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ABSTRACT. For any € > 0, we construct an explicit smooth Riemannian metric on the sphere
S™,n > 3, that is within € of the round metric and has a geodesic for which the corresponding
orbit of the geodesic flow is e-dense in the unit tangent bundle. Moreover, for any € > 0, we
construct a smooth Riemannian metric on S™,n > 3, that is within € of the round metric
and has a geodesic for which the complement of the closure of the corresponding orbit of the
geodesic flow has Liouville measure less than €.

0. Introduction

It has long been known that the geodesic flow for a Riemannian metric of negative
curvature possesses chaotic dynamics with the strongest possible stochastic behavior: the
flow is not only ergodic but also has the Bernoulli property. A major open problem in
ergodic theory and geometry is whether the geodesic flow of a Riemannian metric with
everywhere positive sectional curvatures can exhibit such stochastic behavior.

Little is known about this question. Katok [Kal,Z] gave examples of nonsymmetric
Finsler metrics that are arbitrarily close to the round metric and have geodesic flows with
only two ergodic components. But in the Riemannian case it is not even known if the
geodesic flow for a metric of positive curvature can be topologically transitive. Topological
transitivity for a flow is equivalent to the existence of a dense orbit of the flow and is the
weaker topological analog of ergodicity.

If such an ergodic or topologically transitive metric exists close to the round metric on
S™, more precisely, if such a metric is 9/16-pinched (9/16 < K < 1), then it must possess a
non-hyperbolic closed geodesic. For, in [BTZ], the authors show that any metric satisfying
this pinching condition must possess a non-hyperbolic closed geodesic. Generically these
non-hyperbolic closed geodesics are non-degenerate elliptic [Kl], and it follows from the
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KAM (Kolmogorov-Arnold-Moser) theorem [Ko, A1, A2] that the geodesic flow for a metric
which possess a non-degenerate elliptic geodesic can not be ergodic. Thus any ergodic
example which is 9/16-pinched must possess either a parabolic or degenerate elliptic closed
geodesic.

The only positive result was obtained by Knieper and Weiss [KW] who constructed real
analytic metrics with positive curvature and positive topological entropy on the sphere S2.
Their examples are small conformal perturbations of the standard metric on an ellipsoid
whose three axes have different lengths and can be constructed arbitrarily close to the
round metric. There are horseshoes in these examples on which the geodesic flow has
strongly stochastic behaviour. However it is unknown whether these examples exhibit
chaotic dynamics on sets of positive Liouville measure. The KAM theorem prevents these
examples from having a dense orbit. The existence of the horseshoe implies that the
geodesic flows of these surfaces have infinitely many hyperbolic closed geodesics, and in
fact an exponential growth rate of closed geodesics.

Another measure of the complexity of a flow is the number and growth rate of closed
orbits. It is well known that geodesic flows on negatively curved manifolds have an expo-
nential growth rate of closed orbits, the growth rate being the topological entropy. Franks
[F] has shown that the geodesic flow on every positively curved two-sphere possesses infin-
itely many closed orbits. One might think that the simple topology of the sphere could be
an obstruction for the geodesic flow of g to have complicated dynamics on a large set. This
is not the case. Donnay [D1] and Burns and Gerber [BG] have constructed smooth (and
real analytic) metrics on the sphere whose geodesic flows are Bernoulli. Donnay, Burns,
and Gerber construct their metrics by starting with a thrice punctured sphere and consid-
ering its complete hyperbolic metric. They then alter the metric far off into the cusps by
cutting off the remainder of the cusps and gluing in reflecting caps. The geodesics leave
the reflecting caps focused as they entered, and the cone family can be controlled in the
caps. It is clear that these examples have “mostly” negative curvature, and that the neg-
ative curvature is the mechanism that causes the complicated dynamics. Although later
examples by these authors require significantly less negative curvature, some negative cur-
vature is essential for their constructions. In 1996, Lohkamp announced the construction
of metrics with ergodic geodesic flow on all compact manifolds.

There are intriguing analogs between the geodesic flow for a Riemannian metric of
positive curvature and the billiard flow on a smooth and strictly convex billiard table.
In particular Lazutkin [L] showed that the billiard flow on any strictly convex billiard
table (the obvious analog of positively curved surface) possesses a non-hyperbolic closed
geodesic and that the billiard flow can not be topologically transitive. This follows from
the existence of caustics near the boundary. These analogies have caused some people to
speculate that the geodesic flow on a positively curved manifold may not be topologically
transitive.

We now state our two main theorems. They show that rather complex dynamics can
be achieved on rather large sets for the geodesic flows of metrics that are very close to the
round metric on a sphere. For simplicity we shall consider the case of S3, but the proofs
easily extend to higher dimensions and thus the theorems are also true in dimension n for
n > 3.

We first construct a metric close to the round metric on S3 whose geodesic flow has a
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horseshoe that is nearly dense. More precisely:

Theorem 0.1. For any e > 0 there exists a C*®° Riemannian metric on the sphere S that
18 within € of the round metric and has a horseshoe in its geodesic flow which is e-dense.

To prove Theorem 0.1 we first perturb the round metric to create a set of e-dense
hyperbolic closed orbits O4, .. ., O, (tangent to great circles 1, ..., ¥,;,) with a heteroclinic
connection between each successive pair of orbits, i.e., for each ¢ there exists a bi-infinite
orbit O; ;41 (tangent to a geodesic ¢;) that is backwards asymptotic to O; and forwards
asymptotic to O;41. We then effect small localized metric perturbations to break all these
heteroclinic connections so that the new stable and unstable manifolds of the perturbed
hyperbolic closed geodesics (which remain hyperbolic) intersect transversely. It follows
that this perturbed metric has an e-dense horseshoe (locally maximal hyperbolic set) in
the unit tangent bundle and thus will have an orbit which is e-dense in the whole unit
tangent bundle. The geodesic flow for this perturbed metric will have positive topological
entropy becasue it contains a horseshoe.

By carefully iterating the construction in the proof of Theorem 0.1, we exhibit a metric
on the sphere S2 that is close to the round metric and has a geodesic flow with an orbit
whose closure has almost full measure. More precisely:

Theorem 0.2. Given € > 0, there exists a C™ metric g on S3 that is within € of the
round metric go (in the C* topology) with the property that there is an orbit of the geodesic
flow qbz whose closure has (normalized) Liouville measure at least 1 — ¢.

It is not impossible that (at least some of) the metrics constructed in Theorem 0.2
actually have topologically transitive geodesic flows. However, we do not know how to show
this. The geodesic flows constructed here do have positive topological entropy because they
contain horseshoes.

The construction used to prove the above theorems requires three dimensions. However,
on S2, one can construct a metric whose geodesics approximate trajectories of the well
known stadium billiard. Recall that the stadium is the C' convex curve formed by two
semi circles joined by two parallel line segments (see Figure 1A). We can approximate the
stadium by a table whose boundary is a smooth convex curve, and then form a smooth
convex surface that contains parallel copies of this table separated by a narrow strip with
very strong positive curvature, as shown in Figure 1B.

