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Abstract

Pugh and Shub [PS3] have conjectured that essential accessibility
implies ergodicity, for a C2, partially hyperbolic, volume-preserving
diffeomorphism. We prove this conjecture under a mild center bunch-
ing assumption, which is satisfied in particular by all partially hy-
perbolic systems with 1-dimensional center bundle. We also obtain
ergodicity results for C1+δ partially hyperbolic systems.

Introduction

In [Ho] Eberhard Hopf introduced a simple argument that proved the ergod-
icity (with respect to Liouville measure) of the geodesic flow of a compact,
negatively curved surface. The argument has since been applied to increas-
ingly general classes of dynamical systems. The key feature that these sys-
tems possess is hyperbolicity. The strongest form of hyperbolicity is uniform
hyperbolicity. A diffeomorphism f : M → M of a compact manifold M
is uniformly hyperbolic or Anosov if there exists a splitting of the tangent
bundle into Tf -invariant subbundles:

TM = Es ⊕ Eu,

and a continuous Riemannian metric, such that for every unit vector v ∈ TM :

‖Tfv‖ < 1 if v ∈ Es, (1)

‖Tfv‖ > 1 if v ∈ Eu. (2)
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Anosov flows are defined similarly, with Es⊕Eu complementary to the bundle
E0 that is tangent to the flow direction. The bundles Es and Eu of an
Anosov system are tangent to the stable and unstable foliations W s and Wu,
respectively. The properties of these foliations play a crucial role in the Hopf
argument.

Hopf’s original argument established ergodicity for volume-preserving
uniformly hyperbolic systems under the assumption that the foliations W s

and Wu are C1. While the leaves of these foliations are always as smooth as
the diffeomorphism, the foliations are usually only only Hölder continuous
in the direction transverse to the leaves. In particular, for geodesic flows on
arbitrary compact manifolds of negative sectional curvature, these foliations
are not always C1.

Anosov and Sinai [AS, A] observed that the C1 condition on the sta-
ble and unstable foliations in the Hopf argument could be replaced by the
weaker condition of absolute continuity, which we discuss in Section 2.2.
They showed that Ws and Wu are absolutely continuous if the system is C2,
thereby establishing ergodicity of all C2 volume-preserving uniformly hyper-
bolic systems, including geodesic flows for compact manifolds of negative
sectional curvature.

At this point, it became clear that the Hopf argument should extend to
even more general settings. Two natural generalizations of uniform hyper-
bolicity are:

• nonuniform hyperbolicity, which requires hyperbolicity along almost
every orbit, but allows the expansion of Eu and the contraction of Es

to weaken near the exceptional set where there is no hyperbolicity; and

• partial hyperbolicity, which requires uniform expansion of Eu and uni-
form contraction of Es, but allows central directions at each point, in
which the expansion and contraction is dominated by the behavior in
the hyperbolic directions.

The first direction is Pesin theory; the second is the subject of this paper.
Brin and Pesin [BP] and independently Pugh and Shub [PS1] first ex-

amined the ergodic properties of partially hyperbolic systems soon after the
work of Anosov and Sinai. The current definition of partial hyperbolicity is
more general than theirs, but has the same basic features.1 We say that a

1The difference is that in [BP] the functions ν, ν̂, γ and γ̂ in the definition of partial
hyperbolicity are assumed to be constant.
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diffeomorphism f : M → M of a compact manifold M is partially hyperbolic
if the following conditions hold. There is a nontrivial splitting of the tangent
bundle, TM = Es ⊕Ec ⊕Eu, that is invariant under the derivative map Tf .
Further, there is a Riemannian metric for which we can choose continuous
positive functions ν, ν̂, γ and γ̂ with

ν, ν̂ < 1 and ν < γ < γ̂−1 < ν̂−1 (3)

such that, for any unit vector v ∈ TpM ,

‖Tfv‖ < ν(p), if v ∈ Es(p), (4)

γ(p) < ‖Tfv‖ < γ̂(p)−1, if v ∈ Ec(p), (5)

ν̂(p)−1 < ‖Tfv‖, if v ∈ Eu(p). (6)

Partial hyperbolicity is a C1-open condition: any diffeomorphism sufficiently
C1-close to a partially hyperbolic diffeomorphism is itself partially hyper-
bolic. Partially hyperbolic flows are defined similarly. For an extensive dis-
cussion of examples of partially hyperbolic dynamical systems, see the survey
article [BPSW] and the book [P]. Among these examples are: the time-1 map
of an Anosov flow, the frame flow for a compact manifold of negative sec-
tional curvature, and many affine transformations of compact homogeneous
spaces.

All of these examples preserve the volume induced by a Riemannian met-
ric on M . The methods based on Hopf’s argument actually apply to a slightly
larger class of invariant measures, namely those that lie in the measure class
of a volume, meaning that they have the same sets of measure 0 as a volume
(note that the volumes of any two Riemannian metrics lie in the same mea-
sure class). By a slight abuse of notation, we say that f is volume-preserving
if it preserves a probability measure in the measure class of a volume. In this
paper, m will denote a Riemannian volume on M (not necessarily invariant),
and µ will denote an invariant probability measure that lies in the measure
class of m. Measurability is with respect to the Borel σ-algebra on M .

As in the Anosov case, the stable and unstable bundles Es and Eu of a
partially hyperbolic diffeomorphism are tangent to foliations, which we again
denote by Ws and Wu respectively [BP]. Brin-Pesin and Pugh-Shub proved
that these foliations are absolutely continuous.

By its very nature, the Hopf argument shows that for almost every p ∈ M ,
almost every point of Ws(p) and almost every point of Wu(p) lies in the
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ergodic component of p. Thus we can only hope to prove ergodicity using a
Hopf argument if something close to the following condition holds.

Definition: A partially hyperbolic diffeomorphism f : M → M is accessible
if any point in M can be reached from any other along an su-path, which
is a concatenation of finitely many subpaths, each of which lies entirely in a
single leaf of Ws or a single leaf of Wu.

The accessibility class of p ∈ M is the set of all q ∈ M that can be reached
from p along an su-path. Accessibility means that there is one accessibility
class, which contains all points. The following notion is a natural weakening
of accessibility.

Definition: A partially hyperbolic diffeomorphism f : M → M is essen-
tially accessible if every measurable set that is a union of entire accessibility
classes has either full or zero volume.

Pugh and Shub have conjectured that essential accessibility implies ergod-
icity, for a C2, partially hyperbolic, volume-preserving diffeomorphism [PS2].
We prove this conjecture under one, rather mild additional assumption.

Definition: A partially hyperbolic diffeomorphism is center bunched if the
functions ν, ν̂, γ, and γ̂ can be chosen so that:

ν < γγ̂ and ν̂ < γγ̂. (7)

Our main result is:

Theorem 0.1 Let f be C2, volume-preserving, partially hyperbolic and cen-
ter bunched. If f is essentially accessible, then f is ergodic, and in fact has
the Kolmogorov property.

This result extends earlier results about ergodicity of partially hyperbolic
systems. Brin and Pesin [BP] proved in the early 1970’s that a C2 volume-
preserving partially hyperbolic diffeomorphism that is essentially accessible
is ergodic if it satisfies the following additional conditions:

• Center bunching: Inequalities (7) hold.

• Dynamical coherence: There are foliations W c, Wcs and Wcu tangent
to Ec, Ec ⊕ Es and Ec ⊕ Eu respectively.
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• Lipschitzness of Wc: There are Lipschitz foliation charts for W c.

While the Brin-Pesin argument applies to many examples of partially hy-
perbolic diffeomorphisms, the third condition is in some ways very restric-
tive: Lipschitzness of Wc can be destroyed by arbitrarily small perturbations
[SW2]. Brin and Pesin’s theorem applies in particular to the time-1 map ϕ1

of the geodesic flow for a compact surface of constant negative curvature. If
we make a C1 small perturbation to ϕ1, all of Brin and Pesin’s hypotheses
continue to hold, except Lipschitzness of W c (this fact follows from combining
results in [D] with an argument of Mañé — see [BPSW], p. 352).

It was not until the 1990’s that Grayson, Pugh and Shub [GPS] were able
to show that any small perturbation of ϕ1 is ergodic; in other words, ϕ1 is sta-
bly ergodic: any C2 volume-preserving diffeomorphism sufficiently C1-close to
ϕ1 is ergodic. The ideas in this groundbreaking paper have been generalized
in several stages [W, PS2, PS3], culminating in [PS3]. The main result of
[PS3] assumes dynamical coherence and uses a significantly stronger version
of center bunching than inequalities (7). The center bunching hypothesis in
[PS3] requires that the action of Tf on Ec be close to isometric — that is,
both γ and γ̂ (and not just their product) must be close to 1.

By contrast, our center bunching hypothesis requires only that the ac-
tion of Tf on Ec be close enough to conformal that the hyperbolicity of f
dominates the nonconformality of Tf on Ec. Center bunching always holds
when Tf |Ec is conformal. For then we have ‖Tpfv‖ = ‖Tpf |Ec(p)‖ for any
unit vector v ∈ Ec(p), and hence we can choose γ(p) slightly smaller and
γ̂(p)−1 slightly bigger than

‖Tpf |Ec(p)‖.

By doing this we may make the ratio γ(p)/γ̂(p)−1 = γ(p)γ̂(p) arbitrarily
close to 1, and hence larger than both ν(p) and ν̂(p).

In particular, center bunching holds whenever Ec is one-dimensional. As
a corollary, we obtain:

Corollary 0.2 Let f be C2, volume-preserving and partially hyperbolic with
dim(Ec) = 1. If f is essentially accessible, then f is ergodic, and in fact has
the Kolmogorov property.

This establishes the Pugh-Shub Conjecture mentioned above in the case
where Ec is 1-dimensional.

5



Corollary 0.2 has also been recently proved by F. Rodŕıguez Hertz, J.
Rodŕıguez Hertz, and R. Ures [HHU]. Their argument is mainly based on
techniques in an earlier version2 of the present paper [BW1]. They prove in
addition that stable accessibility is Cr dense among the Cr partially hyper-
bolic diffeomorphisms with 1-dimensional center, which implies, for r ≥ 2,
that stable ergodicity is Cr dense among the volume-preserving Cr partially
hyperbolic diffeomorphisms with one-dimensional center. Their work estab-
lishes the main stable ergodicity conjectures of Pugh and Shub ([PS3], Con-
jectures 1-3) in the case where Ec is one-dimensional.

There is only one place in the proof of Theorem 0.1 where we need the
diffeomorphism to be C2 as opposed to C1+δ, for some δ > 0. This is when
we use the fact that center bunching implies that the stable and unstable
holonomies between center leaves are Lipschitz. This fact is proved using
a graph transform argument in [BP] and also (in a slightly more general
setting) in [PSW, PSWc]. In [BW2], we show that the same result about
holonomies holds when C2 is replaced by C1+δ, at the expense of a more
stringent bunching hypothesis. Plugging this result into the proof of Theo-
rem 0.1, we obtain:

Theorem 0.3 Let f be C1+δ, volume-preserving, and partially hyperbolic.
Let µ, µ̂ be continuous functions satisfying:

µ(p) < ‖Tfv‖, if v ∈ Es(p), (8)

‖Tfv‖ < µ̂(p)−1, if v ∈ Eu(p). (9)

Suppose that f satisfies the strong center bunching condition:

νθ < γγ̂ and ν̂θ < γγ̂, (10)

where θ ∈ (0, δ) satisfies the inequalities:

νγ−1 < µθ, ν̂γ̂−1 < µ̂θ. (11)

If f is essentially accessible, then f is ergodic, and in fact has the Kol-
mogorov property.

