note includes the
case |C| = 1. We may thus restrict our attention to the case W(∪iAi)−

∑
i W(Ai) >

0, in which |C| ≥ 2 and so |VL| ≥ 2.
Our approach will be to define a collection of events that must hold if C ∈

Red(C), one that depends on the structure of C and its earlier defined decompo-
sition. For 
 ≤ L and v ∈ V� define the event Kv,�, which roughly says that the
update set of Av spreads unexpectedly quickly, as

Kv,�=
{
∃u ∈ B(Av,

3
72

�s2�) \B(Av,
2
52

�s2�) :Fupd(u, tm − 2�s�, tm) �⊂ B(u, 2�

100s
2
�)
}
,

and the event

Jv,� =

{
Fsup

(
B
(
Av,

(
2
5 + 1

100

)
2�s2�

)
, tm − 2�s�, tm − 2�−1s�

)
�= ∅, Kc

v,�

}
,

which roughly says that the support of Av lasts for a large time. Combined, we
define Rv,� = Kv,�∪Jv,�. For the final level 
 = L we define a slight variant of these
in terms of κ, some large positive constant to be fixed later,

K̂v,�=
{
∃u ∈ B(Av,

3
72

�s2�) \B(Av,
2
52

�s2�) :Fupd(u, tm−κ2�s�, tm) �⊂B(u, 2�

100s
2
�)
}
,

as well as

Ĵv,� =

{
Fsup

(
B
(
Av,

(
2
5 + 1

100

)
2�s2�

)
, tm − κ2�s�, tm − 2�−1s�

)
�= ∅, K̂c

v,�

}

and R̂v,� = K̂v,� ∪ Ĵv,�. Finally, we need to consider events describing how the
history connects to time 0. For v ∈ VL, denote

J̆v,� =

{
Fsup

(
B
(
Av,

(
2
5 + 1

100

)
2�s2�

)
, 0, tm − 2�−1s�

)
�= ∅, K̂c

v,�

}
.

Define the set
Γ = Fupd

(
B(∪Ai∈CAi, 2

Ls2�), tm − κ2Ls�, tm
)

and the event

JΓ =

{
Fsup

(
Γ, 0, tm − κ2Ls�

)
�= ∅

}
.

Claim 5.6. If C ∈ Red(C), then the events Rv,� and R̂v,� hold for all 0 ≤ 
 ≤ L

and v ∈ V�. Furthermore, either ∪v∈VL
J̆v,L or JΓ ∩ (∪v∈VL

K̂v,L) hold.

Proof of claim. If C ∈ Red(C), then the history of Av must connect to the remain-
der of the component. This can occur by the support of either Av and C \ Av

meeting in the interval [tm − 2�s�, tm] in which case Kv,� holds. Alternatively, the
support of Ai ∈ Av may enter B(Aj , s

2
�/3) for some Aj ∈ C \ Av in the interval

[tm − s�, tm], in which case again Kv,� holds. Another option is that the support
of Aj ∈ C \ Av enters B(Ai, s

2
�/3) for some Ai ∈ Av in the interval [tm − s�, tm],

whence again Kv,� holds.
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The final possibility is that the support survives until time tm − 2�s� (i.e.,
Fsup(Av, tm − 2�s�, tm) �= ∅). In this case one of the following must hold:

• The support travels far in space by time tm − 2�−1s� and

Fsup

(
Av, tm − 2�−1s�, tm

)
�⊂ B

(
Av,

(
2
5 + 1

100

)
2�s2�

)
,

in which case Kv,� holds.
• The support survives until time tm − 2�s�, given it did not travel too far by time
tm − 2�−1s�, and

Fsup

(
B
(
Av,

(
2
5 + 1

100

)
2�s2�

)
, tm − 2�s�, tm − 2�−1s�

)
�= ∅ ,

in which case Rv,� holds.

This set of possibilities is exhaustive and completes the claim. The other claims
follow similarly. �

We now observe that the events Rv,� are independent as they depend on disjoint
sets of updates. The event Kv,� depends only on updates in the space time block(

B(Av,
(

3
7 + 1

100

)
2�s2�) \B(Av,

(
2
5 − 1

100

)
2�s2�)

)
× [tm − 2�s�, tm],

while Jv,� depends only on the same set (through the event Kc
v,� in its definition)

plus updates in(
B
(
Av,

(
2
5 + 2

100

)
2�s2�

))
× [tm − 2�s�, tm − 2�−1s�] .

