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Abstract. A Riemannian manifold is said to be uniformly secure if there is a

finite number s such that all geodesics connecting an arbitrary pair of points in

the manifold can be blocked by s point obstacles. We prove that the number
of geodesics with length ≤ T between every pair of points in a uniformly

secure manifold grows polynomially as T → ∞. By results of Gromov and

Mañé, the fundamental group of such a manifold is virtually nilpotent, and
the topological entropy of its geodesic flow is zero. Furthermore, if a uniformly

secure manifold has no conjugate points, then it is flat. This follows from the

virtual nilpotency of its fundamental group either via the theorems of Croke-
Schroeder and Burago-Ivanov, or by more recent work of Lebedeva.

We derive from this that a compact Riemannian manifold with no conjugate
points whose geodesic flow has positive topological entropy is totally insecure:

the geodesics between any pair of points cannot be blocked by a finite number

of point obstacles.

1. Introduction. This paper explores interactions between two approaches to the
study of geodesics in a Riemannian manifold. Both approaches study geodesic
segments between points of the manifold. One of them relates the growth as T →∞
of the number of these geodesics with length ≤ T to the topological entropy of the
geodesic flow. The other studies whether or not these geodesics can be blocked by
a finite number of point obstacles.

Let M be a compact Riemannian manifold that is uniformly secure with security
threshold s. This means that the geodesics between any two points in M can be
blocked by s obstacles. Our main technical result concerns the growth rate of joining
geodesics in such a manifold. We show that there are constants C and d, which
depend only on s and the injectivity radius, such that the number of geodesics
with length ≤ T between any pair of points in M is bounded from above by CT d.
See Proposition 4.1 and Theorem 4.2. This bound has strong consequences for
the geometry and topology of M . In particular, its fundamental group is virtually
nilpotent. See Theorem 4.3.
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Our methods yield strong results for manifolds with no conjugate points. For in-
stance, if such a manifold has positive topological entropy, then it is totally insecure:
the geodesics between any pair of points cannot be blocked by a finite number of
point obstacles. See Theorem 4.5. Moreover, a compact manifold with nonpositive
curvature satisfies the following dichotomy. Either such a manifold is flat and the
geodesics between every pair of points are blocked by a finite number of obstacles;
or the manifold is not flat and removing a finite number of points from the manifold
cannot block the geodesics connecting any pair of points. See Corollary 4.7.

We thank J.F. Lafont and B. Schmidt for pointing out a simplification to our orig-
inal proof of Theorem 4.5. They have independently studied connections between
security and the geometry of a manifold [14]. In particular, they have obtained
Theorem 4.5 and the lemmas in Section 3. We also thank P. Herreros for pointing
out a mistake in the original version of Lemma 5.1.

2. Background and Previous Results. Throughout this paper by a (Riemann-
ian) manifold we will mean a complete, connected, infinitely differentiable (Rie-
mannian) manifold. Geodesics will always be parametrized by arclength. Unless
otherwise specified, a geodesic will be a segment of finite, positive length.

Let M be a Riemannian manifold. If [a, b] is a closed bounded interval and
γ : [a, b] → M is a geodesic, the endpoints of γ are its initial point γ(a) and its final
point γ(b). The points γ(s), where a < s < b, are the interior points of γ. We will
say γ passes through z to indicate that z is an interior point of γ. Note that a point
z ∈ M may be both an interior point and an endpoint of γ.

A configuration in M is an ordered pair of points in M . The points in question
may coincide.

Definition 2.1. Let (x, y) be a configuration in M . A geodesic γ joins x to y if x
is its initial point and y is its final point. A geodesic γ connects x and y if it joins
x and y and does not pass through either x or y.

We denote the set of geodesics joining x and y by G(x, y) and the set of geodesics
connecting x and y by Γ(x, y). Of course Γ(x, y) ⊂ G(x, y). The subsets of G(x, y)
and Γ(x, y) consisting of geodesics with length ≤ T will be denoted by GT (x, y) and
ΓT (x, y) respectively. Let mT (x, y) be the number of geodesics in ΓT (x, y) and let
nT (x, y) be the number of geodesics in GT (x, y). If one of the sets is infinite, the
corresponding number will be ∞.

