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 PROCEEDINGS OF THE
 AMERICAN MATHEMATICAL SOCIETY
 Volume 61, Number 2, December 1976

 FOURIER TRANSFORMS WITH ONLY REAL ZEROS'

 CHARLES M. NEWMAN2

 ABSTRACT. The class of even, nonnegative, finite measures p on the real line

 such that for any b > 0 the Fourier transform of exp(- bt2) dp(t) has only
 real zeros is completely determined. This result is then applied to the

 Riemann hypothesis.

 1. Main results. The problem of determining whether a Fourier transform

 has only real zeros arises in two rather disparate areas of mathematics:

 number theory and mathematical physics. In number theory, the problem is

 intimately associated with the Riemann hypothesis [T, Chapter 10], while in

 mathematical physics it is closely connected with the Lee-Yang theorem of

 statistical mechanics and quantum field theory [SGj, [NI], [N3]; see Kac's

 remarks in [P, pp. 424-426] for a discussion of the historical connection

 between these two topics. The results of this paper developed out of the study

 of certain quantum field theoretic problems, but for pedagogical reasons, we

 present them in the context of the Riemann hypothesis.

 Following standard practice, we define the Riemann xi function as

 (1.1) _(z) = s(s - 1)7T`s/2r(S/2) (s)./2; s = iz + 2
 where t (s) is the Riemann zeta function. _ is the Fourier transform of the

 strictly positive, even function,
 00

 (1.2) F(t) = E (4n4t2e9t/2 - 6n2ve5t/2)exp(- n2vee2t),
 n= I

 which satisfies

 (1.3) F(t) = O(exp(91t1/2 - e2l)) as ltl- oo,
 and the Riemann hypothesis is identical to the conjecture that the zeros of _

 are all real. For a discussion of these and other facts related to the Riemann

 hypothesis, see [T, Chapters 1, 2, 10].

 We generalize the xi function by defining for arbitrary real b,

 (1.4) -b(Z) =f exp(izt - bt2)F(t) dt,
 -00
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 so that Z and Z0 are identical. The following theorem, which is due to de
 Bruijn [B, Theorem 13] and is an extension of various results of P6lya,
 indicates that definition (1.4) is a natural one in that whenever the zeros of

 bl are all real, then so are the zeros of -b for b < b'. This theorem of de
 Bruijn, when combined with the fact that all the zeros of _0 lie in the critical

 strip TIm z I <2 also implies that (at least) for b < -81 the zeros of -b are
 all real. The main number theoretic conclusion of this paper (Theorem 3

 below) is the complementary fact that for some b,, the zeros of 'b are not all
 real for b > b1.

 THEOREM 1. Suppose f is a real, even, integrable function on R with If(t)l =

 O(exp(-ItI')) as ItI- +Xo for some y > 2, such that all the zeros of the
 Fourier transform off lie in the strip TIm z < A; then for 8 > 0, all the zeros of
 the Fourier transform of exp(8t2)f(t) lie in the strip

 jlm zj I [max(A2 - 26, O)]1/2.

 Motivated by Theorem 1 and the discussion preceding it, we define VP to
 be the class of even, nonnegative, finite measures p on the real line such that

 for any b > 0, the Fourier transform of exp(- bt2) dp(t) has only real zeros.
 One group of measures belonging to VP, which was discovered by Polya (see
 [B, p. 197]), consists of absolutely continuous ones with density

 (1.5) dp/dt = Kt2mexp(- at4-/t2)f(l + t2/a2)

 whereK > 0,m = 0, 1, 2, . . . ,aj > O, 2(l/aaj) < x,(a > Oand,83isreal(or
 else a = 0 and /3 > 0); here and elsewhere in this paper, t2m with m = 0
 means the function identically equal to 1. While working on the Riemann
 hypothesis, de Bruijn discovered [B, Theorem 28] that the product of two
 densities of measures in VP is again the density of a measure in VP but could
 not find any measures in VP essentially different from those of (1.5). The class

 VP is also a natural one in quantum field theory where one is particularly
 interested in- functions V(t) such that exp( - XV(t)) dt E 3 for all A > 0, and
 the example V(t) = at4 + 83t2 of (1.5) was in fact rediscovered by statistical
 mechanical methods in [SG]; Theorem 2 below shows that no other V(t) is
 possible, thus disproving a conjecture of [N3] that V(t) = cosh t is allowed.