Since these sets are disjoint for different v it follows that the Rv,�’s are independent.

Similarly, the R̂v,�’s are independent for 
 = L and independent of the Rv,�’s for


 < L. The event J̆v,� is also independent of the Rv,�’s and R̂v,�’s. The set Γ depends
only on updates in (Λ \B(Av, 2

�s2�))× (tm−κ2�s�, tm) and hence is independent of
all our constructed events except JΓ, and JΓ is independent of all our constructed
events except J̆v,�.

We now estimate the probability of the preceding events using Lemma 2.1. Not-
ing that ∣∣B(Av, α2

�s2�
)∣∣ ≤ (1 + 2α)d2�ds2d� |Av| ≤ eC(�+log s�)+2−�|Av|

for some c′ > 0, we have that

P(Kv,�) ≤
∣∣B(Av,

3
72

�s2�
)∣∣ e−c2�s2� ≤ e−c′2�s2�+2−�|Av |

for large enough s�. Similarly,

P(K̂v,�) ≤ e−c′2�s2�+2−�|Av| .

Again by Lemma 2.1 it follows that

P(Jv,�) ≤
∣∣B(Av,

(
2
5 + 1

100

)
2�s2�

)∣∣ e−c2�s� ≤ e−c′2�s�+2−�|Av | ,

and similarly

P(Ĵv,�) ≤
∣∣B(Av,

(
2
5 + 1

100

)
2�s2�

)∣∣ e−cκ2�s� ≤ e−c′κ2�s�+2−�|Av | .

As P(Fsup(u, 0, t) �= ∅) = mt and mt+h ≥ e−hmt, we have that

P(J̆v,L) ≤
∣∣B(Av,

(
2
5 + 1

100

)
2Ls2�

)∣∣mtm−2L−1s� ≤ exp(2Ls� + 2−�|Av|)mt .

For h ≥ 1/3 and s� large enough we have that

P
(
Fupd(v, tm − κ2�s�, tm) �⊂ B

(
v, h2�s2�

))
≤ e−s�2

�h ,

Licensed to Northwestern Univ. Prepared on Tue Feb 12 18:44:35 EST 2019 for download from IP 165.124.165.50.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



766 EYAL LUBETZKY AND ALLAN SLY

and so E|Fupd(v, tm − κ2�s�, tm)| ≤ s2d� 2�d. Hence,

E|Γ| ≤
∣∣B( ∪Ai∈C Ai, 2

Ls2�
)∣∣ s2d� 2�d ≤

(
3 · 22Ls4�

)d∑
i

|Ai| .

Finally, by a union bound over u ∈ Γ,

P (JΓ | Γ) ≤ mtm−κ2Ls� |Γ| ≤ mtme
κ2Ls� |Γ| .

Combining the previous estimates with the claim and the independence of the
events, we have that

P (C ∈ Red(C)) ≤ P

(( L−1⋂
�=0

⋂
v∈V�

Rv,�

)
∩
( ⋃

v∈VL

J̆v,L
⋂

u∈VL\{v}
R̂u,L

))

+ P

(( L−1⋂
�=0

⋂
v∈V�

Rv,�

)
∩
( ⋃

v∈VL

K̂v,L

⋂
u∈VL\{v}

R̂u,L

)
∩ JΓ

)
.

The right-hand side, in turn, is at most

exp

(
−c′s�

L−1∑
�=0

2�|V�| − c′κ2L(|VL| − 1) + 2
∑
i

|Ai|
)
|VL|mtm

(
e2

Ls� + e−c′2�s2�EΓeκ2
�s�

)
≤ 1√

|Λ|
exp

(
−c′s�

L∑
�=0

2�|V�|+ 3
∑
i

|Ai|
)