It is obvious that if the top and bottom of the surface are made close enough together,
and each of them approximates the stadium well enough, long geodesic segments on the
surface will closely follow trajectories from the stadium billiard. The geodesic will switch
between the top and the bottom of the surface each time the billiard trajectory bounces
off the edge of the table. The stadium billiard is ergodic, and hence there is a dense orbit
of the billiard flow. We can construct our surface so that its geodesic flow has an orbit
that approximates as long a piece of this dense orbit as closely as we wish. Thus we can
produce a metric on S? with an e-dense orbit of the geodesic flow for any € > 0. These
metrics clearly have non-negative curvature. However, an easy perturbation argument
gives strictly-convex surfaces (metrics with positive curvature) with an e-dense orbit of
the geodesic flow for any € > 0.
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F1GURE 1A. STADIUM BILLIARD

FIGURE 1B. OUR SURFACE

We thank Charles Pugh for his interest in this work and for convincing us to improve
our exposition in Section 4.

1. Preliminaries from Dynamical Systems

A continuous flow ¢* on a compact metric space X is topologically transitive if given any
two non empty open sets U,V C X , there exists T > 0 such that ¢ (U) NV # (. This
is equivalent to the existence of dense orbit of ¢*. We say that the flow is e-topologically
transitive if given any two open sets U,V C X which contain balls of diameter ¢, there
exists T' > 0 such that ¢7(U) NV # (. This is equivalent to the existence of an e-dense
orbit of ¢!, i.e., there exists an orbit which intersects every ball of diameter at least ¢.

A topological property of a flow which is stronger than topological transitivity is topo-
logical mixing. A continuous flow ¢* on a compact metric space X is topologically mizing
if given any two non empty open sets U,V C X , there exists T > 0 such that for allt > T
we have ¢ (U)NV # (. We say that the flow is e-topologically mizing if given any two non
empty open sets U,V C X which contain balls of diameter ¢, there exists T' > 0 such that
for any ¢t > T we have ¢*(U) NV # 0.

Let X be a C! manifold and ¢! : X — X be a C! flow. Assume that the flow possesses
a hyperbolic closed orbit O. Let U be a small neighborhood of O. We define the stable
manifold W*(O) by
W2(0) = {z: ¢*(z) € U for all t > 0}

and the unstable manifold W*(O) by

W*(O) = {x: ¢*(x) € U for all t < 0}.
4



If follows from the stable manifold theorem [HPS] that W#(O) and W*(O) are immersed
C'! manifolds.

We require a version of Smale’s Homoclinic Theorem [S] for flows possessing a hetero-
clinic connection. Let X be a C!' manifold and ¢* : X — X be a C! flow. Assume that
the flow possesses hyperbolic closed orbits Oq,...,O,, such that the stable manifold of
O; intersects the unstable manifold of O;; transversely at U; for each : = 1,...,m — 1
and the stable manifold of O,, intersects the unstable manifold of O, transversely at U,,.
Then the flow has a locally maximal hyperbolic compact invariant set K (a horseshoe)
containing O; U ---U Oy, and Uy U - -- U U,,. The periodic orbits are dense in K and the
flow ¢® restricted to K is topologically mixing.

2. Small perturbations to the round metric

In this section we describe the types of perturbation which will be used in Section 3 to
prove Theorems 0.1 and 0.2. Before doing so, we make some general remarks.

The geodesic flow q’)g of a Riemannian metric g on S® is usually thought of as acting
on the bundle TngP’ of vectors that have unit length with respect to g. This convention
is inconvenient for us, because it would make the geodesic flows for different metrics act
on different bundles. Instead we will use radial projection in the fibers of T'S2 to identify
T,S® with the unit tangent bundle of the standard round metric go. The notation 7' S?
will mean TgloS?’. It will be convenient to use the Sasaki metric and Liouville measure
(normalized to be a probability measure) for go to measure distances and volume in 753,
We interpret Theorems 0.1 and 0.2 in this way. It is easily seen that these theorems still
hold if the distance and measure defined on T'S3 by the perturbed metric g are used
instead.

The basis of our construction is the following proposition, which allows us to perturb
the round metric on S? so as to make given orbits of the geodesic flow hyperbolic and
create a heteroclinic orbit connecting them.

Proposition 2.1. Lety; and 3 be geometrically distinct geodesics in S? with the standard
metric. We can choose a metric g1 on S?, arbitrarily close (in the C* topology) to the
round metric, such that y; and 7y are geodesics for gy, the corresponding closed orbits Oy
and Oz of the geodesic flow for g1 are hyperbolic, and W*(O1)"W*(O3) # (0. Furthermore
this perturbation can be made in an arbitrarily small neighbourhood of one of the two
intersection points of v1 and ys.

Proof. Let p be one of the two antipodal points in which the geodesics y; and 7y, intersect.
Let v; and w2 be the vectors based at p that belong to O; and Os respectively. We shall
use geodesic polar coordinates (for the round metric) on $? with p as center: let r € [0, 7]
be the radial coordinate and 6 € S* the angular coordinate. We think of S* as [0, 2] with
its endpoints identified. In these coordinates, the round metric on S2 is dr? + sin?r d62.
Let 61 and 03 be the values of the 6 coordinate on the geodesic rays emanating from p that
are tangent to v; and vy respectively. The hypotheses imply that 6; and 65 are distinct
and not antipodal to one another. We may assume that the direction in which we measure
0 and the position of the ray # = 0 were chosen so that 0 < 6 < 05 < 7.
5



Choose a C*® flow a; on S! such that

(1) the only fixed points in [f;, 03] are a hyperbolic source at 6, and a hyperbolic sink
at 0s; and
(2) every point of the arc [r + 601, 7 + 03] (which is antipodal to [0, 62]) is fixed.

Choose p € (0,7) and a C*° function 7 that is defined on [0, 7], 0 on [0, p/3], nonde-
creasing on [p/3,2p/3], and constant and positive on [2p/3,7]. Let f : S? — S? be the
diffeomorphism that maps the point with coordinates (r, ) to the point with coordinates
(r,ary(0)). Tt follows from (1), (2) and the definition of f that f fixes all points on v,
and 2. The circles 7 = const are mapped to themselves. Outside the circle r = 2p/3, each
ray 6 = const is mapped to another ray of this form.

FIGURE 2. SLIGHTLY PERTURBED METRIC ON S?2

We are now ready to define the new metric g;. Vectors tangent to the circles » = const
will have the same length as in the round metric. The images under f of the rays # = const
will be unit speed geodesics orthogonal to these circles. In terms of the coordinate vector
fields, 0/06 and 0/0r, this means that 0/060 has the same length in the new metric as in
the old metric, and that the pushforward by f of 9/0r is a unit vector field orthogonal
to 0/06. Notice that the pushforward by f of d/9r coincides with 9/0r outside the circle
r = 2p/3; it follows that g; coincides with the round metric outside the circle r = 2p/3.
The metric g; has the form a(r, #) dr? + sinr d6? 4 2b(r, §) drdf, where a(r,6) and b(r, 0)
are smooth functions which depend on f.