2This earlier version proved the same result as the present paper but under the addi-
tional hypothesis of dynamical coherence, i.e. the existence of foliations tangent to the
bundles Ec ⊕ Eu and Ec ⊕ Es.
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We remark that any θ satisfying the conditions in (11) is a Hölder expo-
nent for the central distribution Ec (see, e.g., Theorem A in [PSW]). It would
be interesting to know whether (10) could be replaced by (7) in Theorem 0.3.
The strong center bunching condition in (10) is automatically satisfied when
Ec is one-dimensional, since, as above, we may then choose γ and γ̂−1 so
that γγ̂ is arbitrarily close to 1. As a corollary of Theorem 0.3, we obtain:

Corollary 0.4 Let f be C1+δ, volume-preserving and partially hyperbolic
with dim(Ec) = 1. If f is essentially accessible, then f is ergodic, and in fact
has the Kolmogorov property.

Our arguments rely upon the same basic strategy as those of Pugh and
Shub in [PS3]. We use a similar notion of center-unstable juliennes, and show
that they are quasi-preserved by stable holonomies. But our analysis of the
relationship between juliennes and density points is fundamentally different
from theirs. One essential novelty is the use of a version of Cavalieri’s prin-
ciple, introduced in Subsection 2.3. Another is the use of the fake foliations
constructed in in Section 3.

The use of Cavalieri’s principle greatly simplifies the analysis of the re-
lationship between juliennes and Lebesgue density points of invariant sets,
which is the heart of the proof. It allows us to weaken the center bunching
hypothesis to the minimum condition needed to obtain smoothness of holon-
omy along stable leaves inside a leaf of a center stable foliation. The fake
foliations and the simplifications using Cavalieri’s principle make it possible
to eliminate the hypothesis of dynamical coherence. It is interesting to note
that both advances, fake foliations and Cavalieri’s principle, are used in an
essential way to remove the dynamical coherence assumption; the technique
of fake foliations cannot be used directly to modify or improve the Pugh Shub
approach to remove dynamical coherence.

Our ergodicity result, Theorem 0.1, is proved in Section 5 as a conse-
quence of Theorem 5.1, which is really the central result of the paper. The-
orem 5.1 is proved in Sections 6, 7 and 8.

We thank Marcelo Viana for useful comments and for telling us about
the proof of absolute continuity of stable foliations in the pointwise partially
hyperbolic setting in [AV]. We thank Charles Pugh and Mike Shub for very
useful comments. Keith Burns was supported by NSF grants DMS-0100416
and DMS-0408704, and Amie Wilkinson by NSF grants DMS-0100314 and
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DMS-0401326. A proof of Theorem 0.1 (and Corollary 0.2) under the addi-
tional hypothesis of dynamical coherence appeared earlier in the unpublished
preprint [BW1].

1 Preliminaries

1.1 Notational conventions

We use the convention that if q is a point in M and j is an integer, then qj

denotes the point f j(q), with q0 = q. If α : M → R is a positive function,
and j ≥ 1 is an integer, let

αj(p) = α(p)α(p1) · · ·α(pj−1),

and
α−j(p) = α(p−j)

−1α(p−j+1)
−1 · · ·α(p−1)

−1.

We set α0(p) = 1. Observe that αj is a multiplicative cocycle; in particular,
we have α−j(p)−1 = αj(p−j). Note also that (αβ)j = αjβj, and if α is a
constant function, then αn = αn.

The notation α < β, where α and β are continuous functions, means that
the inequality holds pointwise, and the function min{α, β} takes the value
min{α(p), β(p)} at the point p.

As usual P = O(Q) means that there is a constant C > 0 such that
|P | ≤ CQ. Usually P and Q will depend on an integer n and one or more
points in M . The constant C must be independent of n and the choice of
the points.

1.2 Foliation boxes and local leaves

Let F be a foliation of an n-manifold M with d-dimensional smooth leaves.
For r > 0, we denote by F(x, r) the connected component of x in the inter-
section of F(x) with the ball B(x, r).

A foliation box for F is the image U of Rn−d×Rd under a homeomorphism
that sends each vertical Rd-slice into a leaf of F . The images of the vertical
Rd-slices will be called local leaves of F in U .

A smooth transversal to F in U is a smooth codimension-d disk in U
that intersects each local leaf in U exactly once and whose tangent bundle is
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uniformly transverse to TF . If τ1 and τ2 are two smooth transversals to F
in U , we have the holonomy map hF : τ1 → τ2, which takes a point in τ1 to
the intersection of its local leaf in U with τ2.

1.3 Adapted metrics

We assume that the Riemannian metric on M is chosen so that the inequali-
ties (3)–(6) involving ν, γ, ν̂, γ̂ in the Introduction hold. Such a metric will be
called adapted. Note that a rescaling of an adapted metric is still adapted.
It will be convenient to assume that the metric is scaled so that the geodesic
balls of radius 1 are very small neighborhoods of their centers. Distance with
respect to the metric will be denoted by d.

There is no harm in increasing ν and ν̂ and decreasing γ, γ̂ slightly, pro-
vided that the inequalities (3)–(6) still hold. If f is center bunched, the
change must also be small enough so that inequalities (7) still hold. Simi-
larly, if f is strongly center bunched, the change must also be small enough
so that inequalities (10) still hold.

By rescaling the metric on M , we may assume that for some R > 1, and
any x ∈ M , the Riemannian ball B(x, R) is contained in foliation boxes for
both Ws and Wu. We assume that R is large enough so that all the objects
considered in the sequel are small compared with R. Having fixed such an
R, we define, for a = s or u, the local leaf of Wa through x by:

Wa
loc(x) = Wa(x, R).

Any foliation box U for either Ws or Wu that we consider in the rest of the
paper will be small enough so that Wa

loc(x)∩U is a local leaf of Wa in U for
each x ∈ U . By (if necessary) further rescaling the metric to make the local
leaves smaller, we may assume that our metric is still adapted, and that for
all p ∈ M , and q, q′ ∈ B(p, R), we have the following:

q ∈ Ws
loc(q

′) =⇒ d(f(q), f(q′)) ≤ ν(p)d(q, q′), (12)

and similarly,

q ∈ Wu
loc(q

′) =⇒ d(f−1(q), f−1(q′)) ≤ ν̂(f−1(p))d(q, q′).

In particular, f(Ws
loc(p)) ⊂ Ws

loc(f(p)) and f−1(Wu
loc(p)) ⊂ Wu

loc(f
−1(p)),

for all p ∈ M . This is possible because ν and ν̂ are continuous, and the
inequalities (4) and (6) that they satisfy are strict.

An inductive argument then gives:
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Lemma 1.1 If qj, q
′
j ∈ B(pj, R) for j = 0, . . . , n − 1, and q ∈ Ws

loc(q
′), then

d(qn, q′n) ≤ νn(p)d(q, q′).

If q−j, q
′
−j ∈ B(p−j, R) for j = 0, . . . , n − 1, and q ∈ Wu

loc(q
′), then

d(q−n, q′−n) ≤ ν̂−n(p)−1d(q, q′).

Proof. We prove the first claim; the second follows from the first, with f
replaced by f−1. The proof is by induction on n. The claim is vacuously true
for n = 0. Suppose the claim holds for n = k. The inductive assumption
gives that

d(qk, q
′
k) ≤ νk(p)d(q, q′)

and q′k ∈ Ws
loc(qk). Then (12), applied at pk, implies that q′k+1 ∈ Ws

loc(qk+1),
and

d(qk+1, q
′
k+1) ≤ ν(pk)d(qk, q

′
k)

≤ ν(pk)νk(p)d(q, q′)

= ν(pk+1)d(q, q′).

�

2 Density points and absolute continuity

2.1 Volume and density

Recall that when we say that the diffeomorphism f is volume-preserving, we
mean that f preserves a probability measure µ that lies in the measure class
of a Riemannian volume m on M .

If S ⊆ M is a smooth submanifold, we denote by mS the volume of the
induced Riemannian metric on S. If F is a foliation with smooth leaves,
and A is contained in a single leaf of F and is measurable in that leaf, then
we denote by mF(A) the induced Riemannian volume of A in that leaf. A
set is said to be saturated by a foliation F or F-saturated if it is a union
of entire leaves of F . A set A is essentially F-saturated if there exists a
measurable F -saturated set A′, which we call an essential F-saturate of A,
with m(A ∆ A′) = 0.
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If ν is a measure and A and B are ν-measurable sets with ν(B) > 0, we
define the density of A in B by:

ν(A : B) =
ν(A ∩ B)

ν(B)
.

A point x ∈ M is a Lebesgue density point of a measurable set X ⊆ M if

lim
r→0

m(X : Br(x)) = 1.

Notice that the notion of Lebesgue density point depends only on the smooth
structure of M , because any two Riemannian metrics have the same Lebesgue
density points.

The Lebesgue Density Theorem implies that if A is a measurable set and
Â is the set of Lebesgue density points of A, then m(A ∆ Â) = 0.

Lebesgue density points can be characterized using nested sequences of
measureable sets. We say that a sequence of measurable sets Yn nests at
point x if Y0 ⊃ Y1 ⊃ Y2 ⊃ · · · ⊃ {x}, and

⋂

n

Yn = {x}.

A sequence Yn, with m(Yn) > 0, that nests at x is a Lebesgue density sequence
at x if for every measurable set X, x is a Lebesgue density point of X if and
only if:

lim
n→∞

m(X : Yn) = 1.

It is easily shown that a Lebesgue density sequence Yn must be regular, a
term we now define.

Definition: A nested sequence of measurable sets Yn is regular if there
exists δ > 0 such that, for all n ≥ 0, we have m(Yn) > 0, and

m(Yn+1) ≥ δm(Yn).

The simplest example of a Lebesgue density sequence at x is the sequence
of balls B(x, ρn), where ρ ∈ (0, 1).

In our proof of Theorem 0.1, we characterize the Lebesgue density points
of a special class of measurable sets, those that are both essentially W s-
saturated and essentially Wu-saturated. Such sets will be called bi essentially
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saturated. These sets arise when we consider Birkhoff averages of continuous
test functions; the sublevel sets of such averages are bi essentially saturated.

We say that Yn is a Lebesgue density sequence at x for bi essentially
saturated sets if Yn nests at x, Yn is regular, and, for every bi essentially
saturated set X, x is a Lebesgue density point of X if and only if:

lim
n→∞

m(X : Yn) = 1.

Note that Lebesgue density sequence for bi essentially saturated sets is not
necessarily a Lebesgue density sequence, because only certain measurable
sets are considered. In fact, many of the Lebesgue density sequences for bi
essentially saturated sets constructed in this paper are not Lebesgue density
sequences.

In our proof we will frequently have to pass the property of being a
Lebesgue density sequence for bi essentially saturated sets from one sequence
Yn that nests at x to another sequence Zn that nests at x. In order to do so,
we have to show that Zn is also regular and that, for every measurable set
X that is bi essentially saturated,

lim
n→∞

m(X : Yn) = 1 ⇐⇒ lim
n→∞

m(X : Zn) = 1. (13)

We have two techniques for doing this. Which technique we use depends on
the construction of Yn and Zn.

The first technique is very simple. Two nested sequences of sets Yn and
Zn are internested if there exists a k ≥ 1 such that, for all n ≥ 0, we have

Yn+k ⊆ Zn, and Zn+k ⊆ Yn.

Comparability is an equivalence relation. The following lemma is a straight-
forward consequence of the definitions.

