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Abstract. We study the analogue for magnetic flows of the classical question of
when two different metrics on the same manifold share geodesics which are the same
up to reparametrization.

1. Introduction

Let M be a compact smooth manifold and π : TM → M the canonical projection
from the tangent bundle to M . A magnetic structure on M is a pair (g,Ω), where
g is a Riemannian metric and Ω is a closed 2-form on M . Let ωg be the symplectic
form on TM obtained by pulling back the canonical symplectic form on T ∗M via the
Riemannian metric g. The magnetic flow for (g,Ω) is the Hamiltonian flow ϕt on
TM determined by the symplectic form

ωmag = ωg + π∗Ω

and the function

E(v) =
1

2
g(v, v).

The magnetic flow models the motion of a charged particle under the effect of a
magnetic field, whose Lorentz force Y : TM → TM is the bundle map defined by:

Ωx(u, v) = gx(Yx(u), v),

for all x ∈M and all u and v in TxM . The orbits of the magnetic flow have the form
t 7→ γ̇(t), where γ is a curve in M such that

(1)
Dγ̇

dt
= Yγ(γ̇),

where D/dt denotes the covariant derivative of g along γ. The magnetic flow of
the pair (g, 0) is the geodesic flow of the Riemannian metric g. A curve γ that
satisfies equation (1) will be called a magnetic geodesic. The magnetic flow shares
with the usual Riemannian geodesic flow the property that the level sets of the energy
function E are preserved. A magnetic geodesic is the path followed by a particle with
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unit mass and charge under the effect of the magnetic field. If we reparametrize a
magnetic geodesic corresponding to energy h so that it has unit speed, then we obtain
the path followed by a unit mass particle whose charge is inversely proportional to√
h. It is often convenient to think of the Riemannian geodesics as magnetic geodesics

corresponding to infinite energy.
Many questions for geodesic flows have natural counterparts for magnetic flows

which have been studied recently. See e.g. [2, 3, 4, 5, 8, 12, 13, 15, 14, 16, 20, 21].
A classical topic in the theory of geodesic flows is the question of when two different

metrics g and ḡ on the same manifold can share the same geodesics, in the sense that
every ḡ-geodesic is a reparametrization of g-geodesic and conversely. Let us recall a
few simple examples (which will have magnetic analogs).

First of all, the metrics g, ḡ = α · g, where α > 0 is a constant, clearly have the
same geodesics.

Another simple example is as follows. Let (M1, g1) and (M2, g2) be two Riemannian
manifolds, and consider the product metrics g1 + g2 and α1 · g1 +α2 · g2 on M1 ×M2,
where α1, α2 are constants. These metrics are evidently affinely equivalent (i.e. they
have the same Christoffel symbols) and therefore have the same geodesics.

The first nontrivial example appeared in Beltrami [1]: the metric g is the restriction
of the Euclidean metric dx2 + dy2 + dz2 to the sphere

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.

The metric ḡ is the pull-back l∗g, where the mapping l : S2 → S2 is given by

l : v 7→ A(v)
‖A(v)‖ , where A is an arbitrary linear nondegenerate transformation of R3.

The metrics g and ḡ have the same (unparametrized) geodesics. Indeed, the
geodesics of the metric g are great circles (the intersections of planes that go through
the origin with the sphere). The mapping A is linear and therefore takes the planes
to the planes. Since the normalization w 7→ w

‖w‖ takes the planes to their inter-

sections with the sphere, the mapping l takes the great circles to the great circles.
Thus, any geodesic of the metrics g is a reparametrized geodesic of ḡ. Evidently, if
A is not proportional to a orthogonal transformation, the metrics g and ḡ are not
affinely-equivalent.

This paper considers the analogous question for magnetic flows: when do two
different magnetic systems on the same manifold share magnetic geodesics which are
the same up to reparametrization?

Lichnerowicz and Aufenkamp considered a generalized version of this question in
[6, 7]. They showed that the assumption that two magnetic system have the same
geodesic is equivalent to a complicated nonlinear system of partial differential equa-
tions.

The three examples of Riemannian metrics sharing the same geodesics described
above have magnetic analogs.

The magnetic geodesics of (g,Ω) coincide up to reparametrization with those of
the rescaled system (α · g, β · Ω), for any constants α > 0, β 6= 0.
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More generally the factors in a direct product of magnetic structures can be rescaled
independently: if (M1, g1,Ω1) and (M2, g2,Ω2) are two manifolds with magnetic struc-
tures, any magnetic geodesic of the magnetic structure (g1+g2,Ω1+Ω2) on the product
M1×M2 is a reparametrization of a magnetic geodesic of (α1g1 +α2g2, β1Ω1 +β2Ω2),
where α1 > 0, α2 > 0, β1 6= 0 and β2 6= 0 are constants.