Our construction ensures that the images under f of the level curves of 6, i.e. the images
under f of the great circle arcs from p to its antipodal point, are geodesic segments for the
new metric g;. For 6 € (61,03) the image under f of such an arc is a geodesic for the new
metric which behaves as shown in Figure 2. While r < p/3, this geodesic coincides with
a great circle. But as the geodesic passes through the band where p/3 < r < 2p/3, the
value of 6 increases as the new geodesic passes through the band. After that the geodesic
coincides with a great circle as it passes through the antipodal point of p and then returns
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to p through the sector where m + 6; < 6 < m + 6. This pattern is then repeated. It is
easy to see from this that any geodesic of the new metric on S? that leaves p in the sector
01 < 0 < 02 is backwards asymptotic to y; and forwards asymptotic to ~s.

Since the great circles v; and 7, are geodesics for the new metric g;, O; and Oy are
periodic orbits for the geodesic flow of g; Since #; and 0; were hyperbolic fixed points of
the flow a4, it is easily seen that the Poincaré map for each of these orbits has an eigenvalue
that is not on the unit circle; and since the geodesic flow preserves the Liouville volume, it
then follows that that O; and Oy are hyperbolic closed orbits of the geodesic flow for the
new metric. The discussion in the previous paragraph shows that W*(O,) N W#(02) # 0.

The above construction can be performed with arbitrarily small p (hence it is enough
to change the metric on S? in an arbitrarily small neighborhood of the point p) and f can
be chosen as close to the identity in the C'*° topology as we wish. Thus g; can be made as
close to the round metric in the C'*° topology as we wish; the new metric will have positive
curvature provided we make the perturbation sufficiently small. |

We now suppose that the S? considered in Proposition 2.1 is a great sphere ¥ embedded
in §3. The next proposition shows that the change of metric on S$2 described above can
be realized by a change of metric on S3 which, in particular, leaves X totally geodesic.

Proposition 2.2. Suppose that ¥ is a great 2-sphere in S® (with the round metric) and
31 and Yo are great 2-spheres that intersect Y orthogonally in distinct great circles o
and oy. Let v1 and 7, be geodesics in S obtained by choosing directions for o1 and
o9 respectively. Then the change of metric g1 on X described in Proposition 2.1 can be
achieved by a change of metric in an arbitrarily small ball B in S3 around one of the two
points in X N X1 N g, which leaves the three spheres 33, 1, and Yo totally geodesic, and
which does not change the metric on 1 or Yo. This perturbation can effected arbitrarily
close (in the C™ topology) to the round metric on S3.

Proof. Let p be one of the two antipodal points in XN NY5. We extend the construction
used in the proof of the previous proposition to a change of metric on a neighbourhood in
53 of the point p. To this end we extend the coordinates used in the proof of Proposition
2.1 to a neighbourhood in S® of p. We introduce a third coordinate s such that |s(q)] is
the distance of a point ¢ from 3, measured along the great circles orthogonal to . The
other coordinates 7(gq) and 0(q) are defined to be the r and 6 coordinates of the orthogonal
projection of ¢ to ¥. These coordinates are illustrated in Figure 3.

great circle orthogonal
to X

\‘\ q=(r,8,s)




FIGURE 3.  (f,r,s) COORDINATE SYSTEM ON S3

Choose pg > 0 sufficiently small such that the number p chosen during the construction
of the metric g; on X in Propositon 2.1 satisfies p < pg. The metric g; on X differs from
the round metric only on XN B(p, po)-

Let ((s) be a bump function such that g(s) = 1 if |s|] < po/3, 0 < B(s) < 1 if
po/3 < s <2pg/3and f(s) =0if s > 2py/3. Let F be the diffeomorphism of B = B(p, 2p0)
that maps the point with coordinates (r, 6, s) to the point with coordinates (7, ag(s)r(r)0, 5),
where o is the flow used in the construction of f in the proof of Proposition 2.1. Observe
that F' has properties analogous to those of f:

e The level surfaces of the coordinates r and s are mapped into themselves;
e Outside the region where r < 2p/3, one level surface of the coordinate 6 is mapped
to another level surface of 6.

Furthermore,
e The function F is the identity outside the region where |s| < pg.

In the (,6, s) coordinates, the round metric on S is cos?s (dr? + sin®r df?) + ds?. We
now define a new metric g, on B in S which will coincide with the round metric on the
complement of B. In B we decree that the coordinate vector fields /06 and 0/0s will
have the same length as in the round metric and will still be orthogonal, while the unit
vector field orthogonal to both 9/00 and 0/0s will now be the pushforward by F' of 0/0r.
It follows from the above properties of F' that the new metric agrees with the old metric
except where r < 2p/3 or |s| < pg. Near p (where |s| < po/3) this new metric takes the
form

cos?s (a(r,0) dr? + sin®r d6* + 2b(r, 0) drdf) + ds?, (1)

where the functions a(r,0) and b(r, #) are functions introduced in the proof of Propositon
2.1, which give the metric g; in the (r,6) coordinates. It is obvious that we can make g9
as close to the round metric as desired by choosing pg sufficiently small.
It is easily seen that F' maps > N B into itself and maps ¥; N B into itself for j = 1, 2.
Moreover F fixes each point of ¥; N B for j = 1,2, and the restriction of F' to XN B is f.
The following lemma will be useful for showing that 3N B and ;N B are totally geodesic
surfaces.

Lemma 2.3. Let z1,...,2™ be local coordinates on a Riemannian manifold (M,g) and
let H be the hypersurface defined by *° = c, where c is a constant. Suppose that at all
points in H we have go,p = 0 and 0gg,/0x*° = 0 unless f = oy or v = op. Then H is
totally geodesic.

Proof. This is easily proved by computing Christoffel symbols. We sketch an alternative

proof. Consider a curve o that joins two points p and ¢ of H and is a geodesic for the

induced metric on H. We need to show that if we vary o, keeping its endpoints fixed,

then the energy integral is constant to first order. Since o is a geodesic in H, all variations

tangent to H have this property. Thus it suffices to consider a variation in the £*° direction.
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Suppose ¥ (u,t) is such a variation. Let v*(u,t) be the a’th component of 99 /0t(u,t) and
9ap(u,t) the metric at (u,t). When u = 0 we have:

(1) v =0;

(2) gaop = 0 unless B = ap;

(3) dvy/du =0 unless @ = ap;

(4) dgop/du =0 unless o = oy or = ay.