2.1. Growth of nT (x, y). The behavior of nT (x, y) for compact manifolds has been
extensively studied beginning with Berger and Bott’s 1962 paper [1]. They observed
that for each T > 0 the function nT (x, y) is finite and locally constant on an open
subset of M ×M of full Riemannian measure. We will use the notation dµ(x) for
the density of this measure. Denote by B(x̃, T ) the ball of radius T in the universal
cover of M around a lift x̃ of x. By Proposition 4.3 in [1],∫

M

nT (x, y) dµ(y) ≥ VolB(x̃, T ) (1)

for any x ∈ M .
Let h = h(M) be the topological entropy of the geodesic flow. Manning showed

in [17] that

h ≥ lim
T→∞

1
T

log VolB(x̃, T );
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the limit on the right hand side exists and is the same for all points x̃ in the universal
cover. Mañé improved this estimate in [16] by showing that

h = lim
T→∞

1
T

log
∫

M×M

nT (x, y) dµ(x)dµ(y) (2)

for any compact Riemannian manifold.
A Riemannian manifold has no conjugate points if the exponential map at any

point is a local diffeomorphism. An equivalent characterization is that any two
points in the universal cover are joined by exactly one geodesic. The preceding
relations are even stronger for compact manifolds with no conjugate points. In this
case nT (x, y) is always finite, and for any x, y ∈ M we have

h = lim
T→∞

1
T

log nT (x, y). (3)

See for example Corollary 1.2 in [16].
Equation (3) fails, in general, if M has conjugate points. There are examples

where the growth of nT (x, x) is arbitrarily large for some exceptional points x ∈ M
[4]. There are also examples in which the limit in equation (3) is smaller than the
topological entropy for an open set of configurations [5].

2.2. Security and insecurity. A set B is a blocking set for a collection of geodesics
if every geodesic belonging to the collection passes through a point of B. A blocking
set for Γ(x, y) must lie in M \ {x, y}. It is also a blocking set for G(x, y).

Definition 2.2. A configuration (x, y) is secure if the collection Γ(x, y) of connect-
ing geodesics has a finite blocking set. Otherwise the configuration is insecure.

If the configuration (x, y) is secure, its security threshold σ(x, y) is the minimal
number of points needed to block Γ(x, y).

Definition 2.3. A Riemannian manifold is secure if every configuration is secure,
insecure if some configurations are insecure, and totally insecure if every configura-
tion is insecure. It is uniformly secure if there is s < ∞ such that σ(x, y) ≤ s for
all x, y ∈ M . The smallest such s is the security threshold of the manifold.

In a geometric optics interpretation, a configuration is secure if one of the points
can be shaded from the light emanating from the other by a finite number of point
screens. Another obvious interpretation of Definition 2.2 suggested the name “se-
curity”: all geodesic paths connecting elements in a secure configuration can be
monitored from a finite number of observation spots. Since the security of con-
figurations concerns the global properties of geodesics, it is instructive to compare
spaces from this viewpoint.

The framework of security arose in the context of polygonal billiards. (The
geodesics are the billiard orbits.) A polygon P ⊂ R2 is rational if the angles of P
are commensurable with π. The billiard orbits in a rational polygon P correspond
to the geodesics in the associated translation surface S = S(P ). These surfaces are
endowed with flat metrics with special cone singularities. Definitions 2.2 and 2.3
extend to polygons and translation surfaces.

The results on security in this context are limited up to now to lattice polygons
and lattice translation surfaces. The lattice condition was introduced by Veech;
the class of lattice translation surfaces partitions into two subclasses: arithmetic
and nonarithmetic [10]. From the security standpoint, these subclasses complement
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each other: An arithmetic translation surface is uniformly secure; almost all con-
figurations in a nonarithmetic translation surface are insecure [9]. This dichotomy
holds for billiard orbits in lattice polygons as well [9].

Gutkin and Schroeder investigated the security of compact, locally symmetric
spaces in [11]. Let M be such a space. Then M = S/Γ, where S is a simply
connected symmetric space, and Γ is a discrete, cocompact group of isometries freely
acting on S. The space S uniquely decomposes into a product S = S0×S−×S+ of
simply connected symmetric spaces of euclidean type, noncompact type, and compact
type respectively. If M = S/Γ where S belongs to one of the three types, we say
that M is a compact, locally symmetric space of that type.