,

where the final inequality comes from the fact that |VL| ≥ 2 and

|VL|
(
e2

2Ls� + e−c′2�s2�(3 · 2Ls4�)deκ2
�s�

∑
i

|Ai|
)
e−c′(κ−1)2L−

∑
i |Ai| ≤ 1 ,

provided that c′(κ − 1) > 1 and s� is large. Combining this with Claim 5.4
gives (5.14), as required. �

5.5. Proof of Lemma 3.3. The desired bound in (3.2) is similar to the one we
obtained in (5.14), with the difference being an extra conditioning on GC := {C ∈
Red} ∪ {C ⊂ Blue}. Since {C ∈ Red} ⊂ GC ,

P
(
C ∈ Red | H −

C , GC ,U
)
=

P
(
C ∈ Red | H −

C , U
)

P
(
GC | H −

C , U
)

≤
P
(
C ∈ Red | H −

C , U
)

P(
⋂

Ai∈C{Ai ∈ Blue} | H −
C , U)

,

from which Equation (3.2) follows after applying Lemmas 5.3 and 5.5 to the nu-
merator and denominator of the right-hand side, respectively. �

6. Random vs. deterministic initial states

In this section we consider the Ising model on the cycle Z/nZ for small β > 0 with
a random initial state, both quenched and annealed. Rather than comparing two
worst case initial states we will compare a random one directly with the stationary
distribution using coupling from the past. Recall that for the 1D Ising model we
can give a special update rule: with probability θ = θβ,d = 1 − tanh(2β) update
to a uniformly random value and with probability 1− θ copy the spin of a random
neighbor. The history of a vertex is simply a continuous time random walk which
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takes steps at rate 1 − θ and dies at rate θ; when such walks meet, they coalesce
and continue together until dying. Each component can only decrease in size over
time and all vertices in the component receive the same spin.

In the sequel, the annealed setting (Part 1 of Theorem 2) is studied in Sections
6.1 and 6.2 (upper and lower bounds on mixing, respectively), whereas Section 6.3
focuses on the quenched setting (Part 2 of Theorem 2).

6.1. Annealed analysis: Upper bound. We define Yt to be the process coupled
from the past, so the spins at time tm are independent of each of the components
with equal probability. Now letXt be the process started from an i.i.d. configuration
at time 0. Since the magnetization is simply the probability that the walk has not
yet died, it follows that mt = e−θt. We will consider the total variation distance at
time t′m = 1

4θ log n+ 1
θ log log n− s� for some large constant s� > 0.

Theorem 6.1. With t′� = 1
4θ log n+

1
θ log log n we have that ‖P(Xt′� ∈ ·)−π(·)‖tv →

0.

Set t′m = t′� − s� where s� > 0 is a large constant. In order to couple the process
with the stationary distribution we consider updates in the range t ∈ (−∞, t′�]
with the block components constructed using the updates in the range [t′m, t

′
�] with

deferred and undeferred randomness similarly as before.
In this analysis it is necessary to directly compare the annealed distribution

with the stationary distribution, and for this we use the coupling from the past
paradigm and hence consider updates before time 0. We modify the intersection
property of the construction of clusters to identify Ai and Aj if Fsup(Ai, t, tm) ∩
Fsup(Aj , t, tm) �= ∅ for some −∞ < t < tm (in place of the condition 0 ≤ t < tm).

We also redefine the notion of a red cluster to be one containing two vertices
whose history reaches time 0 without coalescing, that is,

(6.1) C ∈ Red iff
∣∣∣ ⋃
v∈Ai∈C

Fsup(v, 0, tm)
∣∣∣ ≥ 2

(note that the histories of vertices are always of size one). We define blue clusters
as before and green clusters as the remaining clusters. We can thus couple Xt and
Yt so that they agree on the blue and green components at time tm but possibly
not on the red components.

Recalling that W(S) is the smallest lattice animal of blocks covering S, we let

W2(S) := min
S1,S2 :S1∪S2=S

W(S1) +W(S2) .

We denote V�, equivalence classes of components of C as in Section 5.4 and this
time define L′ to be the largest 
 such that |V�| > 2. The following claim is a simple
extension of Claim 5.4.

Claim 6.2. For any cluster of components C,
L

′∑
�=0

2�|V�| ≥ W2(∪Ai∈CAi)−
∑
Ai∈C

W(Ai) .