Hence
d d dgap dv® dvP
19 /Ot 2 _ 2 o a, B _ ap a3 o B o a
S lloy/ot]” = — aEﬁg g ag{—” VI Gap V" Gapt® -

vanishes when u = 0. Integrating with respect to ¢ now shows that derivative at u = 0 of
the energy integral is 0. |

We now show that ¥ N B is totally geodesic. This set is the level surface s = 0. Since
the pushforward of d/0r by F' is a linear combination of 9/0r and 9/00, it is obvious that
0/0s is orthogonal to both 9/0r and 0/060 in the metric g. It follows immediately from
the explicit form (1) of the metric go that on ¥ we have that

d d d

%9(8/87', 0/0r) = 59(8/80,8/89) = Eg(a/ar, 0/00) = 0.

Finally, consider ¥; N B and ¥4 N B. Away from p, these are formed by level surfaces
of the coordinate A, namely § = 61, § = 61 + w, § = 03 and § = 03 + 7. In order to be
able to apply Lemma 2.3, we need to verify that /06 is orthogonal to 9/0r and d/9s on
(21 U 22) N B and

d d d

Eg(@/@r, 0/or) = @g(a/ar, 0/0s) = @g(ﬁ/as, 0/0s) =0 (2)

on (X1 UX9)NB. We saw in a previous paragraph that g makes 9/06 and 9/0s orthogonal.
Recall that 9/0s and the pushforward (F'),0/9r of 8/0r by F are orthonormal with respect
to the metric g, and observe that

0

0 0
E(’r? 9’ 8) - E(Ta 97 8) + C(Ta 97 8)%(7.7 97 5)7

(F)«
where ¢(r, 0, s) is a smooth function that vanishes when 6 = 61,61 + 7, 62, 02+ 7. It follows
immediately that 9/0r is orthogonal to /00 on (31 U X) N B. It is straightforward to
verify that (2) holds on (X;UX5)NB. We can now apply Lemma 2.3 to deduce that ¥;NB
and Y5 N B are totally geodesic. |

The next proposition allows us to make the heteroclinic orbits created using the previous
propositions into transverse intersections of the relevant stable and unstable manifolds. It
will be used to obtain the horseshoe promised in Theorem 0.1.
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Proposition 2.4. Let O; and Oy be hyperbolic periodic orbits for the geodesic flow of a
Riemannian manifold (M, g) that are connected by a heteroclinic orbit O12 C W*(O1) N
W?#(0O3). Then we can make an arbitrarily small (in the C* topology) perturbation of g
i an arbitrarily small neighbourhood of any given point on the geodesic corresponding to
O1,2 so that Oy and Oy are hyperbolic closed orbits for the new geodesic flow and W*(0O1)
and W*(O3) now intersect transversally along O1 2.

Proof. The method for making the intersection transverse has been described by Donnay
[D2] in the two dimensional case, and in general by Petroll [P]. Since Petroll’s paper is
not widely available, we give a brief sketch of the idea; [G] and [E] are good references for
background material.

Let vy be the geodesic to which O 2 is tangent, parametrized so that the vectors (%)
belong to O15. Let W**(t) and W**(t) be respectively the strong stable manifold for
O; and the strong unstable manifold for O;;; that contain 4(¢). It is well known that
for all ¢, except for a discrete subset, there are neighbourhoods N®° and N"* of 4(¢) in
W#s(t) and W"*(t) respectively that project to smooth hypersurfaces H**(t) and H"*(t);
the neighbourhoods N** and N“* consist of the unit normals to H**(¢) and H"“*(t) that
point in the right direction.

Let U®*(t) and U*"(t) denote the second fundamental forms of H~(¢) and H"*(t)
respectively with respect to ¥(t). The intersection of W*(0;) with W*(O,;41) along O1 2
is transversal if and only if W*%(t) and W™*(t) intersect transversally at +(t); if this
property holds for one time ¢ it will hold for all times ¢. The intersection of W**(ty) and
W*(tg) at §(to) is transversal if and only if 0 is not an eigenvalue of the quadratic form
U™ (tg) — U®*(to).

Now U?®*(t) and U""*(t) are solutions of a differential equation. Suppose that E;(t)
are covariantly constant vector fields along v that form an orthonormal basis for the
orthogonal complement of §(¢) for every ¢t. Let R(t) be the matrix whose ij’th entry is
(R(Y(t), E;(t))7(t), E;(t)), where R is the curvature tensor. Then the matrices that express
U**(t) and U"“(¢) in terms of this basis satisfy the following matrix Riccati equation:

U'(t) + U?(t) + R(t) = 0.

What is crucial is not the exact form of the equation, but the fact that U®*(y) is
determined by R(t) for t <ty and U**(%¢) is determined by R(t) for ¢t > t,. The orbit Oy o
is nonrecurrent, because it is forwards and backwards asymptotic to the closed orbits O; 41
and O; respectively. It follows from this that the times at which the geodesic v crosses
itself are isolated. Hence there exist t; and ts such that tqg < t; < t3 and v does cross
itself at any point y(¢) with t; < ¢t < t5. Petroll uses Fermi coordinates along ~y(t) for
t1 < t < tg to perturb the metric so that the curvature tensor changes but the curve ~
remains a geodesic. This will affect U"*(to) but not U®*(tg). It is then easy to choose a
perturbation such that 0 is not an eigenvalue of U**(to) —U?®*(t9). We emphasize that this
perturbation can be made arbitrarily small in the C°° topology and can be localized in an
arbitrarily small neighborhood of the point 7y (to). [ |

The final proposition allows us to glue together geodesics that are forward and backwards
asymptotic to a hyperbolic closed geodesic.
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Proposition 2.5. Let vy be a closed geodesic in a Riemannian manifold (M, g) for which
the corresponding orbit O of the geodesic flow is hyperbolic. Let v € W*(O) and w €
W*(O). Then we can make an arbitrarily small (in the C* topology) perturbation of g in
an arbitrarily small neighbourhood of any given point on vy so that v and w lie on the same
orbit of the new geodesic flow.

Proof. Let N be a neighbourhood of the given point on v. We can choose t; > 0 > t5 and
d > 0 such that, if N7 and Ny are the closed d-discs around p; = 7, (t1) and ps = 7, (t2)
respectively, then

(1) NlﬂNQZ(Z) and N1UN2 CN;

(2) v,(t) ¢ N1 U N> for t > 0 except for t; — 6 <t <1+ & when ~,(t) € Ny;

(3) Yw(t) ¢ N1 U N, for t < 0 except for to — 0 <t <ty + 6 when v, (t) € Na.

Since the closed orbit O is hyperbolic, we can find vectors v’ and w’ as close as we wish
t0 4y (t1) and A, (t2) respectively such that w’ lies on the forward orbit of v’ and the orbit
segment O’ between v’ and w’ lies as close as we wish to the union of the forward orbit of
v and the backward orbit of w. In particular, we can ensure that v,/ (d) and v, (—9) lie on
the boundaries of N; and N; respectively and the segment of ~,: that lies between these
points does not enter N7 U Nj.