There is an analogue of Beltrami’s example for magnetic systems. Consider the
sphere S2 and the magnetic system (g,Ω) on it, where g is the round metric and Ω
is the corresponding volume form. Consider the standard complex structure on the
sphere, an arbitrary linear-fractional transformation l : S2 → S2 and the magnetic
system (l∗g, l∗Ω). Because of the symmetries of the system, the magnetic geodesics
of (g,Ω) are circles. The linear-fractional transformation l takes circles to circles and
therefore the magnetic system (g,Ω) has the same (unparametrized) geodesics as the
magnetic system (l∗g, l∗Ω).

The first of the above examples has the property that curves which are magnetic
geodesics with the same energy for one system are also magnetic geodesics with the
same energy for the other system. In particular, the Riemannian geodesics of the first
system are Riemannian geodesics of the second system up to reparametrization. In
the second example, magnetic geodesics with the same energy for one system usually
do not have the same energy in the other system, but it is still true that Riemannian
geodesics of the first system are Riemannian geodesics of the second system up to
reparametrization. The Beltrami example has neither of the properties.

Our main result is that the first example is essentially the only case in which two
magnetic systems can share the same magnetic geodesics in such a way that an energy
level of one system corresponds to an energy level of the other system.

Theorem 1.1. Let (g,Ω) and (ḡ, Ω̄) be two magnetic systems on the same connected
manifold. Suppose that there are positive constants h and h̄ such that every magnetic
geodesic for (g,Ω) with energy h is a reparametrization of a magnetic geodesic for
(ḡ, Ω̄) with energy h̄. Then (g,Ω) and (ḡ, Ω̄) are rescalings of one another or Ω = 0 =
Ω̄ and g and ḡ are metrics with the same geodesics.

We apply Theorem 1.1 to extend to magnetic flows a recent result of Matveev and
Topalov [9, 10, 17].

Theorem 1.2. Suppose that there is a magnetic geodesic for (g,Ω) whose tangent
vectors are dense in their energy level. Then the only magnetic systems with the same
magnetic geodesics as (g,Ω) are rescalings of (g,Ω).

The first author thanks the Universität Freiburg for hospitality during the work on
this paper.

2. Proofs of the theorems

2.1. Proof of Theorem 1.1. Let M be the manifold in question. Let E(v) =
1
2
g(v, v) and Ē(v) = 1

2
ḡ(v, v) be the energies associated to the systems and define

Sg,h = {v ∈ TM : E(v) = h} and Sḡ,h̄ = {v ∈ TM : Ē(v) = h̄}.



4 K. BURNS AND VLADIMIR S. MATVEEV

For nonzero v, let

c(v) =

√
h̄√
h

|v|g
|v|ḡ

.

Lemma 2.1. Suppose v ∈ Sg,h and cv ∈ Sḡ,h̄. Then c = ±c(v).

Proof. Since v ∈ Sg,h and cv ∈ Sḡ,h̄, we have |v|g =
√

2h and |cv|ḡ =
√

2h̄. Hence

|c| |v|ḡ
|v|g

=

√
h̄√
h
.

The lemma follows.
Define the map ψ : Sg,h → Sḡ,h̄ by

ψ(v) = c(v)v.

We can extend ψ to a map of TM to itself that is homogeneous of degree one, which
we again denote by ψ. We will often write v̄ for ψ(v).

It is easy to see from the hypothesis of Theorem 1.1 that either ψ maps orbits of the
(g,Ω) structure in Sg,h to orbits of the (ḡ, Ω̄) in Sḡ,h̄ or the map v 7→ −ψ(v) has this
property. We shall assume that ψ has this property. The other case can be reduced
to the one we consider by multiplying Ω̄ by −1.

Let Xmag and Xgeo denote the generators of the magnetic flow for (g,Ω) and the
geodesic flow for g respectively. The corresponding objects for the (ḡ, Ω̄) structure will
be denoted by X̄mag and X̄geo. The Lorenz forces associated with the two magnetic
structures will be denoted by Y and Ȳ respectively.