The proof is essentially the same as Claim 5.4.
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Lemma 6.3. There exists c(β, d), s0(β, d) > 0 such that, for any s� > s0, any large
enough n and every C ⊂ A, the quantity ΨC from (3.1) satisfies

P
(
C ∈ Red | H −

C , U
)
≤ s4d�

e2θt
′
m

e
3
∑

i |Ai|−cs�

∣∣∣W2(C)−
∑

Ai∈C W(Ai)
∣∣∣+

.(6.2)

Proof. The proof is similar to Lemma 5.5, and we describe the necessary changes.
Throughout the proof we change all instances of L to L′ and tm to t′m. We must
incorporate the fact that two histories independently reaching time 0 are required
for red so we denote

J̆ ′
v,v′,� =

{∣∣∣∣Fsup

(
B
(
Av ∪Av′ ,

(
2
5 + 1

100

)
2�s2�

)
, 0, t′m − 2�−1s�

) ∣∣∣∣ ≥ 2, K̂c
v,�, K̂

c
v′,�

}
.

Since the probability that two separate histories reach time 0 without coalescing is
bounded by the square of the probability of a single walk reaching time 0, we have
that

P(J̆ ′
v1,v2,L) ≤ e−2θt′m

2∏
i=1

|B
(
Avi ,

(
2
5 + 1

100

)
2�s2�

)
| ≤ exp

(
2Ls�

+ 2−�(|Av1 |+ |Av2 |)
)
e−2θt′m .

By essentially the same proof used earlier we have that E|Γ| ≤
(
3 · 22Ls4�

)2d
(
∑

i |Ai|)2. Also, as we require two histories to reach time 0, we let

J ′
Γ =

{∣∣∣∣Fsup

(
Γ, 0, t′m − κ2Ls�

) ∣∣∣∣ ≥ 2

}
and

P (JΓ | Γ) ≤ m
2
tm−κ2Ls�

|Γ|2 ≤ e−2θt′me2κ2
Ls� |Γ|2 .

With this notation,

P (C ∈ Red(C)) ≤ P

(( L
′−1⋂
�=0

⋂
v∈V�

Rv,�

)
∩
( ⋃

v,v′∈VL′

J̆ ′
v,v′,L′

⋂
u∈VL′\{v,v′}

R̂u,L′

))

+ P

(( L
′−1⋂
�=0

⋂
v∈V�

Rv,�

)
∩
( ⋃

v∈VL′

K̂v,L′

⋂
u∈VL′\{v}

R̂u,L′

)
∩ J ′

Γ

)
.

The result now follows similar to Lemma 5.5 by substituting our bounds for each
of the events. �

Since red components under our modified definition are also red components
under the previous definition, we have by Lemma 5.5

P
(
C ∈ Red | H −

C , U
)
≤ s4d�

eθt
′
m

e
3
∑

i |Ai|−cs�

∣∣∣W(C)−
∑

Ai∈C W(Ai)
∣∣∣+

,

and combining this with (6.2) yields

P
(
C ∈ Red | H −

C , U
)

≤ s4d�
e2θt

′
m

e
3
∑

i |Ai|−cs�

∣∣∣W2(C)−
∑

Ai∈C W(Ai)
∣∣∣+−cs�|W(C)−W2(C)− θ

cs�
t′m|+ .(6.3)

Altogether, this translates into the bound

Ψ̄{Aij
} ≤ s4d�

e2θt
′
m

e
4
∑

i |Ai|−cs�

∣∣∣W2(C)−
∑

Ai∈C W(Ai)
∣∣∣+−cs�|W(C)−W2(C)− θ

cs�
t′m|+ .
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Having coupled Xt and Yt as described previously where only the red components
differ in the two versions of the chain, we can follow the analysis of Section 4 and
in place of Equation (4.11) arrive at

22λ+6s8d�
e4θt

′
m

∑
A

(∑
C={Aij

}
A∈C

∑
{Bj} exp

[
− c

4
s�
λ

[
W(C) +

∑
j W(Aij ∪Bj)

+
(
W(C)−W2(C)− t′m

)+
]])2

.(6.4)