We now show that it is possible to perturb the metric inside /N7 so that the geodesic
which enters N; tangent to 4, (t1 — ) exits Ny tangent to 4,/(d). In order to do this,
choose a sphere S that is close to the geodesic sphere of radius §/2 around p; = 7,(¢1),
passes through ~v,(t1 — §/2) and ~,/(6/2), and is orthogonal to 4,(t; — 6/2) and ,(6/2).
Let D, be the closed r-disc and S, the sphere of radius r around the origin in 7, M
with the geometry given by the inner product gy, (-,-) defined on T, M by g. Choose a
diffeomorphism ¢ : Ds/5 — N that is close to the exponential map and has the following
properties:

(1) The initial value 1 (0) = p;.

(2) The map 4 satisfies 1)(0Ds/2) = S and 1) (Int Dj/5) lies inside S.

(3) The map v maps one diagonal of D5/, to a curve joining 7, (t1 —§/2) and 7,/(d/2).

(4) The map Dty maps the inward unit normal vector field on D to the inward unit
normal vector field on S.

(5) If z € 9D, then the curve ¢t — ¥((1 —t)z), 0 < t < 1/2 is the geodesic segment
in N7, parametrized with speed §/2, that starts orthogonally from S at v(z) and
goes distance §/4 into the interior of S.

Let V be the vector field on Ds/9 \ {0} that points radially outward and has unit length
with respect to g, . Properties (4) and (5) of v ensure that if z € Ds/y \ Ds/4, then
Dy(V (2)) is a unit vector orthogonal to 9(S),|)-

We can define a new Riemannian metric on ¢(Ds/, \ {0}) by leaving the lengths of
vectors tangent to the spheres 1(S,) unchanged and decreeing that D (V(z)) is a unit
vector field that is orthogonal to these spheres. This metric agrees with the original metric
outside the image of ¥(Ds/4) and extends smoothly to a metric on ¢(Ds/s). It follows
from Gauss’ Lemma (see e.g. Lemma 3.3.5 in [DoC]) that ¢ maps the diagonals of D to
unit speed geodesics in N7 with its new metric.

Finally we make an analogous change of metric inside Ny so that the geodesic which
enters Ny tangent to 4,/ (—9) exits N tangent to 4y, (t2 + ). [ |
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3. Construction of an arbitrarily dense horseshoe

We begin by reminding the reader of some facts about the geometry of the round
sphere S3, which we collect into Lemma, 3.1.

Lemma 3.1. Two distinct closed geodesics on S3 intersect if and only if they lie in a
common great sphere. If they intersect, they lie on a unique 2-sphere, intersect at a pair
of antipodal points and have a common normal direction.

Proof. The proof is an immediate consequence of the facts that a closed geodesic is the
intersection of a plane through the origin with S® and a great sphere is the intersection of
a hyperplane through the origin with S3. [ |

It is evident from the proof of this lemma that it is exceptional for two geodesics to
intersect.

By a sequence of orthogonal spheres, we will mean a sequence of great 2- spheres in
S3 with the property that consecutive terms are orthogonal. Such a sequence provides an
environment in which we can apply the propositions developed in the previous section. We
say that a sequence of orthogonal spheres is nondegenerate if all its terms are distinct
and the intersection of any four of the spheres is empty®.

Let {¥;},c; be a sequence of orthogonal spheres. The sequence may be finite, infinite or
cyclic. In the cyclic case, we interpret I as the integers modulo m, where m is the number
of terms in the sequence. Let o; be the great circle in which ¥;_; and 3; intersect. The
circles formed in this way will be called the great circles associated with {3;};c;. If
the sequence is nondegenerate, then

(1) o; and o are distinct unless unless i = j.
(2) If i # j, then o; intersects o; if and only if ¢ and j are consecutive integers.

A sequence of orthogonal spheres in which all terms are distinct can be made nondegen-
erate (without destroying the orthogonality property) by an arbitrarily small perturbation.
In order to see this, observe that after making any small perturbation to one term 3;, we
can maintain the orthogonality of consecutive terms by perturbing only the two adjacent
terms 3;_1 and ¥; 1. Since all terms in the sequence are distinct, >; NY;_2 and ¥; N Y, 42
are both great circles. When we make a small enough perturbation to ¥;, these great circles
move to nearby great circles, and we can choose the new 3;_; and ;1 to be orthogo-
nal to these new great circles (which ensures that the sequence still has the orthogonality
property) and close to the old ¥;_; and ¥;;;. We can make the sequence nondegenerate
by iterating this construction.

In the proofs of Theorems 0.1 and 0.2 we need to able to start with a given collection of
great circles and construct a sequence of orthogonal spheres whose associated great circles
include the given collection. To this end, we introduce the notion of a cross centered at
o, which is an ordered pair of great spheres X = (X7,X™) that intersect orthogonally
at the great circle o. If we are given a sequence of crosses Xi,...,X,, we can always
make an arbitrarily small perturbation so that no two of the crosses contain the same
sphere and any four spheres that belong to the crosses have empty intersection; we shall

1If the chain has k < 3 terms, we require that they intersect in a great sphere of dimension 3 — k.
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always assume that a sequence of crosses has this property. In this case, each pair Ej’
and Y7, , will intersect in a great circle, and any great sphere orthogonal to this circle
will be orthogonal to both Ej and X; ;. We say that such a sphere links X; and X;;.
Linking all consecutive pairs of terms from a sequence of crosses creates a sequence of
orthogonal spheres. All terms in this sequence will be distinct if the linking spheres are
chosen suitably. If necessary, it can then be made nondegenerate by an arbitrarily small
perturbation, as described above.

Proof of Theorem 0.1. We begin by choosing a finite number of (necessarily closed)
orbits of the geodesic flow of the usual round metric on S2 whose union is e-dense in the
unit tangent bundle (with respect to the round metric). Let c1, ..., ¢, be the great circles
to which these orbits are tangent. We may assume that the orbits are all tangent to distinct
circles. Choose a cross X centered at each ¢ so that the 2m spheres in the crosses are
all distinct. By linking consecutive terms of the cyclic sequence Xi,..., X,,, we obtain
a cyclic sequence of orthogonal spheres with 3m terms Xi,...,3Y3,,. It is clear that we
can choose the cg, the Xj and the linking spheres so that >q,..., Y3, is nondegenerate.
The great circles o4,...,03,;, associated to this sequence include the c¢;. (Recall that
o; = 3;—1 NY;. Every third o; is one of the original ¢x’s.) For each i, let O; be one the
two orbits of the geodesic flow formed by unit vectors tangent to ;. We choose these
directions of Oq,...,Os,, so that these orbits include the m orbits with which we began
the construction.

For each i € Z/3m, let p; be one of the two antipodal points in which the great circles
o; and o;y; intersect. Then p; € ¥;_; N'¥; N 3,41 and it follows from (2) above that p;
is the center of a ball B; which does not intersect any other ¥;. In particular o; and ;41
are the only o;’s that enter B;.