We summarize the results of [11] in the following proposition.

Proposition 2.4. Let M be a compact, locally symmetric space. Then the following
statements hold:
a) If M is of noncompact type then it is totally insecure.
b) If M is of compact type then it has an open, dense, full measure set of secure
configurations; it always has insecure configurations as well.
c) If M is of euclidean type then it is uniformly secure, and its security threshold is
bounded in terms of dim(M).
d) If M is secure, then it is of euclidean type.

3. Key Lemmas. The main results of this paper, which are presented in the next
section, are based on the following lemmas. They have been obtained independently
by Lafont and Schmidt [14].

Lemma 3.1. Let M be a compact Riemannian manifold, and let δ be its injectivity
radius. Then for any x, y ∈ M we have

mT (x, y) ≤ nT (x, y) ≤
(

T

2δ

)2

mT (x, y).

Proof. The left hand inequality is obvious because ΓT (x, y) ⊂ GT (x, y). We prove
the other one by constructing a surjective map λ : GT (x, y) → ΓT (x, y) that is at
most (T/2δ)2 : 1.

Observe firstly that if t and t′ are consecutive times when a geodesic passes
through a point, z, then 2δ ≤ |t − t′|. Indeed, the geodesic must travel (at least)
from the center of the ball B(z, δ) to its boundary, and then back. An immediate
corollary is that the set of times when a geodesic passes through z is discrete.

Let γ : [a, b] → M be a geodesic that belongs to GT (x, y). This means that γ(a) =
x and γ(b) = y. Let b′ be the leftmost element of (a, b] such that γ(b′) = y. Let a′

be the rightmost element of [a, b′) such that γ(a′) = x. Observe that the restriction
of γ to [a′, b′] belongs to ΓT (x, y) and that [a′, b′] is the leftmost subinterval of [a, b]
with this property. Furthermore, if γ already belongs to ΓT (x, y), we will have
a′ = a and b′ = b.

Define λ(γ) to be the restriction of γ to [a′, b′]. The resulting map λ : GT (x, y) →
ΓT (x, y) is surjective because it is the identity on ΓT (x, y).

Let γ′ : [a′, b′] → M belong to ΓT (x, y). We will investigate the preimage
λ−1(γ′) ⊂ GT (x, y). Let γ : R → M be the extension of γ′ to a complete geo-
desic. The geodesics in λ−1(γ′) are the restrictions of γ to intervals of the form
[a, b] such that γ(a) = x and γ(b) = y. We must also have a ≤ a′ < b′ ≤ b, and
|b− a| ≤ T . These inequalities ensure that a ∈ [b′ − T, a′] and b ∈ [b′, a′ + T ]; both
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of these intervals have length ≤ T . We see from the remarks at the beginning of
the proof that there can be at most T/2δ possible choices for a ∈ [b′ − T, a′] with
γ(a) = x. Similarly there can be at most T/2δ possible choices for b ∈ [b′, a′ + T ]
with γ(b) = y. Thus γ′ has at most (T/2δ)2 preimages under λ, as desired.

Lemma 3.2. Let M be a compact Riemannian manifold. Let ΓT (x, y; z) denote
the subset of geodesics in ΓT (x, y) that pass through z 6= x, y. Let mT (x, y; z) be the
number of geodesics in ΓT (x, y; z). Then

mT (x, y; z) ≤ mT/2(x, z) + mT/2(z, y).

Proof. We will construct a 1:1 map µ : ΓT (x, y; z) → ΓT/2(x, z) ∪ ΓT/2(z, y).
Suppose γ : [a, b] → M is a geodesic in ΓT (x, y; z). Let γ1 be the initial segment

of γ that ends at the first time when γ passes through z; let γ2 be the terminal
segment of γ that starts at the last time when γ passes through z. Observe that γ1

and γ2 both belong to Γ(x, z) ∪ Γ(z, y), and their domains are subintervals of [a, b]
that intersect in at most one point.