We now count the number of rooted animals C withW(C) = S and W2(C) = S ′. We
must cover C with two lattice animals, one containing the root A and the second
rooted at A′. Since the distance from A to A′ is at most S, there are at most
(2S + 1)d choices for A′. There are S ′ ways to choose the sizes of the two animals

as some k and S ′ − k and then (2d)2k+2(S′−k) ways of choosing the animals. In

total, we have at most S ′(2S+1)d(2d)2S
′
choices of C. The total number of choices

of {Aij} and Bj with W(C) = S, W2(C) = S ′ and
∑

j W(Aij ∪Bj) = R is therefore

S ′(2S + 1)d2S
′
8R(2d)2(S

′+R); thus,

∑
C={Aij

}
A∈C

∑
{Bj}

exp

[
− c

4

s�
λ

[
W(C) +

∑
j

W(Aij ∪Bj) +
(
W(C)−W2(C)− t′m

)+
]]

≤
∑

S′,R≥1
S≥S′

e−
c
4

s�
λ (S′+R+(S−S′−t′m)+)S ′(2S + 1)d2S

′
8R(2d)2(S

′+R) ≤ t′me
− c

5
s�
λ

provided s� is large enough compared to d. Plugging this into (6.4) gives an upper
bound on the total variation distance of

22λ+6s8d�
e4θt

′
m

|Λ|(t′m)2e−
2c
5

s�
λ ,

which tends to 0 for t′m = 1
4θ log n+ 1

θ log log n− s�, establishing the upper bound
on the mixing time.

6.2. Annealed analysis: Lower bound. We now prove a matching lower bound
on the mixing time from an annealed initial configuration.

Theorem 6.4. For t = 1
4θ log n−

2
θ log log n we have that ‖P(Xt ∈ ·)−π(·)‖tv → 1 .

It will be convenient to simply omit the deferred and undeferred regions and
directly analyze the update support function from time t = 1

4θ log n − 2
θ log log n.

Taking the previous coupling, two vertices v and v′ have the same spins in X if
their histories merge before time 0 and are conditionally independent otherwise.
By contrast, for Y the spins are equal if the histories merge at any time in the past
and are conditionally independent otherwise. Defining Av,v′ as the event that the
histories of v and v′ survive to time 0 and merge at some negative time, we have
that

P (Yt(v) = Yt(v
′))− P (Xt(v) = Xt(v

′)) =
1

2
P (Av,v′) .

Now, as the history of v and v′ are both continuous time random walks,

P (Fsup(v, 0, t) = {v}, Fsup(v
′, 0, t) = {v′}) ≥ c1

1

(t′m)
2
e−2θt ,
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770 EYAL LUBETZKY AND ALLAN SLY

since the probability is that two random walks started from neighboring vertices
do not intersect until time t′m, the return to their starting locations is at least
c1/(t

′
m)

2, and the probability that neither walk dies is at least e−2θt. They then
have a constant probability of merging for some t1 < 0, so

P (Av,v′) ≥ c2
1

(t′m)
2
e−2θt ,

and if we label the vertices around the cycle as u1, . . . , un, then for large n,

E

[ n−1∑
i=1

Yt(ui)Yt(ui+1)−Xt(ui)Xt(ui+1)

]
≥ c2

1

(t′m)
2
e−2θtn ≥

√
n log n .

By the exponential decay of correlation in the stationary distribution of the 1D
Ising model,

Var

( n−1∑
i=1

Yt(ui)Yt(ui+1)

)
≤ Cn .

Since the spins in different clusters are independent and with probability at least
1 − n−10 there are no clusters whose diameter is greater than C log log n for some
large C(β), we have that when |i− i′| ≥ C log n, then

Cov

(
Xt(ui)Xt(ui+1), Xt(ui′)Xt(ui′+1)

)
= O(n−10) ,

and hence

Var

( n−1∑
i=1

Xt(ui)Xt(ui+1)

)
≤ Cn logn .

It follows by Chebyshev’s inequality that

P

(
n−1∑
i=1

Yt(ui)Yt(ui+1) ≥ E

[ n−1∑
i=1

Yt(ui)Yt(ui+1)

]
− 1

2

√
n log n

)
= 1− o(1)

while

P

(
n−1∑
i=1

Xt(ui)Xt(ui+1) < E

[ n−1∑
i=1

Yt(ui)Yt(ui+1)

]
− 1

2

√
n log n

)
= 1− o(1) ,

and hence ‖Xt − π‖tv → 1.