Lemma 2.1 Let Yn and Zn be internested sequences of measurable sets, with
Yn regular. Then Zn is also regular. If the sets Yn have positive measure,
then so do the Zn, and, for any measurable set X,

lim
n→∞

m(X : Yn) = 1 ⇐⇒ lim
n→∞

m(X : Zn) = 1.

Corollary 2.2 Suppose that Yn and Zn both nest at x and are internested.
Then Yn is a Lebesgue density sequence for bi essentially saturated sets if and
only if Zn is a Lebesgue density sequence for bi essentially saturated sets.

The second technique uses absolute continuity of the foliations W s and
Wu, plus the saturation properties of X, and is developed in the next sub-
section.
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2.2 Absolute continuity

Our arguments in this paper use two versions of the property of absolute
continuity of a foliation.

The first version of absolute continuity involves holonomy maps between
transversals. A foliation F with smooth leaves is transversely absolutely
continuous with bounded Jacobians if for every angle α ∈ (0, π/2], there
exists C ≥ 1 and R0 > 0 such that, for every foliation box U of diameter
less than R0, any two smooth transversals τ1, τ2 to F in U of angle at least
α with F , and any mτ1–measurable set A contained in τ1:

C−1mτ1(A) ≤ mτ2(hF(A)) ≤ Cmτ1(A). (14)

The second version involves a Fubini-like property. A foliation F with
smooth leaves is absolutely continuous with bounded Jacobians if, for every
α ∈ (0, π/2], there exists C ≥ 1 and R0 > 0 such that, for every foliation
box U of diameter less than R0, any smooth transversal τ to F in U of angle
at least α with F , and any measurable set A contained in U , we have the
inequality:

C−1m(A) ≤
∫

τ
mF(A ∩ Floc(x)) dmτ (x) ≤ Cm(A). (15)

If F is transversely absolutely continuous with bounded Jacobians, then
it is absolutely continuous with bounded Jacobians (see [BS] for a proof), but
the converse does not hold (see Remark 3.9 in [B]). Note that the minimal C
for which (14) holds is not necessarily the same as the minimal C for which
(15) holds.

The foliations Ws and Wu for a partially hyperbolic diffeomorphism are
transversely absolutely continuous with bounded Jacobians. This was shown
in the Anosov case by Anosov [A], and in the case of partial hyperbolicity
by Brin-Pesin and Pugh-Shub [BP, PS1]. Their proofs were written under
the assumption that the function ν, ν̂, γ and γ̂ are constant. In the general
case of partial hyperbolicity, where these functions are not constant, absolute
continuity of Ws and Wu follows from Pesin theory. A direct proof in this
context has been given by Abdenur and Viana [AV]. All of these results show
that the Jacobians are continuous functions, and so are bounded, since M is
compact. In general, Wc does not have either absolute continuity property,
even when f is dynamically coherent (examples were first constructed by
Katok [Mi]; open sets of examples by Shub-Wilkinson [SW2]).
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2.3 Saturated sets and Cavalieri’s principle

The second technique mentioned in subsection 2.1 involves decomposing the
sets in a sequence nesting at x along the leaves of an absolutely continuous fo-
liation. The method is reminiscent of Cavalieri’s Principle, which states that
the volume of a 3-dimensional solid may computed by taking 2-dimensional
slices of the solid. If the areas of these slices are approximately equal, then
volume of the solid is approximately equal to the product of the slice area
and the total height of the the slices.

In our setting, we use the leaves of an absolutely continuous foliation to
decompose a subset of a foliation box into slices, which we call fibers. The
idea of approximately equal area of the slices translates into c-uniformity of
the fibers, which we define below. When the foliation is absolutely contin-
uous, the volume of a subset of the foliation box with c-uniform fibers will
be approximately the volume of one of the fibers times the volume of the
projection of the set onto a transversal.

Let F be an absolutely continuous foliation and let U be a foliation box for
F . Let τ be a smooth transversal to F in U . Let Y ⊆ U be a measurable set.
For a point q ∈ τ , we define the fiber Y (q) of Y over q to be the intersection
of Y with the local leaf of F in U containing q. The base τY of Y is the set
of all q ∈ τ such that the fiber Y (q) is mF -measurable and mF(Y (q)) > 0.
The absolute continuity of F implies that τY is mτ -measurable. We say “Y
fibers over Z” to indicate that Z = τY .

If, for some c ≥ 1, the inequalities

c−1 ≤
mF (Y (q))

mF(Y (q′))
≤ c

hold for all q, q′ ∈ τY , then we say that Y has c-uniform fibers. A sequence
of measurable sets Yn contained in U has c-uniform fibers if each set in the
sequence has c-uniform fibers, with c independent of n.

Proposition 2.3 Suppose that the foliation F is absolutely continuous with
bounded Jacobians. Let U be a foliation box for F , and let τ be a smooth
transversal to F in U . Then there is a constant C ≥ 1 such that for any
c ≥ 1, any measurable set Y ⊂ U with c-uniform fibers, and any point
q0 ∈ τY , we have

(Cc)−1m(Y ) ≤ mF(Y (q0))mτ (τY ) ≤ Ccm(Y ).
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Proof. Absolute continuity of F with bounded Jacobians implies that there
exists a C ≥ 1, that depends only on F , U , and τ , and does not depend on
Y , such that

C−1m(Y ) ≤
∫

τ
mF (Y (q)) dmτ(q) ≤ Cm(Y ).

Since the fibers of Y are c-uniform, we have

c−1mF(Y (q0)) ≤ mF(Y (q)) ≤ cmF(Y (q0)),

for any q ∈ τY . Combing these two sets of inequalities gives the desired
result. �

Regularity of a sequence with c-uniform fibers can be obtained from reg-
ularity of its fibers and bases.

Proposition 2.4 Suppose that the foliation F is absolutely continuous with
bounded Jacobians. Let U be a foliation box for F , and let τ be a smooth
transversal to F in U . Let Yn be a sequence of subsets of U with c-uniform
fibers. Suppose that there exists δ > 0 such that:

1. for all n ≥ 0,
mτ (τYn+1

) ≥ δmτ (τYn
);

2. for all n ≥ 0, there are points z ∈ τYn+1
, z′ ∈ τYn

with

mF(Yn+1(z)) ≥ δmF (Yn(z
′)).

Then Yn is regular.

Proof. It follows from Proposition 2.3 that

m(Yn+1) ≥ (cC)−1mF (Yn+1(z))mτ (τYn+1
),

and
m(Yn) ≤ cCmF(Yn(z′))mτ (τYn

).

Using the two properties of δ, we then obtain

m(Yn+1) ≥ (cC)−2δ2m(Yn),

which says that Yn is regular. �

We now turn to the second technique mentioned above for proving an
equivalence of the form (13). The main result we prove in this section is:

15



Proposition 2.5 Let F be absolutely continuous with bounded Jacobians,
and let U be a foliation box for F with smooth transversal τ . Let Yn and Zn

be sequences of measurable subsets of U with c-uniform fibers, for some c ≥ 1.
Suppose that τYn

= τZn
, for all n. Then, for any essentially F-saturated set

X ⊆ U , we have the equivalence:

lim
n→∞

m(X : Yn) = 1 ⇐⇒ lim
n→∞

m(X : Zn) = 1.

Corollary 2.6 Fix F = Ws or Wu. Suppose that Yn and Zn satisfy the
hypotheses of Proposition 2.5, and that Yn and Zn both nest at x. If Yn is
a Lebesgue density sequence at x for bi essentially saturated sets, and Zn

is regular, then Zn is a Lebesgue density sequence at x for bi essentially
saturated sets.

Before proving Proposition 2.5, we establish a related result, which will
also be used in the proof of Theorem 0.1.

Proposition 2.7 Let F be absolutely continuous with bounded Jacobians,
and let U be a foliation box for F with smooth transversal τ . Suppose that
{Yn}n≥0 is a sequence of measurable sets in U with c-uniform fibers, for
some c ≥ 1. Then, for every F-saturated measurable set X, we have the
equivalence:

lim
n→∞

m(X : Yn) = 1 ⇐⇒ lim
n→∞

mτ (τX : τYn
) = 1.

Remark: The hypothesis that X is F -saturated can be weakened: it suffices
for X ∩ U to be a union of local leaves of F in U .

Proof of Proposition 2.7. Let X∗ be the complement of X in M . Then
X∗ is also F -saturated. The proposition can be reformulated in terms of X∗.
We have to prove the equivalence:

lim
n→∞

m(X∗ : Yn) = 0 ⇐⇒ lim
n→∞

mτ (τX∗ : τYn
) = 0.

For each n, let
mn = inf

q∈τYn

mF (Yn(q)).

Since the fibers of Yn are c-uniform, it follows that mn > 0 for all n, and:

mn ≤ mF(Yn(q)) ≤ cmn,

16



for all q ∈ τYn
. Absolute continuity implies that there exists a C ≥ 1 such

that
C−1m(Yn) ≤

∫

τ
mF(Yn(q)) dmτ(q) ≤ Cm(Yn).

Together, these inequalities imply that

C−1mnmτ (τYn
) ≤ m(Yn) ≤ Ccmnmτ (τYn

). (16)

Since X∗ is F -saturated, the F -fiber of X∗ ∩ Yn over a point q ∈ τYn
is

either empty or equal to Yn(q). Thus X∗ ∩Yn also has c-uniform fibers, and,
as above, we obtain:

C−1mnmτ (τX∗∩Yn
) ≤ m(X∗ ∩ Yn) ≤ Ccmnmτ (τX∗∩Yn

). (17)

Noting that τX∗∩Yn
= τX∗ ∩ τYn

and dividing the inequalities in (17) by
those in (16), we obtain:

(C2c)−1mτ (τX∗ : τYn
) ≤ m(X∗ : Yn) ≤ C2cmτ (τX∗ : τYn

).

The result follows easily from this. �

Proof of Proposition 2.5. Let X ′ be an essential F -saturate of X. Using
Proposition 2.7, we have the equivalences:

lim
n→∞

m(X : Yn) = 1 ⇐⇒ lim
n→∞

m(X ′ : Yn) = 1

⇐⇒ lim
n→∞

mτ (τX′ : τYn
) = 1

⇐⇒ lim
n→∞

mτ (τX′ : τZn
) = 1

⇐⇒ lim
n→∞

m(X ′ : Zn) = 1

⇐⇒ lim
n→∞

m(X : Zn) = 1. �

3 Fake invariant foliations

The Lebesgue density sequences for bi essentially saturated sets that we use
in this proof will be constructed using dynamical foliations with uniform
continuity properties. If f happens to be dynamically coherent, then we are
free to use the foliations Ws,Wu,Wc,Wcs, and Wcu for these constructions.
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Since we are not assuming dynamical coherence, we must find substitutes
for Wc,Wcs, and Wcu to make our proof work in general. It turns out to
be simplest to find substitutes for all invariant foliations W s,Wu,Wc,Wcs,
and Wcu. We call these substitutes “fake invariant foliations.” There are a
few key places in the argument where we will have to use the real invariant
foliations Wu and Ws, rather than their fake counterparts. We will indicate
where this is the case. The reader should recall the choice of the constant R
from Section 1.3.

Proposition 3.1 Let f : M → M be a C1 partially hyperbolic diffeomor-
phism. For any ε > 0, there exist constants r and r1 with R > r > r1 > 0
such that, for every p ∈ M , the neighborhood B(p, r) is foliated by folia-
tions Ŵu

p , Ŵs
p , Ŵc

p, Ŵcu
p and Ŵcs

p with the following properties, for each
β ∈ {u, s, c, cu, cs}:

1. Almost tangency to invariant distributions: For each q ∈ B(p, r),
the leaf Ŵβ

p (q) is C1 and the tangent space TqŴ
β
p (q) lies in a cone of

radius ε about Eβ(q).