We now describe the sequence of perturbations that produces the desired metric. Inside
each B; we apply Proposition 2.2 to make O; and O, hyperbolic as orbits of the geodesic
flow for ¥; and create a heteroclinic orbit connecting them in the unit tangent bundle of
>.;. Note that the change of metric in Proposition 2.2 leaves ¥; totally geodesic, so the set
of unit vectors tangent to ¥; is an invariant subset for the geodesic flow on T1S3.

Observe that each O; is hyperbolic as an orbit of the geodesic flows of both ¥; _; and
Y. It follows that the derivative (at the fixed point corresponding to the closed orbit) of
the Poincaré map for O; has two expanding eigenvectors and two contracting eigenvectors.
Hence each O; is a hyperbolic closed orbit for the geodesic flow of the new metric on S3.

Now we can apply Proposition 2.4 to the heteroclinic orbits that connect O; to O;41
for each 7 € Z/m. We can arrange that these new perturbations also take place inside
the B;’s and have supports disjoint from any of the previous perturbations. After these
perturbations, each of the orbits O; is hyperbolic and W*(0O;) and W*(O;,1) have a
transverse intersection for each i € Z/3m. It follows immediately from Smale’s theorem
(see §1) that there is a horseshoe containing Oy, ..., Os,,. Since these orbits include the
orbits with which we began the proof, the horseshoe that we have created is e-dense in
T183, in the sense explained at the beginning of Section 2. Theorem 0.1 now follows, since
the restriction of the geodesic flow to the horseshoe is topologically transitive. [ |
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4. Topological transitivity except on a set of arbitrarily small measure

In this section we prove Theorem 0.2. The proof is similar to that of Theorem 0.1. Again
we create a sequence of orthogonal spheres and apply Proposition 2.2 to create a sequence
of hyperbolic closed orbits linked by heteroclinic orbits. Then we will use Proposition 2.5 to
join all of these heteroclinic orbits into a single orbit, rather than applying Proposition 2.4.

The major difference from Theorem 0.1, however, is that the sequence of orthogonal
spheres is infinite rather than cyclic. When there are only finitely many spheres, we can
choose the small balls in which to perturb the metric, after we have chosen the sequence of
spheres, simply by ensuring that the sequence of spheres is in general position and choosing
the balls small enough so that each ball intersects only the three spheres that pass through
its center. Now we must choose the spheres and balls in batches. Each ball will contain a
smaller ball, which we call its core, and each core will contain a still smaller ball, which we
call the inner core. The perturbations to the metric will eventually be made in the inner
cores of the balls. We ensure that the spheres in each new batch do not intersect the inner
cores of the previously chosen balls. Then we perturb the new spheres so that they are
in general position and choose a small ball around one of the intersection points of each
triple of consecutive spheres in the batch.

We choose each batch of spheres as we did in the proof of Theorem 0.1, by first choosing
a sequence of crosses and then linking the crosses. It is straightforward to choose the crosses
so that they miss the cores of the pre- existing balls, but choosing the linking spheres so
that they miss the inner cores involves a subtlety. The spheres which can link two crosses
(X7,%7) and (X;,%7) are the spheres orthogonal to the great circle ¥7 N X5 . These
spheres all intersect in a common great circle. In order to be able to choose the linking
sphere so that it misses the inner cores, we must ensure that this common great circle
misses the outer cores of the pre-existing balls.

We now introduce the geometrical tools which enable us to overcome this difficulty.
Although these ideas come from projective geometry, it will be more convenient for us to
express them in terms of the geometry of S3 with the round metric.

The intersection of the sphere S® with a k-dimensional linear subspace of R* is a great
(k — 1)-sphere. The case k = 0 gives us the empty set, which has topological dimension
—1 and is the intersection of S3 with the space {0}. The cases k = 1,2,3 give us pairs
of antipodal points, great circles and great spheres respectively. If « is a great k-sphere,
let V,, denote the corresponding (k + 1)-dimensional subspace of R*. The dual at of «
is the great (2 — k)-sphere corresponding to the orthogonal complement in R* of V,,. If «
and A are great spheres with @ C A and dima < k < dim A, we define S¥(a, A) to be the
collection of all great k-spheres S with ot C S C A. If « is a great circle, then S%(a™t, S3)
is the space of all great 2-spheres that intersect o orthogonally. If o« C A, then A+ C o*.

The set S¥(a, A) carries a canonical probability measure Bsk(a,a) induced by Haar
measure on the group SO(a, A), which consists of orientation preserving orthogonal linear
maps of R* that map V, and V, into themselves. The measure K5k (a,4) 18 the unique
probability measure on S*(a, A) that is invariant under the natural action of SO(«, A).
Since SO(AL, at) = SO(a, A), it is easy to prove

Lemma 4.1. The bijection S — St from S*(a, A) to S2~*(AL, at) carries Bsk(a,4) tO

HSk—=2(AL oL)-
14



Now suppose that we have a collection of balls in S3. The closures of the balls are
disjoint and the sum of their radii is less than a number p < 7/1000. Define the core
and inner core of a ball from the collection with radius r to be the concentric balls with
radius 72 and 73 respectively. Let B denote the union of the balls, C the union of their
cores, and ZC the union of their inner cores.

Proposition 4.2. There is pg > 0 such that, if the sum of the radii of the balls is less than
po, then, for any space S*(a, A), where oo and A are a pair of great spheres with o C A
and k is an integer with dima < k < dim A, we have:

(1) IfanB =0, then pgrq 1){S € S¥(a, A) : SNC =0} > .99.

(2) If AL NB =0, then pigr(o,4){S € S*(a, A) : S+ NC =0} > .99.
(3) IfanC =0, then pgr(q,1){S € S*(a, A) : SNIC =0} > .99.
(4) If AANC =0, then pskq,{S € S (a, A) : STNIC =0} > .99.

Proof. We prove (1) and (3); (2) and (4) then follow easily by applying (1) and (3) to
S?27k(AL ot) and using Lemma 4.1. Let 3 = a1 N A and let B be a ball of radius r in
S3. Consider the radial projection of A\ {a} onto 3 that is defined by mapping p € A\ «
to the intersection with 3 of the unique sphere in S'*4™ (o, A) that contains p.

If o N B = (), then this projection maps the core C of the ball B to the union of a ball
in B with radius at most r and the antipodal ball in 3; and the same is true of the inner
core of B if a N C = (). There is a measure preserving bijection between S*(a, A) and
Sk=1(p, B). The proposition follows from the next lemma. |

Lemma 4.3. There is a constant b > 0 such that, if 0 < j <1 <3 and S is a great |-
sphere, then the probability (with respect to pis;(g,s)) that an element of S7(0, S) intersects
a giwen ball in S of radius r < w/1000 is at most br.