For a vector v ∈ TpM let iv : TpM ⊕ TpM → TvTM be the standard linear
isomorphism determined by the metric g, i.e. i−1

v (ξ) = (dπ(ξ), K(ξ)), where dπ is
the differential of the projection π : TM → M and K is the connector map defined

by K(ξ)
def
= DV

dt
(0), where V (t) is a curve in TM with V̇ (0) = ξ and D

dt
denotes the

covariant derivative along the curve π(V ).
Then

Xgeo = iv(v, 0) and Xmag = iv(v, Yπ(v)(v)).

In particular dπ◦Xgeo and dπ◦Xmag are both the identity map. Analogous properties
hold for X̄geo and X̄mag.

Lemma 2.2. X̄mag(v̄) = c(v) dψ(Xmag(v)) for all v ∈ Sg,h.

Proof. Since ψ carries orbits of the (g,Ω) magnetic flow in Sg,h to orbits of the (ḡ, Ω̄)
magnetic flow in Sḡ,h̄, there is a function C : Sg,h → R such that

X̄mag(v̄) = C(v) dψ(Xmag(v))

for all v ∈ Sg,h. We now show that C(v) = c(v) for all v ∈ Sg,h. Projecting from
TTM to TM gives

dπ ◦ X̄mag(v̄) = C(v) dπ ◦ dψ(Xmag(v)).
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Note that dπ ◦ψ = dπ, because ψ maps fibres of the tangent bundle into themselves.
Hence

dπ ◦ X̄mag(v̄) = v̄ = c(v)v

and

dπ ◦ dψ ◦Xmag(v) = dπ ◦Xmag(v) = v.

We see from the last three equations that C(v) = c(v). The lemma follows immedi-
ately.

Lemma 2.3. X̄geo(v̄) = c(v) dψ ◦Xgeo(v) for all v ∈ Sg,h.

Proof. Define I : TM → TM by I(u) = −u. Then

dI(iu(u
′, u′′)) = i−u(u

′,−u′′)

for any vectors u, u′, u′′ in the same fibre of TM . Using this property and the linearity
of the Lorenz force Yπ(v), we obtain

Xmag(v)− dI ◦Xmag(−v) = iv(v, Yπ(v)v)− dI ◦ i−v(−v, Yπ(−v)(−v))
= iv(v, Yπ(v)v)− dI ◦ i−v(−v, Yπ(v)(−v))
= iv(v, Yπ(v)v)− iv(−v, Yπ(v)(v))

= 2Xgeo(v).

Similarly

2X̄geo(v̄) = X̄mag(v̄)− dI(X̄mag(−v̄)).
It is obvious from the definitions that c(v) = c(−v) and hence I commutes with ψ,
which entails dI ◦ψ = dψ ◦ dI. Using the previous lemma and these observations, we
obtain

2X̄geo(v̄) = X̄mag(v̄)− dI(X̄mag(−v̄))
= c(v) dψ ◦Xmag(v)− dI(c(−v) dψ ◦Xmag(−v))
= c(v) [ dψ ◦Xmag(v)− dI ◦ dψ ◦Xmag(−v)) ]

= c(v) dψ [Xmag(v)− dI ◦Xmag(−v)) ]

= c(v) dψ ◦Xgeo(v).

The proof of the lemma is complete.
It follows immediately from the previous lemma that the metrics g and ḡ are

geodesically equivalent, i.e. they have the same geodesics up to reparametrization.
Now let us show that the magnetic forms Ω and Ω̄ must vanish unless g and ḡ are
homothetic.

Lemma 2.4. For every v ∈ TM , v 6= 0, we have

(2) Ȳπ(v)(v) = c(v)

[
Yπ(v)(v)−

ḡ(Yπ(v)(v), v)

ḡ(v, v)
v

]
.

The proof will use a simple calculation, which the reader can easily verify.
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Lemma 2.5. Let f : Rn → Rn be given by f(x) = α(x)x, where α : Rn → R is
differentiable. Then

Dxf(w) = α(x)w +Dxα(w).

Proof of Lemma 2.4. By Lemma 2.2

X̄mag(v̄) = c(v) dψ ◦Xmag(v).

Let p = π(v) = π(v̄). Apply the connector map K̄ for the the metric ḡ to obtain

Ȳp(v̄) = c(v) K̄ ◦ dψ ◦Xmag(v)

Ȳp(c(v)v) = c(v) K̄ ◦ dψ ◦Xmag(v)

Ȳp(v) = K̄ ◦ dψ ◦Xmag(v).

Now

Xmag(v) = iv(v, Yp(v)) = iv(v, 0) + iv(0, Yp(v)) = Xgeo(v) + iv(0, Yp(v)).

Thus
Ȳp(v) = K̄ ◦ dψ ◦Xgeo(v) + K̄ ◦ dψ ◦ iv(0, Yp(v)).