2. Local invariance: for each q ∈ B(p, r1),

f(Ŵβ
p (q, r1)) ⊂ Ŵβ

f(p)(f(q)), and f−1(Ŵβ
p (q, r1)) ⊂ Ŵβ

f−1(p)(f
−1(q)).

3. Exponential growth bounds at local scales: The following hold
for all n ≥ 0.

(a) Suppose that qj ∈ B(pj, r1) for 0 ≤ j ≤ n − 1.

If q′ ∈ Ŵs
p(q, r1), then q′n ∈ Ŵs

p(qn, r1), and

d(qn, q′n) ≤ νn(p)d(q, q′).

If q′j ∈ Ŵcs
p (qj, r1) for 0 ≤ j ≤ n − 1, then q′n ∈ Ŵcs

p (qn), and

d(qn, q′n) ≤ γ̂n(p)−1d(q, q′).

(b) Suppose that q−j ∈ B(p−j, r1) for 0 ≤ j ≤ n − 1.

If q′ ∈ Ŵu
p (q, r1), then q′−n ∈ Ŵu

p (q−n, r1), and

d(q−n, q
′
−n) ≤ ν̂−n(p)−1d(q, q′).

If q′−j ∈ Ŵcu
p (q−j, r1) for 0 ≤ j ≤ n − 1, then q′−n ∈ Ŵcu

p (q−n),
and

d(q−n, q
′
−n) ≤ γ−n(p)d(q, q′).
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4. Coherence: Ŵs
p and Ŵc

p subfoliate Ŵcs
p ; Ŵu

p and Ŵc
p subfoliate Ŵcu

p .

5. Uniqueness: Ŵs
p(p) = Ws(p, r), and Ŵu

p (p) = Wu(p, r).

6. Regularity: If f is C1+δ, then the foliations Ŵu
p , Ŵs

p , Ŵ
c
p, Ŵ

cu
p and

Ŵcs
p and their tangent distributions are uniformly Hölder continuous.

7. Regularity of the strong foliation inside weak leaves: If f is C2

and center bunched, then each leaf of Ŵcs
p is C1 foliated by leaves of

the foliation Ŵs
p , and each leaf of Ŵcu

p is C1 foliated by leaves of the

foliation Ŵu
p . If f is C1+δ and strongly center bunched, then the same

conclusion holds.

The regularity statements in 6. and 7. hold uniformly in p ∈ M .

Proof. Suppose that f is Ck, for some k ≥ 1. After possibly reducing ε,
we can assume that inequalities (3)–(6) hold for unit vectors in the ε-cones
around the spaces in the partially hyperbolic splitting.

The construction of the leaves of Ŵcu
p and Ŵcs

p through p is essentially
the same as the proof of the existence of pseudo-hyperbolic plaque families in
[HPS]. They are obtained as fixed points of graph transforms of a map that
coincides with f in a neighborhood of the orbit of p. We take the argument
one step further and consider all fixed points of these graph transforms in
the entire neighborhood of p.

Our construction will be performed in two steps. In the first, we con-
struct foliations of each tangent space TpM . In the second step, we use the
exponential map expp to project these foliations from a neighborhood of the
origin in TpM to a neighborhood of p.

Step 1. We choose an r0 > 0 such that exp−1
p is defined on B(p, 2r0). For

r ∈ (0, r0], we define, in the standard way, a map:

TM TM

M M

-
Fr

-
f

? ?

which is uniformly Ck on fibers, satisfying:

1. Fr(p, v) = exp−1
f(p) ◦f ◦ expp(v), for ‖v‖ ≤ r;
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2. Fr(p, v) = Tpf(v), for ‖v‖ ≥ 2r;

3. ‖Fr(p, ·) − Tpf(·)‖C1 → 0 as r → 0, uniformly in p.

Endowing M with the discrete topology, we regard TM as the disjoint
union of its fibers. Property 3. implies that, if r is small enough, then Fr is
partially hyperbolic, and each bundle in the partially hyperbolic splitting for
Fr at v ∈ TpM lies within the ε/2-cone about the corresponding subspace of
TpM in the partially hyperbolic splitting for f at p (we are making the usual
identification of TvTpM with TpM). If r is small enough, the equivalents of
inequalities (3)–(6) will hold for TFr.

If r is sufficiently small, standard graph transform arguments give sta-
ble, unstable, center-stable, and center-unstable foliations for Fr inside each
TpM . These foliations are uniquely determined by the extension Fr and the
requirement that their leaves be graphs of bounded functions. We obtain a
center foliation by intersecting the leaves of the center-unstable and center-
stable foliations. While TM is not compact, all of the relevant estimates
for Fr are uniform, and it is this, not compactness, that counts. The proof
of the Hadamard-Perron Theorem in [KH] contains many of details of this
argument.

The uniqueness of the stable and unstable foliations imply, via a standard
argument (see, e.g. [HPS], Theorem 6.1 (e)), that the stable foliation subfo-
liates the center-stable, and the unstable subfoliates the center-unstable.

We now discuss the regularity properties of these foliations of TM . Recall
the standard method for determining the regularity of invariant bundles and
foliations. Suppose that TX = E1 ⊕ E2 is a Tg-invariant splitting of the
tangent bundle for a Ck diffeomorphism g : X → X satisfying, for every
p ∈ X, and every unit vector v ∈ TpX:

α1(p) < ‖Tgv‖ < β1(p), if v ∈ E1(p), (18)

α2(p) < ‖Tgv‖ if v ∈ E2(p), (19)

where 0 < α1(p) < β1(p) < α2(p). Then the bundle E2 is Ca, for any
a ≤ k − 1 that satisfies:

sup
p∈M

β1(p)

α1(p)aα2(p)
< 1.

When the functions α1, α2, β2 are constant, this fact is classical — see,
e.g. the Cr Section Theorem in [HPS]. The general case of this result appears
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more recently in the literature [SS, Ha, W, PSW]. This result extends, at
least in part, to give regularity of invariant foliations. In particular, when
there is a foliation F2 tangent to E2 that arises at the unique fixed point
of a nonlinear graph transform, then F2 is a Ca foliation [PSW, PSWc].
These results are proved in the compact case, but compactness is used only
to obtain uniform estimates on the functions α1, β1, α2 and the derivative
of g; the results carry over as long as such uniform estimates hold.

Our foliations of TM have been constructed as the unique fixed points of
graph transform maps. We can apply the above results to the Fr-invariant
splittings of TTM as the sum of the stable and center-unstable bundles
for Fr and as the sum of the center-stable and unstable bundles for Fr. It
follows immediately that both the center-unstable and unstable bundles and
the corresponding foliations are Hölder continuous as long as Fr is C1+δ

for some δ > 0. We obtain the Hölder continuity of the center-stable and
stable bundles for Fr and the corresponding foliations by thinking of the
same splittings as F−1

r -invariant. Hölder regularity of the center bundle and
foliation is obtained by noticing the the center is the intersection of the
center-stable and center-unstable.

When k ≥ 2, a similar estimate gives the C1 regularity of the unstable
bundle along the leaves of the center-unstable foliation. The manifold X is
the disjoint union of the leaves of the center-unstable foliation for Fr, E2 is
the unstable bundle, and E1 is the center bundle. We have:

α1 = γ, β1 = γ̂−1, and α2 = ν̂−1.

The center bunching hypothesis ν̂ < γγ̂ implies that

sup
p∈M

ν̂(p)

γ(p)a γ̂(p)
< 1,

for some a > 1. It follows that E2 = Eu is a C1 bundle over X, the leaves of
the center-unstable foliation. Similarly, this argument shows that the center
bunching hypothesis ν < γγ̂ implies that Es is a C1 bundle over the leaves
of the center-stable foliation. There is an additional difficulty in the proof of
this estimate, which is that X is not a Ck manifold in general, even when Fr

is Ck. This difficulty is dealt with in [PSW, PSWc].
When 1 < k < 2, this type of estimate does not work at all. A different

argument, working with holonomy maps instead of bundles, is presented in
[BW2]. The main result there implies that under the strong center bunching
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hypothesis on f , which carries over to Fr, the unstable foliation C1-subfoliates
the center-unstable, and the stable foliation C1-subfoliates the center-stable.

Step 2. We now have foliations of TpM , for each p ∈ M . We obtain the

foliations Ŵu
p , Ŵc

p, Ŵ
s
p , Ŵ

cu
p , and Ŵcs

p by applying the exponential map expp

to the corresponding foliations of TpM inside the ball around the origin of
radius r.

If r is sufficiently small, then the distribution Eβ(q) lies within the angular
ε/2-cone about the parallel translate of Eβ(p), for every β ∈ {u, s, c, cu, cs}
and all p, q with d(p, q) ≤ r. Combining this fact with the preceding discus-
sion, we obtain that property 1. holds if r is sufficiently small.

Property 2. — local invariance — follows from invariance under Fr of the
foliations of TM and the fact that expf(p)(Fr(p, v)) = f(expp(p, v)) provided
‖v‖ ≤ r.

Having chosen r, we now choose r1 small enough so that f(B(p, 2r1)) ⊂
B(f(p), r) and f−1(B(p, 2r1)) ⊂ B(f−1(p), r), and so that, for all q ∈ B(p, r1),

q′ ∈ Ŵs
p(q, r1) =⇒ d(f(q), f(q′)) ≤ ν(p) d(q, q′),

q′ ∈ Ŵu
p (q, r1) =⇒ d(f−1(q), f−1(q′)) ≤ ν̂(f−1(p)) d(q, q′),

q′ ∈ Ŵcs
p (q, r1) =⇒ d(f(q), f(q′)) ≤ γ̂(p)−1 d(q, q′), and

q′ ∈ Ŵcu
p (q, r1) =⇒ d(f−1(q), f−1(q′)) ≤ γ(f−1(p))−1 d(q, q′).

Property 3. — exponential growth bounds at local scales — is now proved
by an inductive argument similar to the proof of Lemma 1.1.

Properties 4.– 7. — coherence, uniqueness, regularity and regularity of
the strong foliation inside weak leaves — follow immediately from the corre-
sponding properties of the foliations of TM discussed above. �

Remark: Note that the system of local foliations constructed in Proposi-
tion 3.1 is not unique; it depends on the extension of Fr outside of a neighbor-
hood of the zero-section of TM . Also note that, even when f is dynamically
coherent, in general there is no reason to expect the fake invariant foliations
Ŵcs

p , Ŵcu
p , and Ŵc

p to coincide with the local leaves of the real invariant foli-

ations Wcs,Wcu
p , and Wc

p, even at p. For the leaf Ŵcs
p (p) to coincide with the

local leaf of Wcs through p, it is necessary that every iterate f−n(Wcs(pn, r)
overflow the neighborhood B(p, r).
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For the rest of the paper, Ŵs
p , Ŵ

c
p, Ŵ

s
p , Ŵ

cs
p and Ŵcu

p will denote fake
invariant foliations given by Proposition 3.1, with ε > 0 much less than the
angle between any two of the subspaces in the partially hyperbolic split-
ting. We may rescale the metric so that the radius r1 in conclusion 2.
of Proposition 3.1 is much bigger than 1. This will ensure that all of the
objects used in the rest of the paper are well-defined. We may assume
that if max{d(x, p), d(y, p)} ≤ 3, then Ŵcs

p (x) ∩ Ŵu
p (y), Ŵcs

p (x) ∩ Wu
loc(y),

Ŵcu
p (x) ∩ Ŵs

p(y) and Ŵcu
p (x) ∩ Ws

loc(y) are single points. We denote by m̂a

the measure m
Ŵa.