Proof. We may assume without loss of generality that the ball in question is the r-
neighbourhood in S! of the north pole (0,...,0,1). Let E = S' N (R" x {0}) be the
equator. The probability that we wish to estimate is the same as the probability that the
first j + 1 vectors of a randomly chosen positively oriented orthonormal basis of R*! span
a subspace that does not intersect the cone subtended at the origin by the given ball. If the
subspace does intersect this cone, then the last element of the basis, which is orthogonal
to the subspace, must lie in the r-neighbourhood N, of E. The probability of this is the
measure of IV, with respect to the Lebesgue measure on S! (normalized to be a probability
measure). It is clear the volume of N, is O(r). |

Let us call a great circle o good if cNB =0 and - N B = 0.

Proposition 4.4. Given ¢ > 0, we can choose p. > 0 such that, if the sum of the radii
of the balls is less than p., then the set G of good great circles is a subset of S'(0,S®)

satisfying psi(g,s3)(G) > 1 —¢/2.
Proof. This follows from Lemmas 4.1 and 4.3. |

Proposition 4.5. Assume that the balls satisfy (1)-(4) from Proposition 4.2. Let X; =
(X7, %7) be a cross such that the dual of X7 does not intersect the balls. Let o be a good
15



great circle that makes an angle greater than w/4 with 7. Let o3 be another great circle.
Then there is a cross Xo = (X3, E;) centered at oo such that:

(1) X5 and X7 do not meet the cores of the balls.

(2) X1 and X2 can be linked by a great sphere ¥ that does not intersect the inner cores
of the balls.

(3) The duals of X5 and X5 do not intersect the balls.

(4) The angle between X7 and o3 is at least /4.

Proof. Since X is centered at the good great circle o, the duals of ¥, and X7 both lie in
o3, which misses the balls because o3 is good. Thus (3) will hold for any choice of Xs.

The cross X is uniquely determined by ;. We can think of the choice of ¥ in two
different ways.

On the one hand, ¥; € 82(02, 53). Since o5 is good, it does not meet the balls, and we
can apply (1) of Proposition 4.2 to show that the set G; of spheres in §%(cq, S®) that do
not meet the cores of the balls satisfies ps2(4,,53)(G1) > .99. Rotation by 7/2 about o3,
which moves a choice for 35 to the corresponding choice for E; , s a measure preserving
map of §%(oq, 5%). Hence the set Go C Gy consisting of choices for X3 such that both X5
and the corresponding Y3 miss the cores of the balls satisfies IS2(0,5%)(G2) > .98. Thus
most X satisfy (1): more precisely X, satisfies (1) if ¥5 € Go.

It is not difficult to show that the set of spheres in S? (o2, S3) that make angle less than
m/4 with o3 has measure at most 1/2. Hence the set G3 C G consisting of choices of 33
such that both (1) and (4) hold satisfies ps2(s,,53)(G3) > .48.

On the other hand, Y5 is uniquely determined by the great circle ¥; N X7 in which it
intersects ¥+1. Let ¢ = {¢’,¢"} = 02N%7. Then ¥; NX7 lies in S'(g, ¥7). Since the dual
of E1+ does not meet the balls, we can apply (2) of Proposition 4.2 to show that the set G4
of 0 € S*(¢q,X7) such that o+ misses the cores of the balls satisfies usl(q,zi)(g[;) > .99.

By (3) of Proposition 4.2, we see that for any o € G, there are spheres in S?(o*, S3) that
miss the inner cores of the balls. But S2(ot, $%) is the space of great spheres orthogonal
to o; any of these spheres can be used to link X; to the cross X5 determined by o. Thus
most X satisfy (2): more precisely X, satisfies (2) if £, N 27 € Gy.

It remains to show that the two notions of “most” in the above statements are sufficiently
compatible to enable us to choose ¥, so that ¥, € Gz and X; N X € G4. Thus we wish
to show that ¢~1(G4) N G3 # B, where ¢ : §%(0q, S3) — S(q,X]) takes S € S%(09, S3)
to SN 21". In order to this, we need to estimate the Jacobian of ¢ with respect to the
measures (s (q,,s3) and s (q,5t)"

Observe that there is a natural identification of S2 (o2, S3) with the set of antipodal pairs
in the circle C; of unit vectors at ¢’ that are orthogonal to o2. With this identification,
1452(5,5%) 18 the measure induced on the set of antipodal pairs by Lebesgue measure on C1.
Similarly there is a natural identification of S*(g, ¥:7) with the set of antipodal pairs in the
circle Cy of unit vectors tangent to 7 at ¢’. The measure S (.= becomes the measure
induced on the space of antipodal pairs by Lebesgue measure on Cs.

The Jacobian of ¢ that we wish to estimate is the same as the Jacobian (with respect
to the Lebesgue measures) of the map (Z : C1 — () defined by first projecting vectors
in C; to the plane Tq:ET along the lines in 7,53 that are parallel to Ty o2, and then
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normalizing the resulting vectors. An elementary calculation shows that the Jacobian of
(Z lies between sina and csc a, where « is the angle between o3 and ¥1. Since we have
assumed that a > /4, it follows that the Jacobian of ¢ lies between 1/ V2 and /2. Using
this and our earlier estimates, we see that u52(02753)(¢_1(g4)) + 182 (05,93)(G3) > 1. Hence
¢71(Gs) N G3 # 0, as desired. [ |

Proof of Theorem 0.2. Let ¢ > 0 be given. Choose p > 0 small enough so that the
conclusions of Propositions 4.2, 4.4 and 4.5 hold for any collection of balls whose diameters
have sum less than p. We shall construct an infinite sequence of orthogonal spheres
DI FUNIND Y Y- UUNUED Yo 3: AU

The sequence will be nondegenerate, so all of its terms are distinct, any three spheres from
the sequence intersect in a pair of antipodal points, and at most three spheres from the
sequence can intersect at any point of S3. These balls will be pairwise disjoint, and the
inner core of each of them will intersect with only three spheres from the sequence, namely
the three spheres that intersect at its center.

For each triple of consecutive spheres from the sequence, we shall choose a ball centered
at one of the antipodal points where the three spheres intersect. We emphasize that the
choice of the balls is part of the process of choosing the sequence; we cannot try to choose
the balls after first choosing the sequence. .