Since the total length of γ1 and γ2 is at most T , at least one of them has length
≤ T/2. Set µ(γ) = γ1 if γ1 has length ≤ T/2 and set µ(γ) = γ2 otherwise. Thus
µ(γ) ∈ ΓT/2(x, z) ∪ ΓT/2(z, y). It remains to show that µ is 1:1.

A geodesic in Γ(x, z) can be extended past z to obtain a geodesic in Γ(x, y) in
at most one way: we must stop at the first time (if there is one) when the geodesic
reaches y. Similarly, a geodesic in Γ(z, y) can be extended past z in at most one
way to obtain a geodesic in Γ(x, y).

Thus each γ1 ∈ ΓT/2(x, z) can be the intial segment for at most one γ ∈ Γ(x, y).
Similary, each γ2 ∈ ΓT/2(z, y)) can be the terminal segment for at most one γ ∈
Γ(x, y). Therefore the map µ : ΓT (x, y; z) → ΓT/2(x, z)∪ΓT/2(z, y) is injective.

4. Main Results. Our main technical result relates the security threshold of a
manifold with the growth rate of joining geodesics.

Proposition 4.1. Let M be a compact Riemannian manifold, and let δ be its
injectivity radius. Suppose that M is uniformly secure, and let s = s(M) be the
security threshold. Then for any x, y ∈ M we have

nT (x, y) <
s

2
·
(

T

δ

)3+log2 s

.

Proof. By the uniform security assumption, any configuration (p, q) ∈ M ×M has
a blocking set B(p, q) ⊂ M \ {p, q} containing at most s points. From Lemma 3.2,
we have

mT (x, y) ≤
∑

z∈B(x,y)

(
mT/2(x, z) + mT/2(z, y)

)
. (4)

The right hand side of this inequality has the form
∑

mT/2(pi, qi), where the (pi, qi)
run through a finite set, P1, of pairs of points in M with at most 2s elements.

Iterating the estimate above k times, we obtain a sequence, Pk, of subsets of
M ×M , such that Pk has at most (2s)k elements and

mT (x, y) ≤
∑

(pi,qi)∈Pk

mT/2k(pi, qi). (5)
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Observe that for any L > 0 we have mL(pi, qi) ≤ supp,q∈M mL(p, q). Combining
this with inequality (5) yields

mT (x, y) ≤ (2s)k sup
p,q∈M

mT/2k(p, q). (6)

Now choose k ∈ N so that log2(
T
δ ) < k ≤ 1 + log2(

T
δ ), or equivalently

δ

2
≤ T

2k
< δ.

Since T/2k < δ, we have mT/2k(p, q) ≤ 1 for any p, q ∈ M . Substituting this into
inequality (6), we obtain

mT (x, y) < 2s

(
T

δ

)(1+log2 s)

. (7)

Combining this inequality with Lemma 3.1 yields the claim.

Proposition 4.1 directly implies that a uniformly secure manifold has uniform
polynomial growth of geodesics. The following theorem states this precisely. Recall
that a positive function f(T ) has polynomial growth if there are constants C and
d such that f(T ) ≤ CT d as T → ∞. The minimum possible d is the degree of the
polynomial growth.

Theorem 4.2. Let M be a compact Riemannian manifold. If M is uniformly
secure, then there are positive constants C and d such that for any pair x, y ∈ M
we have

nT (x, y) ≤ CT d.

This inequality yields strong consequences for the geometry and topology of
secure manifolds.

Theorem 4.3. Let M be a compact Riemannian manifold that is uniformly secure.
Then the topological entropy of the geodesic flow for M is zero, and the fundamental
group of M is virtually nilpotent.

If, in addition, M has no conjugate points, then M is flat.

Proof. Our first claim is immediate from equation (2) and Theorem 4.2. Set

N(x, T ) =
∫

M

nT (x, y) dy.

By Theorem 4.2, N(x, T ) has polynomial growth as T → ∞ for any x ∈ M . By
equation (1), this implies polynomial growth as T → ∞ of the volume of the ball
B(x̃, T ) ⊂ M̃ of radius T in the universal cover of M , which in turn immediately
implies polynomial growth of the fundamental group of M . The latter means that
for a finite set S of generators for π1(M) the number of elements of π1(M) express-
ible as words of length ≤ n in the alphabet S has polynomial growth. Polynomial
growth for one finite set of generators implies polynomial growth of the same degree
for any finite set of generators.