 The next theorem gives a complete classification of VP and shows that (1.5)

 yields essentially the whole class; we change from Fourier to Laplace trans-
 forms in the statement of the theorem for purposes of the proof, which is

 presented in ?2 of the paper.

 THEOREM 2. Suppose p is an even, nonnegative, finite measure on the real line

 and Zb is defined (for b > 0) as

 (1.6) Zb(z) exp(zt - bt2) dp(t);
 t00

 then Zb has 'only pure imaginary zeros for every b > O if and only if either
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 (1.7) p(t) = K(8(t - to) + 8(t + to))

 for some K > 0 and to > 0 (where 8 (t - to) denotes the point measure of unit
 mass concentrated at the point to), or else p is absolutely continuous with density

 (1.8) dp = Kt2mexp(_- t4-ft2) 1 t-2 )exp 1t2

 where K > 0, m = 0, 1, 2, . . ., aj > 0, X(I/afa) < oo, a > O and is real (or
 else a = 0 and /3 + 2(ll/a1)2 > 0). The product in (1.8) is over a set of j's
 which may be empty, finite, or infinite and the condition ,B + X(I/a1)2 > 0 is

 considered to be satisfied if X(1 /aj)2 = + xc.

 REMARK 1. If we weaken the assumptions on p to allow noneven real-val-

 ued measures, the theorem remains true provided we also allow dp(t) in the

 conclusion to be ? tndpo(t) (with n = 0 or 1) with po as given by (1.7) or (1.8)
 or else proportional to a Gaussian measure of mean to and variance a 2 with to
 real and a2 > 0. We do not include this result in Theorem 2 simply because

 the extra complications needed for the proof do not seem justified by the

 extra generality obtained.

 THEOREM 3. There exists a real number bo with - < bo < O such that
 -b(z) has only real zeros when b < bo but has nonreal zeros when b > bo.

 PROOF. This result follows immediately from Theorems I and 2 (see the

 discussion preceding Theorem 1) once we show that F(t), as given by (1.2), is

 not of the form of (1.8). To see this, we note that one consequence of (1.8) is

 that

 (1.9) dp/dt a Kt2m exp(-[a + 2 (1/ (2a4)) ] t4-/3t2)

 while F satisfies (1.3); (1.9) follows from (1.8) after application of the

 inequality

 (1.10) ( + x2)exp(-x2) > exp(-x4/2); x E R,

 which itself may be obtained by exponentiating the elementary inequality,

 ln(I + y) y -y2/2 fory > 0.

 REMARK 2. The Riemann hypothesis is the statement that bo > 0; we make
 the complementary conjecture that bo < 0. This new conjecture is a quantita-
 tive version of the dictum that the Riemann hypothesis, if true, is only barely
 so.

 2. Proof of Theorem 2.

 PROOF OF SUFFICIENCY. The measure of (1.7) clearly belongs to VP while the

 measures of (1.8) can be seen to belong to P since they are limits of P6lya's
 measures of (1.5) (via truncation of the product in (1.8)). For the sake of

 completeness; we note that the measures of (1.5) can themselves be obtained

 as limits of measures with density dp/dt = Q(t)exp(- ct2), where Q is an
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 even polynomial with only pure imaginary zeros and c > 0, since
 . n

 (1 + (2a /n)/2t2) exp(-(2an) /2t2) -* exp(- at4);

 and that measures with such densities belong to P since their Laplace

 transforms may be expressed as a limit of polynomials of the form

 Q(d/dz)P(z) (where P is an even polynomial with only pure imaginary

 zeros) which have only pure imaginary zeros by standard results for poly-

 nomials (e.g. [M, pp. 62-63]).

 PROOF OF NECESSITY. We now assume that Zb has only pure imaginary

 zeros; it is also even, strictly positive for real z, and O(exp(jzj2/4b)) for

 complex z so that it is entire of at most order two and finite type. It follows

 by standard entire function techniques (see [N2, Proposition 2] for a more

 complete discussion) that

 (2.1) Zb(z) = Kb exp(dbz2)ll(I + Z21aj(b) )

 with Kb > O, db real, ai(b) > 0, and X:(l/ad(b)2) oo; here +i?-(b) are the
 zeros of Zb.