4 Distortion estimates inside thin neighbor-

hoods

4.1 A simple distortion lemma

The next lemma will be used to compare values of Hölder cocycles at nearby
points.

Lemma 4.1 Let α : M → R be a positive Hölder continuous function, with
exponent θ > 0. Then there exists a constant H > 0 such that the following
holds, for all p, q ∈ M , B > 0 and n ≥ 1:

n−1∑

i=0

d(pi, qi)
θ ≤ B =⇒ e−HB ≤

αn(p)

αn(q)
≤ eHB,

and
n∑

i=1

d(p−i, q−i)
θ ≤ B =⇒ e−HB ≤

α−n(p)

α−n(q)
≤ eHB.

Proof. We prove the first part of the lemma. The second part is proved
similarly. The function log α is also Hölder continuous with exponent θ. Let
H > 0 be the Hölder constant of log α, so that for all x, y ∈ M :

|log α(x) − log α(y)| ≤ Hd(x, y)θ.

The desired inequalities are equivalent to:

|log αn(p) − log αn(q)| ≤ HB.
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Expanding log αn as a series, we obtain:

|log αn(p) − log αn(q)| ≤
n−1∑

i=0

|log α(pi) − log α(qi)|

≤ H
n−1∑

i=0

d(pi, qi)
θ.

≤ HB,

since
n−1∑

i=0

d(pi, qi)
θ ≤ B,

by the hypothesis of the lemma. �

4.2 Thin neighborhoods of Ws(p, 1)

We next identify, for each n ≥ 0 and p ∈ M , a neighborhood of p whose first
n iterates remain in a uniform neighborhood of the corresponding iterates
of p. We give an exponential estimate of the size of the first n iterates
of the nth such neighborhood. In our proof of Theorem 0.1 we construct
sequences of geometric objects; the nth term in the sequence of objects for
any x ∈ Ws(p, 1) will lie in the nth neighborhood of p.

Let σ < 1 be a continuous function. For n ≥ 0 and p ∈ M , define the set
Sn,σ(p) by:

Sn,σ(p) =
⋃

x∈Ws(p,1)

Ŵc
p(x, σn(p)).

Lemma 4.2 Suppose that σ satisfies σ < min{γ̂, 1}. Then

f j(Sn,σ(p)) ⊂ B(pj, 2),

for j = 0, . . . , n.
Further, there exist positive constants κ < 1 and C > 0 such that, for

every n ≥ 0,
f j(Sn,σ(p)) ⊂ B(pj, Cκj),

for j = 0, . . . , n.
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Proof. Suppose that x ∈ Ws(p, 1) and y ∈ Ŵc
p(x, σn(p)). By part 3(a) of

Proposition 3.1, we then have

yj ∈ Ŵc
pj

(xj, γ̂
−1
j (p)σn(p)) ⊂ Ŵc

pj
(xj, 1) ⊂ B(pj, 2),

for 0 ≤ j ≤ n. In fact, since σ < min{γ̂, 1}, the quantity γ̂−1
j (p)σn(p) <

γ̂−1
j (p)σj(p) is exponentially small in j, as is the diameter of f j(Ws(p, 1)).

This implies the second conclusion. �

Now let τ ≤ 1 be another continuous function. For every x ∈ Sn,σ(p), we
have that B(xn, τn(p)) ⊂ B(pn, r), and so the set

Tn,σ,τ (p) = f−n


 ⋃

z∈fn(Sn,σ(p))

Ŵu
pn

(z, τn(p)) ∪Wu(z, τn(p))




is well-defined. Proposition 3.1 and Lemma 1.1 imply that the leaves of Ŵu
pj

and Wu
loc are uniformly contracted by f−1 as long as they stay near the orbit

of p; combining these facts with Lemma 4.2, we get:

Lemma 4.3 For every continuous function σ satisfying σ < min{γ̂, 1}, the
set Tn,σ,1(p) satisfies

f j(Tn,σ,1(p)) ⊂ B(pj, 3),

for j = 0, . . . , n.
Further, for every such σ and every continuous function τ < 1, there exist

positive constants κ < 1 and C > 0 such that, for every n ≥ 0,

f j(Tn,σ,τ (p)) ⊂ B(pj, Cκj),

for j = 0, . . . , n.

The dimensions of the neighborhoods Tn,σ,τ (p) and their iterates are il-
lustrated in Figure 4.2, in the case where σ, τ < 1.

As simple corollary of this lemma and Lemma 4.1, we then obtain:

Lemma 4.4 Let α : M → R be a positive, uniformly Hölder continuous
function, and let σ, τ be continuous functions satisfying

σ < min{γ̂, 1}, τ < 1.

Then there is a constant C ≥ 1 such that, for all n ≥ 0 and all x, y ∈
Tn,σ,τ (p),

C−1 ≤
αn(y)

αn(x)
≤ C.
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PSfrag replacements

T1,σ,τ (p) Tn,σ,τ (p) Tn+1,σ,τ (p)

f (Tn,σ,τ (p))f (T1,σ,τ (p))
f (Tn+1,σ,τ (p))

fn (Tn,σ,τ (p)) fn (Tn+1,σ,τ (p))

fn+1 (Tn+1,σ,τ (p))

p

Ŵs
p

Ŵu
p

Ŵc
p

Figure 1: Dimensions of the neighborhoods Tn,σ,τ (p) and their iterates
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5 The main theorem

The properties of accessibility and essential accessibility can be reformulated
using the notion of saturation. We say that a set is bisaturated if it is both
Wu-saturated and Ws-saturated. Accessibility means that a set which is
bisaturated must be either empty or all of M . Essential accessibility means
that a measurable set which is bisaturated must have either 0 or full volume.

The central result of this paper is:

Theorem 5.1 Let f be C2, partially hyperbolic and center bunched (or C1+δ

and strongly center bunched). Let A be a measurable set that is both essen-
tially Wu-saturated and essentially Ws-saturated. Then the set of Lebesgue
density points of A is Wu-saturated and Ws-saturated.

Theorem 5.1 does not assume that f is volume-preserving.
The central result of Pugh and Shub in [PS3] is a version of Theorem 5.1,

which involves a different notion of density point (defined in [PS3]) and a
slightly different hypothesis:

For a = u or s, if A is essentially Wa-saturated, then the set of julienne
density points of A is Wa-saturated.

In contrast, Theorem 5.1 requires that A be both essentially Wu-saturated
and essentially Ws-saturated in order to conclude anything.

With the obvious definitions, Theorem 5.1 has the corollary:

Corollary 5.2 If f is as in Theorem 5.1, then every bi essentially saturated
set is essentially bisaturated.

Proof. Let A be a bi essentially saturated set. Theorem 5.1 implies that the
set Â of Lebesgue density points of A is bisaturated. The Lebesgue Density
Theorem implies that m(A∆Â) = 0. Thus A is essentially bisaturated: it
differs by a zero set from a bisaturated set.�

Essential accessibility tells us that essentially bi saturated sets have 0 or
full measure. A priori, the notion of bi essential saturation is weaker than
the notion of essential bisaturation. Corollary 5.2 says that the two concepts
coincide when f is center bunched, so that if f is essentially accessible, then
bi essentially saturated sets must have 0 or full measure.
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Theorem 0.1 follows easily from Corollary 5.2 by a version of the Hopf
argument and a result of Brin and Pesin (see Section 2 of [BPSW] for more
details).

Proof of Theorem 0.1. Let µ be the f -invariant probability measure in
the measure class of m. The concepts of µ-almost everywhere and m-almost
everywhere are the same. To prove that f is ergodic with respect to µ, it
suffices to show that the Birkhoff averages of continuous functions are almost
everywhere constant. Let ϕ be a continuous function, and let

ϕ̂s(p) = lim sup
n→∞

1

n

n∑

i=0

ϕ(f i(p)) and ϕ̂u(p) = lim sup
n→∞

1

n

n∑

i=0

ϕ(f−i(p))

be the forward and backward Birkhoff averages of ϕ under f . The function ϕ̂s

is constant along Ws-leaves, and ϕ̂u is constant along Wu-leaves. It follows
that for any a ∈ R, the sets

As(a) = ϕ̂−1
s (−∞, a] and Au(a) = ϕ̂−1

u (−∞, a].

are Ws-saturated and Wu-saturated, respectively.
Since f preserves µ, the Birkhoff Ergodic Theorem implies that ϕ̂s = ϕ̂u

almost everywhere. Consequently m(As(a) ∆ Au(a)) = 0, so that the set
A(a) = Au(a) ∩ As(a) has Au(a) as an essential Wu-saturate and As(a) as
an essential Ws-saturate. Thus A(a) is bi essentially saturated.

It follows from Corollary 5.2 that A(a) is essentially bisaturated. Essential
accessibility implies that A(a) has 0 or full measure. Since a was arbitrary, it
follows that ϕ̂s and ϕ̂u are almost everywhere constant, and so f is ergodic.

To prove that f has the Kolmogorov property, it suffices to show that
all sets in the Pinsker subalgebra P have 0 or full measure. According to
Proposition 5.1 of [BP], if f is partially hyperbolic, then any set in P ∈ P
is bi essentially saturated. It again follows from Corollary 5.2 and essential
accessibility that P has 0 or full measure. �

In order to prove Theorem 5.1 it suffices to show that the set of Lebesgue
density points of A is Ws-saturated; applying this result with f replaced
by f−1 then shows that the set of Lebesgue density points of A is also Wu-
saturated. More precisely, it suffices to show that, for any p ∈ M , if x, x′ ∈
Ws(p, 1), and x is a Lebesgue density point of A, then so is x′.

Let
N =

⊔

j≥0

B(pj, r)
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be the disjoint union, over j ≥ 0, of the balls B(pj, r), where r � 1 is given
by Proposition 3.1. Everything we do we do in the rest of this paper takes
place inside N , and we drop the dependence on p where it is not confusing.

We let Ŵu be the locally invariant foliation of N whose restriction to
B(pj, r) is Ŵu

pj
. Similarly we define foliations Ŵc, Ŵs, Ŵcu and Ŵcs. By

Proposition 3.1, all of these foliations are uniformly Hölder continuous, Ŵu

uniformly C1 subfoliates Ŵcu, and Ŵs uniformly C1 subfoliates Ŵcs. The
foliations Wu and Ws induce foliations of N , which will again be denoted
by Wu and Ws. Hence Ws(p) is used to denote the local leaf Ws(p, r).
Note that Ŵs(pj) = Ws(pj) and Ŵu(pj) = Wu(pj) for all j ≥ 0. Note also
that, since we are not assuming that f is dynamically coherent, there are no
foliations Wc,Wcu, or Wcs.

Most leaves of these foliations (with the notable exception the leaves of W s

and Ŵs passing through the orbit of p) are invariant under only finitely many
iterates of f , until their orbits leave N . In our proof, the geometric objects in
N that we need to iterate n times always start out in a neighborhood Tn,σ,τ of
the type defined in Section 4.2 with τ < 1 and σ < min{γ̂, 1}. By Lemma 4.3,
these objects remain inside of N for n iterates. As long as their orbits
remain inside of N , the locally invariant foliations Ŵu, Ŵc, Ŵs, Ŵcu and Ŵcs

used to construct these geometric objects are nearly indistinguishable from
their invariant counterparts Wu,Wc,Ws,Wcu and Wcs in the dynamically
coherent setting.