By a famous theorem of Gromov, a finitely generated group with polynomial
growth is virtually nilpotent [7], i.e. it has a finite index nilpotent subgroup. This
proves our second claim.

Suppose now that M has no conjugate points. Then any nilpotent subgroup of
π1(M) is abelian by a result of Croke and Schroeder [6]. Hence M has a finite
covering by a torus, which has no conjugate points and is therefore flat by the
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theorem of Burago and Ivanov [3]. This proves our last claim. It also follows from
recent work of Lebedeva [15] who showed that polynomial growth of the fundamental
group of a compact polyhedral space without boundary and with no conjugate points
implies that the space is finitely covered by a flat torus.

Theorem 4.3 has an immediate corollary.

Corollary 4.4. Let M be a compact manifold. If π1(M) is not virtually nilpotent,
then M does not admit a uniformly secure Riemannian metric.

Our next result concerns manifolds with no conjugate points. It has been ob-
tained independently by Lafont and Schmidt [14].

Theorem 4.5. Let M be a compact Riemannian manifold with no conjugate points
whose geodesic flow has positive topological entropy. Then M is totally insecure.

Proof. Let p, q ∈ M be arbitrary. From equation (3) and Lemma 3.1, we have

lim
T→∞

1
T

log mT (p, q) = h. (8)

This is where we use the no conjugate points property.
Suppose now that the claim is false. Then there are two points x, y ∈ M such

that any geodesic from x to y is blocked by one of a finite number of points, say
z1, . . . , zn. Lemma 3.2 tells us that

mT (x, y) ≤
n∑

i=1

(
mT/2(x, zi) + mT/2(zi, y)

)
(9)

for any T > 0. Let α > 1. By (8), there is a T0 = T0(α) such that for any T ≥ T0

and any p, q ∈ {x, y, z1, . . . , zn} we have

h/α <
1
T

log mT (p, q) < αh,

which is equivalent to
ehT/α < mT (p, q) < ehTα.

Combining this with equation (9), we obtain

ehT/α < 2nehTα/2

for all large enough T . Now choose α <
√

2. Then the exponent on the left is larger
than the exponent on the right, and the inequality is absurd for large T .

Theorem 4.5 and the variational principle for entropy [8] immediately imply the
following proposition.

Corollary 4.6. Let M be a compact Riemannian manifold with no conjugate points.
If the geodesic flow of M has positive metric entropy, then the manifold M is totally
insecure.

Any compact, locally symmetric space of noncompact type satisfies the hypothe-
ses of Theorem 4.5. This gives a new proof of case (a) in Proposition 2.4. The
original proof in [11] used an entirely different approach.

For manifolds of nonpositive curvature we obtain a dichotomy along the lines
security/insecurity.
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Corollary 4.7. A compact Riemannian manifold of nonpositive curvature is either
totally insecure or uniformly secure. In the latter case the manifold is flat; its
security threshold is bounded above in terms of the dimension of manifold.

Proof. Let M be a compact Riemannian manifold of nonpositive curvature. By
Pesin’s formula (Corollary 3 in [18]), the following dichotomy holds: either i) the
geodesic flow for M has positive entropy, or ii) M is flat.

If i) holds, then M satisfies the hypotheses of Corollary 4.6 and is thus totally
insecure. In case ii), M is a compact, locally symmetric space of euclidean type.
The claim follows from case (c) of Proposition 2.4.

5. Examples, conjectures and open problems. Many examples illustrating
the relationships of security with conventional aspects of Riemannian geometry
crucially use products of Riemannian maniflods.

Lemma 5.1. If a configuration in a Riemannian product M × M ′ is secure then
its projections to M and M ′ are secure.