Let of = X9 N %1; for j > 2, let o :E{ﬁ_jflﬂzi; and for j > 1 and 2 < i < my, let
ol =%!_, N%!. Then

1 1 2 2 3

15 30m1901s- 3Oy Ol - -

is the sequence of great circles associated with our sequence of orthogonal spheres. For
each o7, O will be one of the two orbits of the geodesic flow formed by unit vectors tangent
to 0. Our construction will ensure that there is a sequence of sets

T3 > G; DGy D ---

such that for each j > 1 the measure of 7153\ G; is at most ¢ — £/27 and every element
of G; will lie within distance €/27 of oJu---U Ofnj. (As explained at the beginning of
Section 2, we use the distance and volume induced on T1S3 by the round metric go.)
Once we have the sequences of spheres and orbits satisfying the above properties, the
proof of Theorem 0.2 is simple. As in the proof of Theorem 0.1, we see from Proposition 2.2
that we can make perturbations of the metric that are supported in the inner cores of the
balls so as to make each of the orbits in the sequence
0=0s,...,0,,,03,...,0% ,0%,...
hyperbolic. At the same time we can create heteroclinic orbits joining each pair of con-
secutive terms of . More precisely, for each pair of consecutive terms in O, we construct
an orbit in the intersection of the unstable manifold of the earlier term and the stable

manifold of the later term. We now apply Proposition 2.5 to each orbit from O (except
17



O1). We see that, by making perturbations to the metric in the inner cores of the balls,
we can create a single orbit O which contains long pieces from each of the heteroclinic
orbits. We can arrange that, for each j > 1, the orbit O passes within distance /27 of
each element of O{ U---u Oan. Hence, for each j > 1, the orbit O passes within distance

/2771 of each element of G;. Thus the closure of the orbit O contains the set ﬂ(;il Gj,
which has measure at least 1 — €.

It remains to construct sequences of orbits, balls and orthogonal spheres that satisfy all
of the above properties. This is done by iterating a construction very similar to that used
in the proof of Theorem 0.1. We shall outline the first two steps.

In the first step, we choose orbits O1, ..., 0}, , great spheres ¥.¢,31,..., X}  and great

circles o1,...,0},, so that:
(1) 9,%1,...,%},, is a nondegenerate sequence of orthogonal spheres.

1
mi

(

(3) The vectors in O; are tangent to ;.

(4) O1U---UO,, ise/2 dense in G :=T'S>.

(5) The pair of antipodal points dual to X}, is disjoint from all the spheres 9,..., 5L
except for X}, _;.

2) of,...,0p,, is the sequence of great circles associated with X9,%1,...,%}, .

The above can be achieved by following the construction used in the proof of Theo-
rem 0.1. We start with a set of orbits whose union is /2 dense in T!S3, choose a sequence
of crosses centered at the great circles to which these orbits are tangent and then link the
crosses to obtain a sequence of orthogonal spheres; these are the spheres X9, %1 .. E}nl.
As we explained in Section 3, we can ensure that the sequence is nondegenerate. After
having done this, we perturb 31 , among the great spheres orthogonal to L ,_1 so that
the dual of 31 , does not coincide with any of the pairs of antipodal points where three
spheres from the sequence intersect. This is possible because each pair of antipodal points
in X}, _, is the dual of a great sphere orthogonal to X}, _;. Finally the o} are chosen to
be the great circles associated with ¥9,%],..., 3} ~and the orbits O} are chosen so that
the vectors in O} are tangent to o} and the orbits O} include the orbits with which we
began.

We now choose a sequence of balls. Let p}, 1 <% < my—1, be one of the two points
where o} and o}, intersect. Thus pi € XY NXiNXj and p; € ¥}, NE} NX}, for
2 <3< m;— 1. We choose a ball BZ-1 centered at each point pi1 such that:

1) The balls are pairwise disjoint;

2) Exactly three of the spheres ¥9, %1, ..., E}nl enter the inner core of each ball.

3) The dual of X, is outside the balls.

4) The sum of the diameters of By, ..., B}, _; is at most p/2.

5) The set Gy of vectors in T'S? that are good with respect to Bi,..., B}, _; has
measure at least 1 — /2.

(
(
(
(
(

These properties can be achieved simply by choosing the balls small enough. This
completes the first step.

In the second step, we choose O2, ..., O,2n2, great spheres ¥:2,..., 32, ,» and great circles
03,...,0%, so that:
(1) None of the spheres ¥2,...,%2 intersect with the inner cores of any of the balls
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m1—1'
(2) £0,%4,...,8},,%3,...,22, is a nondegenerate sequence of orthogonal spheres.
(3) o2,...,02, , is the sequence of great circles associated with the sequence of orthog-
onal spheres X}, ,%3,..., %2 .

(4) o2 is the great circle to which the unit vectors belonging to the orbit O? are tangent.

(5) O7U---UO2, is e/4 dense in G.

(6) The pair of antipodal points dual to ¥2,_ is disjoint from all the spheres X9,..., 52
except for X2, _;.

The process of choosing these objects is a little more complicated than the equivalent
part of step one because of the extra constraints involving the balls. We start with a
sequence of orbits whose union is an /4 dense subset of G;. We also ensure that the great
circle to which the first of these orbits is tangent makes angle greater than m/4 with the
sphere ¥.1. .- Now we can repeatedly apply Proposition 4.5 to choose a sequence of crosses
centered at the great circles to which these orbits are tangent so that:

(1) None of spheres in the crosses enters the cores of the balls Bi,..., B}

mi—1"
(2) The first cross (which will be called (X3,%3)) can be linked to (X}, _;,%}, ) by a
great sphere X7 that does not enter the inner cores of Bf,...,B,, _;.
(3) Each succeeding cross can be linked to the previous cross by a great sphere that
does not enter the inner cores of Bi,..., B}, _;.
In this way we choose great spheres 2, ..., Ean such that

0 1 1 2 2
IS SN S 1D v

miq?

is a sequence of orthogonal spheres. As in the first step, this sequence can be made
nondegenerate by arbitrarily small perturbations, and we can perturb Efm among the
great spheres orthogonal to E,Zm_l so that the dual of Efm does not coincide with any
of the pairs of antipodal points where three spheres from the sequence intersect. The o7
are chosen to be the great circles associated with X}, ,¥},...,%2 and the orbits O? are
chosen so that the vectors in O2 are tangent to o? and the orbits O? include the orbits
with which we began step 2.

We conclude step 2 by extending the sequence of balls. Let pl, , be one of the two
points where o, and o7 intersect, and for 1 <4 < mgy — 1 let p? be one of the two points
where o7 and o2, intersect. Thus p}, € X} _,N¥, NXF, pf € ¥}, NEINES and
p? €X?  NEINXZ, for 2 <i < my— 1. We choose a ball B}, centered at p,, and a
ball B2 centered at each point p? such that:

(1) The balls Bf,..., B, ,Bi,...,B2__, are pairwise disjoint;

mq?

(2) Exactly three of the spheres 9,31 ... E}nl, 2., 272712 enter the inner core of
each ball.

(3) The dual of X2, is outside the balls Bf,...,B} ,B3,..., B2

mi? mo—1"
(4) The sum of the diameters of Bi,..., B}, ,B%,..., B2 _; is at most p/2 4 p/4.

mq?
(5) The set G of vectors in T*S® that are good with respect to the sequence of balls
Bi,...,B}, ,B},..., B2, _, has measure at least 1 — /2 — /4.
These properties are obtained in part from our choice of the spheres ¥? and in part by
choosing the new balls sufficiently small.
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The proof of Theorem 0.2 is completed by iterating the above construction, and then

perturbing the metric as described above. |
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