 The key idea of the proof is to express p as the weak limit of measures Pb as

 b -*oo (i.e. ff (t) dpb(t) -Jf (t) dp(t) for all bounded continuous f) where Pb
 is the convolution of p with the Gaussian probability measure of mean zero

 and variance I/b:

 dpb/dt = f_ (b/2)'1/2exp(-b(t - s)2/2) dp(s)

 (2.2) = (b/2v) 1/2exp( - bt2/2)Zb/2 (bt)

 = Kbexp(-dbt2)ll(I + t2/aj(b)2)

 with Kb > 0, db > 0 (since Pb is finite), aj(b) > 0, and J(l/aj(b))2 < 00. It
 only remains to show that any finite measure p, which is the weak limit of

 measures such as those given by (2.2), must be either as in (1.7) or as in (1.8).

 We first make several definitions and then complete the proof after a series

 of lemmas. We define

 (2.3) Ab = El + X-2(1/aj(b))4; Bb = db -22(la(b
 where 21 (resp. 22) denotes the sum over all j such that aj(b) < 1 (resp.
 a>(b) > 1); we further define fb(t) = dpb/dt and Vb =-ln(fb) so that

 (2.4) Vb(t) = 2t[db - I {/ (t2 + aj(b)2))1,

 (2.5) (Vb'/2t)' = 2tE {(/ (t2 + aj(b)2)}.

 LEMMA 1. If Ab and IBbI are uniformly bounded as b oo, then p(t) is
 absolutely continuous with density as in (1.8).
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 PROOF. We define Pb(t) = 111@(a(b)2 + t2) and

 (2.6) Qb(t) = 112(1 + t2laj(b)2)exp(-t2/aj(b)2),

 where HII and H2 are defined analogously to X and 22 so that fb(t) =
 Kb exp(- Bbt2)Pb(t)Qb(t). In order to bound fb(t) below for real t and above
 for complex t, we use the following inequalities:

 (2.7) Pb (t) > l2>t2Ab, t GE[-, ]

 (2.8) IPb(Z)I S 1(1 +jzj2) S (1 +IzI2) exp(AbIzI2), z E C;

 (2.9) Qb (t) > exp(- 22t4/2a (b)4) ? exp(-Abt/2), t E R;

 (2.10) IQb (z)I < exp(X21Z 4/2aj(b)4) < exp(Ab|Z 14/2), z E C.

 (2.7) and (2.8) are elementary; (2.9) follows by applying (1.10) to (2.6); and

 (2.10) may be obtained by applying the inequality

 (2.11) 1(1 + Z2)exp(-Z2)/ < exp(IzI4/2), z E C,

 to (2.6). To derive (2.11), we set u = Iz14 and v = Re(z2) so that (2.11) is
 equivalent to (1 + u + 2v)I/2exp( - v) < exp(u/2), which is itself equivalent
 to the elementary inequality (1 + w) S exp(w) with w = u + wv. Combining
 (2.7) through (2.10), we have

 (2.12) fb (t) > Kbt 2bexp(- Bbt2 - Abt4/2), t E[-1, 1],

 (2.13) Ifb(z)I < kbexp([IBbI+AbIzI2 + AbIzI /2), z E C.

 Now, since fb(t) dt -* dp, a finite measure, it follows from (2.12) that Kb
 must be bounded above uniformly in b; consequently we have from (2.13)

 that fb(z) is uniformly bounded on compact subsets of C and thus, by
 standard analytic function theory, some subsequence of the fb's converges
 uniformly on compacts to an entire function f(z) and clearly dp(t) = f(t) dt.

 Now by (2.13), f is entire of (at most) exponential order four and finite type,

 and since each fb has only pure imaginary zeros, so does f by Hurwitz'
 Theorem; moreover f is even and nonnegative on the real axis (since p > 0)

 so we may conclude by standard entire function theory (analogously to the

 derivation of (2.1)) that f has the form given in (1.8). The conditions on a and

 ,f are required simply because p is a finite measure.