6.3. Quenched analysis. Here we show that on the cycle, there is at most a minor,
O(log log n) improvement when starting from a typical random initial configuration,
since almost all configurations bias the magnetizations of most vertices. For a
configuration x0 denote

(6.5) Rt(u, x0) =
∑
u′∈V

Pt(u, u
′)x0(u

′) ,

where Pt(u, u
′) is the transition probability of a continuous time walk with jumps

at rate (1− θ). Observe that

(6.6) Ex0
[Xt(u)] = e−θtRt(u, x0) .
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Proposition 6.5. Suppose that there exists some sequence an = no(1) such that
for any large n,

(6.7)
1

n

∑
u∈Λ

|Rt(u, x0)| ≥
1

an
at t =

1

2θ
log n− 1

θ
log log n− 1

θ
log an .

Then ‖Px0
(Xt ∈ ·)−π(·)‖tv = 1− o(1) as n → ∞. Furthermore, if x0 is uniformly

chosen over {±1}Λ, then there exists some C = C(β) > 0 such that (6.7) holds
with probability 1− o(1) for an = C log n.

Proof. Let X0 be a uniformly chosen initial configuration. Since Rt(u,X0) is a sum
of independent increments, when t and n are both large, Rt(u,X0) is approximately
N (0,

∑
u′∈V Pt(u, u

′)2) by the central limit theorem; in particular, E|Rt(u,X0)| ≥
c/t for some fixed c > 0, and

E

[
1

n

∑
u∈Λ

|Rt(u,X0)|
]
≥ c

log n

for another fixed c > 0 provided t has order logn. From the decay of Pt(u, u
′) we

infer that if |u−u′| ≥ C log n for a large enough C > 0, then Cov(|Rt(u)|, |Rt(u
′)|) ≤

n−10, thus implying that

Var

(
1

n

∑
u∈Λ

|Rt(u,X0)|
)

= O

(
log n

n

)
,

and altogether

P

(
1

n

∑
u∈Λ

|Rt(u,X0)| >
c

2 log n

)
→ 1 .

This establishes (6.7) with probability going to 1 for an = C log n with a suitably
chosen C = C(θ) > 0.

By the same decay of correlations, for vertices with |u − u′| ≥ C log n for some
large enough C > 0 the histories do not merge in the interval (0, t] with probability
1− O(n−10). In this case,

Covx0

(
sign(Rt(u, x0))Xt(u) , sign(Rt(u

′, x0))Xt(u
′)
)
= O(n−10) ,

and again we can deduce that

Var

(
1

n

∑
u∈Λ

sign(Rt(u, x0)Xt(u)

)
= O

(
log n

n

)
.

Recalling from (6.6) that Ex0
[sign(Rt(u, x0))Xt(u)] = e−θt|Rt(u, x0)|, Chebyshev’s

inequality yields

Px0

(
1
n

∑
u∈Λ

(
sign(Rt(u, x0))Xt(u)− |Rt(u, x0)|

)
> 1

2an

)
≤ O

(
log n
n

(
eθtan

)2)

= O

(
1

logn

)

by the definition of t. Thus, we conclude that for any x0 satisfying (6.7),

(6.8) Px0

(
1

n

∑
u∈Λ

sign(Rt(u, x0))Xt(u) >
1

2an

)
→ 1 .
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By contrast, if Y is chosen independently according to the Ising measure, then by
the exponential decay of spatial correlations we have that

Var

(
1

n

∑
u∈Λ

sign(Rt(u, x0))Y (u)

)
= O(1/n) ;

and since E
∑

u∈Λ sign(Rt(u))Y (u) = 0 while 1/an � 1/
√
n, we can infer that

(6.9) P

(
1

n

∑
u∈Λ

sign(Rt(u, x0))Y (u) >
1

2an

)
→ 0 .

Comparing Equations (6.8) and (6.9) implies that

‖Px0
(Xt ∈ ·)− π(·)‖tv = 1− o(1) ,

completing the result. �
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