Lemma 2.3 says that dψ ◦Xgeo(v) is a multiple of X̄geo(v̄), which is horizontal with
respect to ḡ, i.e. lies in the kernel of K̄. Hence

Ȳp(v) = K̄ ◦ dψ ◦ iv(0, Yp(v)).

Since iv(0, Yp(v)) is tangent to the fiber TpM of TM which is is mapped into itself by
ψ, the vector dψ ◦ iv(0, Yp(v)) is tangent to TpM ; in other words dψ ◦ iv(0, Yp(v)) is a
vertical vector. Since the action of the connector map on vertical vectors is the same
for all Riemannian metrics, we obtain

Ȳp(v) = K ◦ dψ ◦ iv(0, Yp(v)).

By applying Lemma 2.5 to the restriction of ψ to TpM , we see that dψ ◦ iv(0, Yp(v))
is equal to iv(0, c(v)Yp(v)) plus a multiple of iv(0, v). Hence Ȳp(v) is equal to c(v)Yp(v)
plus a multiple of v. On the other hand we know that Ȳp(v) is orthogonal to v in the
metric ḡ. Elementary Euclidean geometry in TpM with the inner product defined by
ḡ gives us

(3) Ȳp(v) = c(v)Yp(v)−
ḡ(c(v)Yp(v), v)

ḡ(v, v)
v.

Thus equation (2) holds for every v ∈ Sg,h. Since both sides of the equation are
homogeneous in v of degree 1, equation (2) holds for all v ∈ TM such that v 6= 0.
Lemma 2.4 is proved.

Lemma 2.6. ḡ and g are conformal at a point p ∈M unless Ω(p) = 0 = Ω̄(p).

Proof. It follows from Lemma 2.4 and the definition of c(v) that for every v ∈ TpM
such that v 6= 0 and Ȳp(v) 6= 0, we have

(4)
g(v, v)

ḡ(v, v)
=
h

h̄

[
g(Ȳp(v), Ȳp(v))

g( ¯̄Yp(v), Ȳp(v))

]2

,
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where

¯̄Yp(v) = Yp(v)−
ḡ(Yp(v), v)

ḡ(v, v)
v.

The right hand side of equation (4) is the square of a rational function of v. Since
ḡ(v, v) and g(v, v) are irreducible polynomials in v, this is possible only if ḡ(v, v) is
a constant multiple of g(v, v) or the numerator and denominator on the right vanish
identically. In the latter case we have Ω(p) = 0 = Ω̄(p). In the former case g and ḡ
are conformal at p. The lemma is proved.

We now see that, unless Ω(p) = 0 = Ω̄(p) for all p, there will be a nonempty open
set on which the geodesically equivalent metrics g and ḡ are conformally equivalent.
Hence, by [18, 19], the restrictions of g and ḡ to this set are proportional (one is
a constant multiple of the other). In view of [11] (see Corollary 1 there), since the
manifold is connected, and since g and ḡ are geodesically equivalent by Lemma 2.3,
it follows that g and ḡ are proportional on the whole manifold. This means that c(v)
does not depend on v ∈ Sg,h. Futhermore, since Yp(v) and v are orthogonal with
respect to the metric g, we now have ḡ(c(v)Yp(v), v) = 0, and equation (3) reads

Ȳp(v) = constYp(v).

Since this is true for all v ∈ Sg,h, we obtain that Ω and Ω̄ are proportional. Finally,
the magnetic system (ḡ, Ω̄) is a rescaling of (g,Ω). Theorem 1.1 is proved.

2.2. Reduction of Theorem 1.2 to Theorem 1.1. Suppose that there is a system
(ḡ, Ω̄) whose magnetic geodesics coincide up to reparametrization with those of (g,Ω).
Let γ be a magnetic geodesic from (g,Ω) whose tangent vectors are dense in the energy
level Sg,h and let γ̄ be the magnetic geodesic of (ḡ, Ω̄) that is a reparametrization of γ.
Assume γ̄ has energy h̄.

The map ψ defined above takes the energy level Sg,h to the energy level Sḡ,h̄.
Furthermore, at each tangent vector to γ, the derivative dψ maps the vector field
Xmag generating the magnetic flow for (g,Ω) to the generator X̄mag of the magnetic
flow for (ḡ, Ω̄). Since the vector fields Xmag and X̄mag are smooth and the tangent
vectors to γ are dense in Sg,h, it follows that dψ maps Xmag to X̄mag at all points of
Sg,h. Hence the hypothesis of Theorem 1.1 holds.
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