Proof. Geodesics in M ×M ′ are products of geodesics in M and geodesics in M ′.
More precisely, if γ : [a, b] → M and γ′ : [a′, b′] → M ′ are unit speed geodesics, then
the unit speed geodesic γ × γ′ in M of length L =

√
(b− a)2 + (b′ − a′)2 is defined

by
(γ × γ′)(t) = (γ(a + (b− a)t/L), γ′(a′ + (b′ − a′)t/L)

for 0 ≤ t ≤ L. All geodesics in M ×M ′ arise in this way.
Let ξ = (x, x′) and η = (y, y′) be two points in M × M ′. The set G(ξ, η)

consists of the products of geodesics in G(x, y) and G(x′, y′). Let Γ0(ξ, η) be the
subset of G(ξ, η) formed by the products of geodesics in Γ(x, y) and Γ(x′, y′). Then
Γ0(ξ, η) ⊂ Γ(ξ, η). (There may be more geodesics in Γ(ξ, η), for example products
of geodesics in Γ(x, y) and in G(x′, y′) \ Γ(x′, y′).)

Let ξ and η form a secure configuration. Then we can choose a finite number
of points (z1, z

′
1), . . . , (zn, z′n) in M × M ′ which are interior points of geodesics

in Γ0(ξ, η) and block all geodesics in Γ0(ξ, η). Since the geodesics in Γ0(ξ, η) do
not have any interior points of the form (x, z′), (y, z′) or (z, x′), (z, y′), we see that
zi 6= x, y and z′i 6= x′, y′ for 1 ≤ i ≤ n. The points z1, . . . , zn block all geodesics
in Γ(x, y) and z′1, . . . , z

′
n block all geodesics in Γ(x′, y′). Therefore {z1, . . . , zn} is a

blocking set for Γ(x, y) and {z′1, . . . , z′n} is a blocking set for Γ(x′, y′).

The following proposition concerning security and insecurity of Riemannian prod-
ucts is immediate from the preceding lemma and its proof.

Proposition 5.2. Let M and M ′ be Riemannian manifolds.
1) If one of M and M ′ is (totally) insecure, then so is M ×M ′.
2) If M ×M ′ is (uniformly) secure, then so are both M and M ′.

Remark 5.3. Lemma 5.1 and Proposition 5.2 are closely related to Proposition 5
and Corollary 4 in [11]. They extend to fibre bundles such that each point of the
base has a neighborhood, O, over which the fibration is the Riemannian product of
O and the fibre. We leave the details to the reader.

The following result is obtained by combining Proposition 5.2 with Theorem 4.5.
It provides examples of totally insecure manifolds that have conjugate points.
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Proposition 5.4. Let M be a compact Riemannian manifold with no conjugate
points whose geodesic flow has positive topological entropy. Let M ′ be a Riemannian
manifold. Then the Riemannian product M ×M ′ is totally insecure.

Remark 5.5. We say that a configuration (x, y) has the midpoint blocking property
if the set of midpoints of the geodesics γ ∈ Γ(x, y) is finite. Obviously, this property
implies the security of (x, y). All known examples of secure configurations in C∞

Riemannian manifolds have the midpoint blocking property. In particular, this is
shown for locally symmetric spaces of euclidean type in [11]. Also all configurations
in arithmetic translation surfaces have the midpoint blocking property [9].

The converse to Lemma 5.1 holds for configurations that have the midpoint
blocking property. On the other hand, P. Herreros [12] has given an example of
a C1 Riemannian surface containing secure configurations which do not have the
midpoint blocking property. Her surface is constructed by gluing hemispherical
caps onto the two ends of a flat cylinder, which is the product of a circle with
an interval. (An analogous construction can be made in higher dimensions by
gluing hemispherical caps of dimension n + 1 onto the product of a round sphere of
dimension n with an interval.) Any pair of points in the interior of the flat cylinder
is a secure configuration that does not have the midpoint blocking property [12].
There are also insecure configurations, for instance antipodal points in one of the
boundary circles of the flat cylinder.

Herreros’ surface yields counter-examples to the converse of Lemma 5.1.

The hypothesis of no conjugate points in Theorem 4.5 is used only to ensure
that equation (3) holds. One can strengthen equation (3) by showing that the
convergence to the limit is uniform for all p, q ∈ M . The proof of Theorem 4.5 does
not require this uniformity.