These locally invariant foliations differ from true invariant foliations in
one key respect. The measurable set A in Theorem 5.1 is essentially W s-
saturated and essentially Wu-saturated. The property of (essential) Wu-
saturation neither implies nor is implied by (essential) Ŵu-saturation. Sim-
ilarly, (essential) Ws-saturation neither implies nor is implied by (essential)
Ŵs-saturation. While it is possible to prove a version of Theorem 5.1 in which
Wu and Ws are replaced by Ŵu and Ŵs, such a theorem is not enough to
prove ergodicity using a Hopf argument. This is because the Hopf argument
uses infinitely many iterates of f and is thus global in nature. Therefore,
wherever we use explicitly the fact that our set A is Wu-saturated, in partic-
ular, in our arguments that use Proposition 2.5, we must switch from using
Ŵu to using Wu, and similarly for stable foliations.

Following Pugh and Shub, we consider for each x ∈ Ws(p, 1) a sequence
of sets, called center-unstable juliennes, that lie in the fake center-unstable
manifold Ŵcu(x) and shrink exponentially as n → ∞ while becoming increas-
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ingly thin in the Ŵu-direction. In the Pugh-Shub construction, dynamical
coherence is assumed, and the true invariant foliations W cu, Wc and Wu

are used; here we use their fake counterparts. While objects we work with,
such as center-unstable juliennes, will depend on the fake invariant foliations
given by Proposition 3.1, the final conclusion of Theorem 5.1 does not, since
we always have Ŵs(p) = Ws(p).

Recall the center bunching assumptions (7):

ν < γγ̂ and ν̂ < γγ̂.

In what follows we will use only the first of these inequalities. The second
inequality is used to prove Wu saturation of density points.

We choose continuous functions τ and σ such that

ν < τ < σγ and σ < min{γ̂, 1}.

Note that these inequalities also imply that

τ ν̂ < σγν̂ < σγγ̂ ≤ σ.

The choice of σ and τ with the desired properties is possible because of the
center bunching assumption. The reader should think of τ as being just a
little bigger than ν and σ as just a little bit less than min{γ̂, 1}. The reader
might also choose to keep in mind the case where the functions ν, ν̂, γ, and γ̂
are constants, and where τ and σ can be chosen to be constant. In this case
the cocycles τn and σn are just the constants τn and σn.

Using the notation defined in Section 4.2, let Sn = Sn,σ(p), and let Tn =
Tn,σ,τ (p). For the rest of the paper, except where we indicate otherwise,
cocycles will be evaluated at the point p. We will also drop the dependence
on p from the notation; thus, if α is a cocycle, then αn(p) will be abbreviated
to αn.

The center-unstable juliennes Ĵcu
n (x) that we construct will be contained

in Tn. We now describe the construction of center-unstable juliennes.
Define, for all x ∈ Ws(p, 1),

B̂c
n(x) = Ŵc(x, σn).

Note that
Sn =

⋃

y∈Ws(p,1)

B̂c
n(x).
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For y ∈ Sn, we may then define two types of unstable juliennes:

Ĵu
n(y) = f−n(Ŵu(yn, τn))

and
Ju

n(y) = f−n(Wu(yn, τn)).

Observe that for all y,∈ Sn, the sets Ĵu
n (y) and Ju

n(y) are contained in Tn.
For each x ∈ Ws(p, 1) and n ≥ 0, we then define the center-unstable

julienne centered at x of order n:

Ĵcu
n (x) =

⋃

q∈B̂c
n(x)

Ĵu
n(q).

Note that, by their construction, the sets Ĵcu
n (x) are contained in Tn, for

all n ≥ 0 and x ∈ Ws(p, 1). Note also that Ĵcu
n (x) is contained in the

smooth submanifold Ŵcu(x), which carries the restricted Riemannian volume
m̂cu = m

Ŵcu, and Ĵcu
n (x) has positive m̂cu–measure. The reason for using

Ĵu here instead of Ju is that the distribution TŴc ⊕ Eu is not necessarily
integrable. The set defined by replacing Ĵu

n by Ju
n in the definition of Ĵcu

n

might not be a C1 submanifold of M .
Our cu-juliennes are closely related to, but not exactly the same as, those

of Pugh and Shub. In the case where σ and τ are constant functions, and f is
dynamically coherent, their center-unstable julienne is the foliation product
of Wc(x, σn) and f−n(Wu(xn, τn)); see Figure 5. In this case, the image
under fn of our Jcu

n (p) appears in [PS3] as a tubelike approximation to the
Pugh-Shub center-unstable postjulienne of rank n. The results of [PS3] show
that the cu-juliennes defined here and in [PS3] are internested. Thus our cu-
juliennes could be replaced by the Pugh-Shub cu-juliennes in Propositions 5.3
and 5.5.

As in [PS3], the cu-juliennes have a quasi-conformality property: they
are approximately preserved by holonomy along the stable foliation.

Proposition 5.3 Let x, x′ ∈ Ws(p, 1), and let hs : Ŵcu(x) → Ŵcu(x′) be
the holonomy map induced by the stable foliation W s. Then the sequences
hs(Ĵcu

n (x)) and Ĵcu
n (x′) are internested.

There are estimates on the volumes of unstable and center-unstable juli-
ennes.
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Bc
n B̂c

n

Ju
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Center-unstable julienne J cu
n (p) in [PS3]
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Wu

Ĵcu
n (p) in this paper.

Figure 2: Two types of center-unstable juliennes, when τ and σ are constant.
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Proposition 5.4 There exist δ > 0 and c ≥ 1 such that, for all x ∈
Ws(p, 1), and all q, q′ ∈ Sn, the following hold, for all n ≥ 0:

c−1 ≤
m̂u(Ĵ

u
n(q))

m̂u(Ĵu
n (q′))

≤ c,

c−1 ≤
mu(J

u
n(q))

mu(Ju
n (q′))

≤ c,

m̂u(Ĵ
u
n+1(q)) ≥ δm̂u(Ĵ

u
n(q)),

and
m̂cu(Ĵ

cu
n+1(x)) ≥ δm̂cu(Ĵ

cu
n (x)).

The final crucial property of the cu-juliennes is that, for the sets that
appear in the proof of Theorem 5.1, Lebesgue density points are precisely
cu-julienne density points.

Proposition 5.5 Let X be a measurable set that is both W s-saturated and
essentially Wu-saturated. Then x ∈ Ws(p) is a Lebesgue density point of X
if and only if:

lim
n→∞

m̂cu(X : Ĵcu
n (x)) = 1.

Note the asymmetry that X is fully Ws-saturated but only essentially Wu-
saturated. This is because X will be an essential stable saturate of an essen-
tially bisaturated set.

Remark: Pugh and Shub show that Lebesgue almost every point of any
measurable set is a cu-julienne density point. In their argument they prove
a Vitali covering lemma for their juliennes. This argument accounts for their
definition of cu-juliennes as a foliation product and for the stronger bunch-
ing hypothesis in their main result. We do not know whether their result,
specifically Theorem 7.1 of [PS3], still holds under our weaker bunching hy-
pothesis, or whether it holds at all in the absence of dynamical coherence
(although it can be shown that in the dynamically coherent, symmetrized
setting that they consider, their hypothesis can be weakened from ν < γ2+2/θ0

to ν < γ1/θ0).
The proof of Proposition 5.3 is essentially contained in [PS3]. For com-

pleteness we reproduce the argument in the next section. Proposition 5.4 is
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proved in Section 7, and the proof of Proposition 5.5 is in the final section.
We now use these three propositions to prove the main result.

Proof of Theorem 5.1. As we noted above, it suffices to show that the
Lebesgue density points of A are Ws-saturated; to see that the Lebesgue
density points of A are Wu-saturated, just consider f−1 instead of f . Let
As be an essential Ws-saturate of A. Since m(A ∆ As) = 0, the Lebesgue
density points of A are precisely the same as those of As. Fix p ∈ M and
suppose that x ∈ Ws(p, 1) is a Lebesgue density point of As. Proposition 5.5
implies that x is a cu-julienne density point of As.

To finish the proof, we show that every x′ ∈ W s(p, 1) is a cu-julienne
density point of As. Then by Proposition 5.5, every x′ ∈ W s(p, 1) is a
Lebesgue density point of As. The Lebesgue density points of As, and hence
of A, are therefore Ws-saturated.

Let hs : Ŵcu(x) → Ŵcu(x′) be the holonomy map induced by the stable
foliation Ws. The sequence hs(Ĵcu

n (x)) ⊂ Ŵcu(x′) nests at x′. Transverse
absolute continuity of hs with bounded Jacobians implies that

lim
n→∞

m̂cu(A
s : Ĵcu

n (x)) = 1 ⇐⇒ lim
n→∞

m̂cu(h
s(As) : hs(Ĵcu

n (x))) = 1.

Since As is s-saturated, we then have:

lim
n→∞

m̂cu(A
s : Ĵcu

n (x)) = 1 ⇐⇒ lim
n→∞

m̂cu(A
s : hs(Ĵcu

n (x))) = 1.

Since we are assuming that x is a cu-julienne density point of As, we thus
have

lim
n→∞

m̂cu(A
s : hs(Ĵcu

n (x))) = 1.

Working inside of Ŵcu(x′), we will apply Lemma 2.1 to the sequences
hs(Ĵcu

n (x)) and Ĵcu
n (x′), which both nest at x′. Proposition 5.3 implies that

these sequences are internested. Proposition 5.4 implies that Ĵcu
n (x′) is regu-

lar with respect to the induced Riemannian measure m̂cu on Ŵcu(x′). Lemma 2.1
now tells us that

lim
n→∞

m̂cu(A
s : hs(Ĵcu

n (x))) = 1 ⇐⇒ lim
n→∞

m̂cu(A
s : Ĵcu

n (x′)) = 1,

and so x′ is a cu-julienne density point of As. It follows from Proposition 5.5
that x′ is a Lebesgue density point of As, and thus of A. �
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6 Julienne quasiconformality

We adapt the proof of Theorem 4.4 in [PS3] to prove Proposition 5.3. It will
suffice to show that k can be chosen so that

hs(Ĵcu
n (x)) ⊆ Ĵcu

n−k(x
′), (20)

for all n ≥ k, whenever x and x′ satisfy the hypotheses of the proposition.
The hypotheses of the proposition treat x and x′ symmetrically, so we can
then reverse their roles to obtain:

h
s
(Ĵcu

n (x′)) ⊆ Ĵcu
n−k(x),

for all n ≥ k, where h
s

: Ŵcu
loc(x

′) → Ŵcu(x) is the holonomy induced also by
the stable foliation Ws. Since h

s
and hs are inverses, we then obtain:

Ĵcu
n (x′) ⊆ hs(Jcu

n−k(x)),

for all n ≥ k.
In order to prove that k can be chosen so that (20) holds, we need two

lemmas.

Lemma 6.1 There exists a positive integer k1 such that, for all x, x′ ∈
Ws(p),

ĥs(B̂c
n(x)) ⊆ B̂c

n−k1
(x′),

for all n ≥ k1, where ĥs : Ŵcu
loc(x) → Ŵcu(x′) is the local Ŵs holonomy.