 LEMMA 2. For each b > 0, there is a Tb > 0 with lim sup Tb < xc such that

 Vb' < 0 on [0, Tb] and Vb' > 0 on (Tb, oo). If for some subsequence bj and some

 0 < tl < t2 < , VZb'j + cc (resp. -xc) uniformly on [t1, t21, then
 p((t1, x))= 0 (resp. p((-t2, t2)) = 0)-

 PROOF. The existence of Tb follows from the fact that Vb'(0) = 0 while

 Vb,(t)/t is increasing on (0, cc) to 2db > 0 as t x-* c. To see that
 lim sup Tb < cc,
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 we note that fb(t) is nondecreasing on [0, Tb], so that if Tb- + X it would
 follow that for any s1, 52 > 0,

 P(l Si, S+ 52]) >lim sup Pbk([sI,sI + 52])
 k--+oo ([ISI+2

 (2.14) > lim inf Pbk(( 52 52))/2 > P(( S2 S2))/2

 which is impossible for a finite measure p.

 We now consider the case when V,, - + xc on [tl, t2] and define Dj as the
 minimum of Vbj on [t1, t2] which by assumption tends to + xc as j x-* c. By

 elementary calculus, we have for t, t + 8 E [tl, t2] and 3 > 0, that Vbj(t + 8)
 > Vb (t) + Dj3 so that fbj(t + 8) < exp(-Dj8)fb (t); after integrating this
 last inequality, we have that for 0 < 8 < (t2 -tl

 (2.15) Pbj([tl + 3, t2]) < exp(-D13)pbj([tl, t2 - D])'

 Now clearly Tbj < t, for sufficiently largej so that eventuallyfbj is nonincreas-

 ing on [tl, cc) and thus eventually Pbj([tl + 8 + T, t2 + T]) < Pbj([tl + 3, t2])
 for any T > 0; combining this inequality with (2.15) and taking the limit gives
 p((t + 8 + , t2 + T)) = 0 for any T > 0 so that letting 8-*0, we have

 p((t1 + T, t2 + T)) = 0 for any T > 0 which clearly implies that p((tl, cc)) =

 0. The case of Vbj -X is handled essentially identically with the assistance
 of (2.14) for s + S2 < t2

 LEMMA 3. If lim sup AI = + cc, then there is a to > 0 and a subsequence bj
 such that VbI -* + cc (resp. -oo) uniformly on compact subsets of (to, cc) (resp.
 (0, to)).

 PROOF. We choose the subsequence bj so that Ab - + oo while Tb has a
 limit to > 0; this can be done since lim sup Tb < oo by Lemma 2. The
 conclusions then follow by elementary arguments from the inequality (easily
 derivable from (2.5)) (Vbg/2t)' > 2Abt/(l + t2)2, and the elementary calculus
 fact that

 (2.16) Vb(t2) = (t2/t1)Vb(t1) + t2 (b/5) ds.

 LEMMA 4. If Ab is uniformly bounded as b oc, but lim sup Bb= + X (resp.

 lim inf Bb =-c), then there is a subsequence bj such that Vb, + x (resp.
 - cc) uniformly on compact subsets of (0, cc).

 PROOF. We choose bj so that Bb -j + X (resp. - c) and then use the
 estimate,

 - A/t2 < - (/(t2 + ab ))

 (2.17) S 2(l/aj(b)2)- , (1/ (t2 +

 S X2{( t2/ (a1(b)2(t2 + a (b)2))} S AIt2
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 FOURIER TRANSFORMS WITH ONLY REAL ZEROS 251

 together with (2.4) to obtain

 (2.18) - Ab/t2 S Vb(t)/2t - Bb S Abt2,

 which clearly implies the desired result.

 COMPLETION OF PROOF OF THEOREM 2. The theorem is a straightforward

 consequence of the above four lemmas. We only point out that by combining

 Lemmas 4 and 2, it follows that we cannot have Ab uniformly bounded while

 lim inf Bb = - oX (or else p would be identically zero); on the other hand,

 when Ab is bounded and lim sup Bb = + oo, then p(t) = KS (t).

 ACKNOWLEDGEMENT. The author has benefited from discussions with many

 people during the course of this research including, in particular, J. Klauder,

 J. Lebowitz and D. Ruelle.
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