In fact, in order to prove Theorem 4.5, we need considerably less than equa-
tion (3). It suffices to have positive constants h1 and h2 such that h2 < 2h1, and
such that for arbitrary pairs p, q ∈ M and all large enough T we have the inequality

eh1T ≤ nT (p, q) ≤ eh2T . (10)
Suppose that inequality (10) holds. Then all configurations in M are insecure,
whether there are conjugate points or not. We believe that many Riemannian
manifolds satisfy this condition, but the only examples that we know presently are
the manifolds with no conjugate points.

Following another approach, we can replace inequality (10) by

sup
x,y∈M

lim sup
T→∞

1
T

log nT (x, y) < 2 lim inf
T→∞

1
T

log nT (p, q) < ∞. (11)

Similarly, inequality (11) implies that the pair p, q ∈ M is insecure. We believe that
inequality (11) frequently holds, but do not know any examples outside the realm
of manifolds with no conjugate points.

Examples show that one cannot simply discard the hypothesis of no conjugate
points from Theorem 4.5. In fact, the claim does not extend to all manifolds whose
geodesic flows have positive topological entropy. There are compact Riemannian
manifolds with positive topological entropy that contain secure configurations.

We outline such an example; it was used for a different purpose in [5]. It is a
special case of a construction due to Weinstein. See [2], Appendix C. Choose a
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Riemannian metric ĝ on S2 whose geodesic flow has positive topological entropy.
Such metrics exist; the first was given by Knieper and Weiss [13]. Now choose a
smooth family of metrics gt, −π/2 ≤ t ≤ π/2, such that gt = ĝ when |t| ≤ π/6, and
gt is the standard metric on the unit sphere in R3 when π/3 ≤ |t| ≤ π/2. Choose
also a scaling function ρ : [−π/2, π/2] → R such that ρ(t) = 1 when |t| ≤ π/6,
ρ(t) > 0 when π/6 ≤ |t| ≤ π/3, and ρ(t) = cos t when π/3 ≤ |t| ≤ π/2.

Define a metric on [−π/2, π/2]×S2 that is degenerate on the boundary as follows.
Let t ∈ [−π/2, π/2] denote the first coordinate. We require:

1. ‖∂/∂t‖ ≡ 1;
2. ∂/∂t is everywhere orthogonal to {t} × S2;
3. the restriction of the metric to the vectors tangent to {t} × S2 is ρ(t)gt.

The result is a smooth metric g on S3. The spheres {±π/2}×S2 collapse to points,
p and p′, which we call poles. The metric g coincides with the standard round
metric on S3 near the poles.

The spheres {t}×S2 for |t| ≤ π/6 are totally geodesically isometrically embedded
copies of (S2, ĝ); this ensures that the geodesic flow for the metric g on S3 has
positive entropy. The geodesics which pass through the poles are circles of length
2π and are orthogonal to the “spheres of latitude”. They are meridians just as in
the usual round metric on S3; the only difference is that the spheres of latitude
have an unusual geometry away from the poles. All meridians that leave one pole
focus at the opposite pole after distance π. The pairs (p, p) and (p′, p′) are secure
configurations because their connecting geodesics are blocked by the opposite pole.

We conclude with some conjectures related to the results of this paper.
Presently, the only examples of compact Riemannian manifolds that are secure

are the flat manifolds. We believe that this is not an accident and Theorems 4.2
and 4.3 are evidence for:

Conjecture 5.6. A compact Riemannian manifold is secure if and only if it is flat.

Our next conjecture concerns classical Riemannian geometry but is motivated
by security questions, as we explain below.

Conjecture 5.7. Let M be a compact Riemannian manifold with no conjugate
points. Then either M is flat or its geodesic flow has positive topological entropy.

If Conjecture 5.7 is true, then the alternative for manifolds with nonpositive
curvature stated in Corollary 4.7 would extend to compact Riemannian manifolds
with no conjugate points. More precisely, the following dichotomy would hold: A
compact manifold with no conjugate points is either

(i) flat, uniformly secure, and has zero topological entropy for its geodesic flow;
or

(ii) not flat, totally insecure, and has positive topological entropy for its geodesic
flow.

Finally, we suspect that there are many examples of totally insecure manifolds
other than those described in this paper. In fact, we believe that “most” Riemannian
manifolds are totally insecure.

More conjectures related to security in Riemanian manifolds can be found in [14].
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