Proof. Proposition 3.1 implies that ĥs is L-Lipschitz, for some L ≥ 1.
Therefore the image of Ŵc(x, σn) under ĥs is contained in Ŵc(x′, Lσn) ⊆
Ŵc(x′, σn−k1

), for any k1 large enough so that σ−k1
> L. �

Lemma 6.2 There exists a positive integer k2 such that the following holds
for every integer n ≥ k2. Suppose q, q′ ∈ Sn, with q′ ∈ Ŵs(q). Let y ∈ Ĵu

n(q),
and let y′ be the image of y under Ws holonomy from Ŵcu

loc(q) to Ŵcu(q′).
Then

y′ ∈ Ĵu
n−k2

(z′),

for some z′ ∈ Ŵc(q′, σn−k2
).
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Figure 3: Picture for the proof of Lemma 6.2.

Remark: Note that two types of holonomy maps appear in Lemma 6.2: the
point q′ is the image of q under Ŵs holonomy between Ŵcu

loc(x) and Ŵcu(x′),
whereas y′ is the image of y under Ws holonomy.

Proof of Lemma 6.2. Let z′ be the unique point in Ŵu(y′) ∩ Ŵc(q′). It is
not hard to see that z′j ∈ N , for j = 0, . . . , n − 1 and that z′

n is the unique

point in Ŵu(y′
n)∩Ŵc(q′n). It will suffice to prove that d(y′

n, z
′
n) = O(τn) and

d(q′, z′) = O(σn).
We have d(qn, yn) ≤ τn because y ∈ f−n(Wu(qn, τn)). By Proposition 3.1,

3(a), we also have that d(qn, q′n) = O(νn) and d(yn, y
′
n) = O(νn), since d(q, q′)

and d(y, y′) are both O(1). Note that qn and z′n are, respectively, the images
of yn and y′

n under Ŵu-hononomy between Ŵcs
loc(yn) and Ŵcs(qn). Uniform

transversality of the foliations Ŵu and Ŵcs implies that

d(y′
n, z

′
n) = O(max{d(qn, yn), d(yn, y

′
n)}) = O(τn),
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since ν < τ .
We next show that d(q′, z′) = O(σn). By the triangle inequality,

d(q′n, z′n) ≤ d(q′n, qn) + d(qn, yn) + d(yn, y
′
n) + d(y′

n, z
′
n).

All four of the quantities on the right-hand side are easily seen to be O(τn).
Since q′n and z′n lie in the same Ŵc-leaf at distance O(τn), Proposition 3.1
now implies that d(q′, z′) = O((γn)

−1τn). But τ and σ were chosen so that
τ < γσ. Hence (γn)

−1τn < σn and d(q′, z′) = O(σn), as desired. �

Proof of Proposition 5.3. As noted above, it suffices to prove the
inclusion (20). For q ∈ Bc

n(x), let q′ = ĥs(q). Then q′ ∈ Bc
n−k1

(p′) by
Lemma 6.1. Hence q, q′ ∈ Sn−k1

and we can apply Lemma 6.2 to obtain

hs(Jcu
n (x)) ⊆

⋃

z∈Q

Ju
n−k2

(z),

where
Q =

⋃

q′∈Bc
n−k1

(x′)

Bc
n−k2

(q′).

For k ≥ k2, we have:

⋃

z∈Q

Ju
n−k2

(z) ⊆
⋃

z∈Q

Ju
n−k(z).

It therefore suffices to find k ≥ k2 such that Q ⊆ Bc
n−k(x

′). This latter
inclusion holds if:

σn−k1
+ σn−k2

≤ σn−k,

which is obviously true for all n ≥ k, if k is sufficiently large. �

7 Julienne measure

We next prove Proposition 5.4. Continuity of Ŵu implies that there exists
C1 ≥ 1 such that

C−1
1 ≤

m̂u(Ŵ
u(qn, τn))

m̂u(Ŵu(q′n, τn))
≤ C1, (21)
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for all q, q′ ∈ Sn.
Let Ês, Êc, and Êu be the tangent distributions to the leaves of Ŵs, Ŵc,

and Ŵu, respectively. They are Hölder continuous by Proposition 3.1, part
6. Furthermore, the restrictions of these distributions to Tn are invariant
under Tf j, for j = 1, . . . n. We next observe that the Jacobian Jac(Tf n|

Êu)
is nearly constant when restricted to the set Tn. More precisely, we have:

Lemma 7.1 There exists C2 ≥ 1 such that, for all n ≥ 1, and all y, y ′ ∈ Tn,

C−1
2 ≤

Jac(Tfn|
Êu)(y)

Jac(Tfn|
Êu)(y′)

≤ C2.

Proof. By the Chain Rule, these inequalities follow from Lemma 4.4 with
α = Jac(Tf |

Êu).�

Let q ∈ Sn, and let X ⊆ Ĵu
n(q) be a measurable set (such as Ĵu

n(q) itself).
Then:

m̂u(f
n(X)) =

∫

X
Jac(Tfn|

Êu)(x) dm̂u(x).

From this and Lemma 7.1 we then obtain:

Lemma 7.2 There exists C3 > 0 such that, for all n ≥ 0, for any q, q ′ ∈ Sn,
and any measurable sets X ⊂ Ĵu

n(q), X ′ ⊂ Ĵu
n(q′), we have:

C−1
3

m̂u(f
n(X))

m̂u(fn(X ′))
≤

m̂u(X)

m̂u(X ′)
≤ C3

m̂u(f
n(X))

m̂u(fn(X ′))
.

Recall that fn(Ĵu
n(q)) = Ŵu(qn, τn), for q ∈ Sn. The first conclusion of

Proposition 5.4 now follows from (21) and Lemma 7.2 with X = Ĵu
n (q) and

X ′ = Ĵu
n(q′).

The second conclusion is proved similarly.
We next show that there exists δ > 0 such that

m̂u(Ĵ
u
n+1(q))

m̂u(Ĵu
n(q))

≥ δ, (22)

for all n ≥ 0 and all q ∈ Sn. To obtain (22), we will apply Lemma 7.2 with
q = q′, X = Ĵu

n+1(q), and X ′ = Ĵu
n(q). This gives us:

m̂u(Ĵ
u
n+1(q))

m̂u(Ĵu
n(q))

≥ C−1
3

m̂u(f
n(Ĵu

n+1(q)))

m̂u(fn(Ĵu
n(q)))

.
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But fn(Ĵu
n+1(q)) = f−1(Ŵu(qn+1, τn+1)) and fn(Ĵu

n(q)) = Ŵu(qn, τn), and
hence:

m̂u(f
n(Ĵu

n+1(q)))

m̂u(fn(Ĵu
n(q)))

=
m̂u(f

−1(Ŵu(qn+1, τn+1)))

m̂u(Ŵu(qn, τn))
.

This ratio is uniformly bounded below away from 0, since f−1 is a diffeomor-
phism, the leaves of Ŵu are uniformly smooth, and the ratio τn+1/τn = τ(pn)
is uniformly bounded below away from 0.

To prove the final claim, we begin by observing that, considered as a
subset of Ŵcu(x), the set Ĵcu

n (x) fibers over B̂c
n(x) with Ŵu-fibers Ĵu

n(q). We
have just proved that these fibers are c-uniform. Since σn+1/σn = σ(pn) is
uniformly bounded away from 0, the ratio

m̂c(B̂
c
n+1(x))

m̂c(B̂c
n(x))

=
Ŵc(x, σn+1)

Ŵc(x, σn)

is bounded away from 0, uniformly in x and n. Thus the sequence of bases
B̂c

n(x) of Ĵcu
n (x) is regular in the induced Riemannian volume m̂c. Proposi-

tion 3.1, part 7. implies that Ŵu C1 subfoliates Ŵcu; in particular, consid-
ered as a subfoliation of Ŵcu(x), Ŵu is absolutely continuous with bounded
Jacobians. Proposition 2.4 implies that the sequence Ĵcu

n (x) is regular, with
respect to the induced Riemannian measure m̂cu. This proves the final claim.
�

8 Julienne density

We now come to the proof of Proposition 5.5. We must show that if a
measurable set X is both Ws-saturated and essentially Wu-saturated, then
a point x ∈ Ws(p, 1) is a Lebesgue density point of X if and only if

lim
n→∞

m̂cu(X : Ĵcu
n (x)) = 1.
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We will establish the following chain of equivalences:

x is a Lebesgue density point of X ⇐⇒ lim
n→∞

m(X : Bn(x)) = 1

⇐⇒ lim
n→∞

m(X : Cn(x)) = 1

⇐⇒ lim
n→∞

m(X : Dn(x)) = 1

⇐⇒ lim
n→∞

m(X : En(x)) = 1

⇐⇒ lim
n→∞

m(X : Fn(x)) = 1

⇐⇒ lim
n→∞

m(X : Gn(x)) = 1

⇐⇒ lim
n→∞

m̂cu(X : Ĵcu
n (x)) = 1.

Before defining the sets Bn(x) through Gn(x), we outline the general scheme
of the proof. After verifying the first equivalence, we prove that Bn(x) is
regular, and that Bn(x) and Cn(x) are internested. The second equivalence
then follows from Lemma 2.1. The sets Cn(x) and Dn(x) both fiber over
the same base in Ŵcs, with c-uniform fibers in Wu, so the third equivalence
follows from Proposition 2.5. We prove that the sets Dn(x), En(x), Fn(x), and
Gn(x) are all internested, and that Gn(x) is a regular sequence. Equivalences
4-6 then follow from Lemma 2.1. Finally, Gn(x) fibers over Ĵcu

n (x), with c-
uniform Ws-fibers, and so the final equivalence follows from Proposition 2.7.
This final step uses Ws-saturation of X.

The sets Bn(x) through Gn(x) are defined as follows. The set Bn(x) is a
Riemannian ball in M :

Bn(x) = B(x, σn).

The sets Cn(x), Dn(x) and En(x) will fiber over the same base Dcs
n (x), where

Dcs
n (x) =

⋃

x′∈Ŵs(x,σn)

B̂c
n(x′).

Proposition 3.1, part 4. implies that Dcs
n (x) is contained in the C1 submani-

fold Ŵcs(x); the sequences Dcs
n (x) and Ŵcs(x, σn) are internested. Let

Cn(x) =
⋃

q∈Dcs
n (x)

Wu(q, σn),

and let
Dn(x) =

⋃

q∈Dcs
n (x)

Ju
n(q).
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The set En(x) is nearly identical to Dn(x), with the crucial difference that
the Ju

n -fibers are replaced with Ĵu
n -fibers:

En(x) =
⋃

q∈Dcs
n (x)

Ĵu
n(q) =

⋃

x′∈Ŵs(x,σn)

Ĵcu
n (x′) =

⋃

x′∈Ws(x,σn)

Ĵcu
n (x′).

The rightmost equality follows from the fact that Ŵs(x, σn) = Ws(x, σn), for
all x ∈ Ws(p, 1) (Proposition 3.1, part 5.)

We define Fn(x) to be the foliation product of Ĵcu
n (x) and Ws(x, σn):

Fn(x) =
⋃

q∈Ĵcu
n (x), q′∈Ws(x,σn)

Ws(q) ∩ Ŵcu(q′).

This definition makes sense since the foliations Ŵcu and Ws are transverse.
Finally, let

Gn(x) =
⋃

q∈Ĵcu
n (x)

Ws(q, σn).

It is in the transition from Dn to En that the exchange between the measure-
theoretically useful foliation Wu and the geometrically useful foliation Ŵu

takes place. The definition of Fn is where we first use the foliation Ws.
Figure 8 is a schematic illustration of the relationship between the sets

En(x), Fn(x) and Gn(x). All three sets contain Ĵcu
n (x) and Ws(x, σn). The

set En(x) fibers over Ws(x, σn) with fibers of the form Ĵcu
n (·). The set Gn(x)

fibers over Ĵcu
n (x) with fibers of the form Ws(·, σn). The foliation product

Fn(x) of Ĵcu
n (x) and Ws(x, σn) is, in some sense, intermediate between En(x)

and Gn(x).
We now prove these equivalences, following the outline described above.
First, recall that Bn(x) is a round ball about x of radius σn. The forward

implication in the first equivalence is obvious from the definition of Bn(x).
The backward implication follows from this definition and the fact that the
ratio σn+1/σn = σ(pn) of successive radii is less than 1, and is bounded away
from both 0 and 1 independently of n. From this we also see that Bn(x) is
regular.

The set Cn(x) fibers over Dcs
n (x), with fiber Wu(x′, σn) over x′ ∈ Dcs

n (x).
The sequence Dcs

n (x) internests with the sequence of disks Ŵcs(x, σn), by
continuity and transversality of the foliations Ŵc and Ŵs. Continuity and
transversality of the foliations Wu and Ŵcs then imply that Cn(x) and Bn(x)
are internested.
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Figure 4: Comparison between En(x), Fn(x) and Gn(x).

42



To prove the equivalence

lim
n→∞

m(X : Cn(x)) = 1 ⇐⇒ lim
n→∞

m(X : Dn(x)) = 1,

we note that Cn(x) and Dn(x) both fiber over Dcs
n (x), with Wu-fibers. Since

X is essentially Wu-saturated, Proposition 2.5 implies that it suffices to show
that the fibers of Cn(x) and Dn(x) are both c-uniform. The fibers of of Cn(x)
are easily seen to be uniform, because they are all comparable to balls in Wu

of fixed radius σn. The fibers of Dn(x) are the unstable juliennes Ju
n(x′), for

x′ ∈ Dcs
n (x). Uniformity of these fibers follows from Proposition 5.4.

We next prove:

Lemma 8.1 The sequences Dn(x) and En(x) are internested.

Proof. Recall that

Dn(x) =
⋃

q∈Dcs
n (x)

Ju
n(x), and En(x) =

⋃

q∈Dcs
n (x)

Ĵu
n(x).

Internesting of the sequences Dn(x) and En(x) means that there is a k ≥ 0
such that, for all n ≥ k,

Dn(x) ⊆ En−k(x) and En(x) ⊆ Dn−k(x).

We will show that there is a k for which the first inclusion holds. Reversing
the roles of of Wu and Ŵu in the proof gives the second inclusion.

Suppose y ∈ Dn(x). Then y ∈ Ju
n(q) = f−n(Wu(qn, τn)), for some q ∈

Dcs
n (x); in particular,

d(yn, qn) = O(τn). (23)

Let q̂ be the unique point of intersection of Ŵu(y) with Ŵcs(x). We will show
that y ∈ En−k(x), for some k that is independent of n. In order to do this, it
suffices to show that q̂ ∈ Dcs

n−k(x) and y ∈ Ĵu
n−k(q̂) = f−(n−k)(Ŵu(q̂n−k, τn−k)).

In order to prove that q̂ ∈ Dcs
n−k(x) it will suffice to show that

d(q, q̂) = o(σn) (24)

(in fact, O(σn) would suffice, but the argument gives o(σn)). In order to
prove that y ∈ Ĵu

n−k(q̂) it will suffice to show that

d(yn, q̂n) = O(τn). (25)
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Equation (24) follows easily from (25). Since yn and q̂n lie in the same
Ŵu leaf, Proposition 3.1 and (25) imply that

d(y, q̂) = O(ν̂nτn) = o(σn), (26)

since ν̂τ < σ. Similarly, Proposition 3.1 and (23) imply that

d(y, q) = o(σn). (27)

Applying the triangle inequality to (26) and (27) gives (24).
It remains to prove (25). Recall from the construction of the fake folia-

tions in Proposition 3.1 that, at any point z in the neighborhood N of the
orbit of p in which the fake foliations are defined, the tangent space TzŴ

u(z)
lies in the ε-cone about TzW

u(z) = Eu(z). Furthermore, the angle between
TzŴ

cs(z) and either TzŴ
u(z) or TzW

u(z) is uniformly bounded away from
0. Note that q̂n is the unique point in Ŵu(yn)∩Ŵcs(xn) and qn is the unique
point in Wu(yn) ∩ Ŵcs(xn); combining this with (23) gives:

d(yn, q̂n) = O(d(yn, qn)) = O(τn).

This completes the proof.�

We next show:

Lemma 8.2 En(x) and Fn(x) are internested, as are Fn(x) and Gn(x).

Proof. The sets En(x) and Fn(x) both fiber over the same base Ŵs(x, σn).
The fibers of En(x) are the cu-juliennesĴcu

n (x′), for x′ ∈ Ŵs(x, σn). the fibers
of Fn(x) are images of Ĵcu

n (x) under Ws-holonomy from Ŵcu(x) to Ŵcu(x′),
for x′ ∈ Ŵs(x, σn). It follows immediately from Proposition 5.3 that the
sequences En(x) and Fn(x) are internested.

To see that Fn(x) and Gn(x) are internested, suppose that q′ lies in the
boundary of the fiber of Fn(x) that lies in Ws(q) for some q ∈ Ĵcu

n (x). Then
q′ ∈ Ĵcu

n (x′) for a point x′ that lies in the boundary of Ws(x, σn). The
diameters of Ĵcu

n (x) and Ĵcu
n (x′) are both O(σn), and d(x, x′) = σn. Hence, if

k is large enough, we will have

σn+k ≤ d(q, q′) ≤ σn−k.

Thus all points on the boundary of the fiber of Fn(x) in Ws
loc(q) lie outside

Ws(q, σn+k) and inside Ws(q, σn−k). �
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We now know that any two of Dn(x), En(x), Fn(x) and Gn(x) are in-
ternested. As discussed above, to prove the fourth through sixth equiva-
lences, it now suffices to show:

Lemma 8.3 The sequence Gn(x) is regular for each x ∈ Ws(p, 1).

Proof. The set
Gn(x) =

⋃

q∈Ĵcu
n (x)

Ws(q, σn)

fibers over Ĵcu
n (x), with Ws-fibers Ws(q, σn). Since Ws is absolutely contin-

uous, Proposition 2.4 implies that regularity of Gn(x) follows from regularity
of the base sequence and fiber sequence. Proposition 5.4 implies that the
sequence Ĵcu

n (x) is regular in the induced measure m̂cu. As we remarked
above, the ratio σn+1/σn = σ(pn) is uniformly bounded below away from 0.
Consequently, the ratio

ms(W
s(q, σn+1))

ms(Ws(q, σn))

is bounded away 0, uniformly in x, q, and n. The regularity of Gn(x) now
follows from Proposition 2.4. �

To prove the final equivalence, we use the fact that Gn(x) fibers over
Ĵcu

n (x) with c-uniform fibers and apply Proposition 2.7. Here we use the fact
that X is Ws-saturated. This completes the proof of Proposition 5.5. �

9 Open questions

We do not know whether the bunching assumption can be dropped in The-
orem 0.1. It seems clear that a significant new idea would be required to
remove this hypothesis. Indeed, even if we impose stringent assumptions
on the regularity of the center, center-stable and center-unstable foliations,
as Brin and Pesin do in their 1974 work, every known ergodicity result re-
quires the center bunching hypothesis (7). Thus a first step in answering this
question might be to answer the following question:

Question: Suppose that f is C2, volume-preserving and partially hy-
perbolic. If Ec is absolutely continuous (Lipschitz, smooth, . . . ) and f is
(essentially) accessibile, is f then ergodic?
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As a concrete example, consider a diffeomorphism fλ : T2×T2 → T2×T2

of the form:
fλ(x, y) = (A(x), gλ(y)),

where A : T2 → T2 is the linear Anosov diffeomorphism given by

A =

(
2 1
1 1

)2

,

and gλ : T2 → T2 is a standard map of the form:

gλ(z, w) = (z + w, w +
λ

2π
sin(2π(z + w))).

A straightforward calculation shows that there is an interval Λ ⊂ R contain-
ing (−4, 4) such that, if λ ∈ Λ, then fλ is partially hyperbolic with respect
to the standard (flat) metric on T2 × T2. It is also not difficult to show,
by examining the spectrum of Tfλ at the fixed point (0, 0), that fλ is center
bunched if and only if λ ∈ (−1, 1).

This example appears in [SW1], where it is shown that there is a function
ϕ : T2 → T2 with ϕ(0) = 0 and an interval E = (0, ε0) such that, for all
(λ, ε) ∈ Λ × E, the map

fλ,ε(x, y) = (A(x), gλ(y) + εϕ(x))

is both partially hyperbolic and stably accessible. Futhermore, fλ,ε is center
bunched if and only if (λ, ε) ∈ (−1, 1)×E. For all (λ, ε) ∈ Λ×E, the center
bundle Ec is tangent to the fibers {x} × T2 and is C∞. The foliations Wcu

and Wcs are also C∞.
Theorem 0.1 implies that fλ,ε is stably ergodic for all (λ, ε) ∈ (−1, 1)×E.

We do not however know whether fλ,ε is ergodic for even a single value of
(λ, ε) ∈ (Λ \ (−1, 1)) × E.

We also do not know whether or not the center bunching inequalities (7)
imply that a partially hyperbolic diffeomorphism is dynamically coherent.
The simplest non dynamically coherent examples are linear Anosov diffeo-
morphisms of nilmanifolds, viewed as partially hyperbolic by grouping the
weaker stable and unstable directions together to form a center distribution.
It was first observed in [W] that this construction can provide examples that
are not dynamically coherent.
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In [BW3], we discuss a family of examples of this type. They are Anosov
diffeomorphisms of a compact quotient of the product of the Heisenberg
group with itself induced by linear maps whose eigenvalues are

λa+b ≥ λb ≥ λa ≥ λ−a ≥ λ−b ≥ λ−a−b,

where b ≥ a ≥ 0 and λ > 1 is the larger of the two eigenvalues of a hyperbolic
matrix in SL(2,Z) whose eigenvalues are λ > 1 > λ−1 > 0. When a > 0, the
map can be viewed as a partially hyperbolic diffeomorphism with Eu and Es

being the left invariant one dimensional distributions corresponding to the
eigenvalues λa+b and λ−a−b respectively. The center is the left invariant four
dimensional distribution corresponding to the sum of the eigenspaces for the
other eigenvalues.

The linear map is chosen so that [Ec, Ec] is spanned by Eu ⊕ Es. This
ensures that distribution Ec is not integrable. Consequently these examples
are not dynamically coherent.

For these examples we have

ν = ν̂ = λ−a−b and γ = γ̂ = λ−b.

Thus center bunching fails, because

ν = ν̂ = λ−a−b ≥ λ−2b = γγ̂.

Note that center bunching only just fails in the extreme case when a = b.
Gourmelon has constructed perturbations of the a = b example that are
robustly ergodic, but neither Anosov nor dynamically coherent. It does not
seem to be known whether or not his perturbations are center bunched.
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xvii, 33–60.

[GPS] Grayson, M., Pugh, C., and M. Shub, Stably ergodic diffeomor-
phisms. Ann. of Math. (2) 140 (1994), no. 2, 295–329.

[Ha] Hasselblatt, B. Periodic bunching and invariant foliations. Math.
Res. Lett. 1 (1994), no. 5, 597–600.

[HW] Hasselblatt, B., and A. Wilkinson, Prevalence of non-Lipschitz
Anosov foliations. Ergodic Theory Dynam. Systems 19 (1999), no.
3, 643–656.

48



[Ho] Hopf, E. Statistik der geodtischen Linien in Mannigfaltigkeiten neg-
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