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Introduction

Let f : M — M be a partially hyperbolic diffeomorphism of a compact
manifold M. In this paper, partially hyperbolic means the following. There
is a nontrivial splitting of the tangent bundle, TM = E* & E°® E?, that
is invariant under the derivative map T f. Further, there is a Riemannian
metric for which we can choose continuous positive functions v, 7, and %
with

v,p<1l and v<y<Al<p? (1)

such that, for a unit vector v € T,M,

1T fol| < v(p), if v € E°(p), (2)
v(p) < ITfoll <A(p) ', ifve Ep), (3)
o(p)~" < |ITfoll, if v € E*(p). (4)

We say that f is center bunched if the functions v, 7, v, and 4 can be chosen
so that:

max{v, v} < v7. (5)

Center bunching means that the hyperbolicity of f dominates the noncon-
formality of T'f on the center. Inequality (5) always holds when T'f|g. is
conformal, since we can choose

() =4p) " =T fo)ll,



where v(p) is any unit vector in E°(p). In particular, center bunching holds
whenever E° is one-dimensional.

For any partially hyperbolic diffeomorphism, the stable and unstable sub-
bundles E* and E* are tangent to foliations, which we denote by W* and W*
respectively [BP]. These foliations induce an equivalence relation on M: we
say that p ~,, ¢ if there is a sequence of points p = pg, ..., pr = ¢ such that
any two consecutive points in the sequence lie in the same W?-leaf or the
same Wt¥-leaf. A partially hyperbolic diffeomorphism has the accessibility
property if there is only one ~,-class, i.e. if p ~,, ¢ for any p,q € M. It has
the essential accessibility property if a set that is measurable (with respect
to the volume) and is a union of ~,,-classes must have 0 or full measure.

A partially hyperbolic diffeomorphism is dynamically coherent if there
are foliations W and W tangent to E° @ E° and E° @ E" respectively.
In this case there is also a foliation W* tangent to E° whose leaves are the
intersections of the leaves of W and W*®. Each leaf of W* is foliated by
leaves of W¢ and W?*; leaves of W have the analogous property. Not all
partially hyperbolic diffeomorphisms are dynamically coherent; in Section 5
we describe examples, which go back to Smale.

Our main result is:

Theorem 0.1 Let f be C?, volume preserving, partially hyperbolic, dynam-
tcally coherent, and center bunched. If f is essentially accessible, then f is
ergodic, and in fact has the Kolmogorov property.

If any of the three bundles E*, E¢, and E* is trivial, then the theorem is
true, even without the hypotheses of dynamical coherence and center bunch-
ing. If E° is trivial, f is an Anosov diffeomorphism and the result is due to
Anosov [A]. If E* (resp. E") is trivial, essential accessibility means that the
foliation W* (resp. W?) is ergodic (any set that is a union of unstable leaves
must have zero or full measure) and the result follows easily from the Hopf
argument; see the discussion after Theorem A in [PS2]. Henceforth we shall
assume that all three bundles are nontrivial.

Theorem 0.1 generalizes a well-known result of Pugh and Shub (Theorem
A of [PS2]). Their statement is identical to ours, but our definitions of partial
hyperbolicity and center bunching are more general.

Pugh and Shub’s definition of partial hyperbolicity in [PS2] requires that
the functions v, 7, v, and 4 be constant. This latter definition, which we call
strong partial hyperbolicity, has been widely used in the literature proving



ergodic properties of partially hyperbolic systems (e.g., [BP, PS2]). By con-
trast, the weaker definition of partial hyperbolicity used in this paper appears
in the literature more often as a conclusion, rather than a hypothesis. To
give a recent example, Horita-Tahzibi and independently Saghin have proved
that every stably ergodic symplectomorphism is partially hyperbolic, in the
weaker sense (this was earlier proved in dimension 4 case by Arnaud [Ar]).

Pugh and Shub’s definition of center bunching assumes the symmetry
condition » = 7 and v = 4. With this additional assumption, our center
bunching condition becomes v < 2. Pugh and Shub’s center bunching
condition is:

v <y (6)

where 6 < 1 is a Holder exponent for the partially hyperbolic splitting.

It is possible to construct diffeomorphisms that stably satisfy all of the
conditions of Theorem 0.1 but are not center bunched in the Pugh-Shub
sense; in fact, in these examples we can simultaneously have 8 arbitrarily close
to 0 and y arbitrarily close to 1. Pick a volume-preserving Anosov diffeomor-
phism f : T* — T* where the maximum Hélder exponent 6 of the Anosov
splitting is very small; suitable examples are constructed in [A, HW]. Regard-
ing f as a partially hyperbolic map with trivial center, we obtain a constant
v =1 < 1 for f satisfying inequalities (2) and (4). Let g : T? — T? be an
area-preserving diffeomorphism, chosen so that v = min{||Tg||~*, || T¢~ ||~}
satisfies Y27%/% < v < 42. Then the volume-preserving diffeomorphism f x g
is partially hyperbolic, and the maximal Holder exponent for the partially
hyperbolic splitting is the same as the exponent # for the Anosov diffeomor-
phism f. The inequality v < 2 implies that center bunching holds and the
inequality 7?*%/% < v implies that (6) fails to hold.

The example f x g is not accessible, but the techniques in [SW1] can be
used to perturb f x g to obtain a volume-preserving skew product

(z,y) = (f(2),9:(y))

that is stably accessible, is center bunched in the sense of Theorem 0.1, but
fails to be center-bunched in the Pugh-Shub sense.

The difference between Theorem 0.1 and Theorem A in [PS2] is most
striking when the bundle E° is one dimensional. Since center bunching is
automatic in this case, we immediately obtain:



Corollary 0.2 Let f be C?, wvolume preserving, partially hyperbolic with
dim(E°) = 1, and dynamically coherent. If f is essentially accessible, then f
15 ergodic, and in fact has the Kolmogorov property.

Pugh and Shub have conjectured ([PS2], Conjecture 3) that essential ac-
cessibility alone should imply ergodicity for C?, volume preserving, partially
hyperbolic diffeomorphisms. Theorem 0.1 presents the closest attempt so
far to proving this conjecture. The next step toward proving this conjecture
might be to eliminate the hypothesis of dynamical coherence from Theo-
rem 0.1 and Corollary 0.2. This would completely prove the conjecture in
the case where E¢ is 1-dimensional.

It is possible that center bunching implies dynamical coherence. We dis-
cuss this question further in Section 5. The Appendix to [BPSW| contains
a proof of Theorem 0.1 in the (very) special case that W€ is absolutely con-
tinuous. As far as we know, the following question is still open:

Question: Assume that f is dynamically coherent and W¢ is absolutely
continuous. If f is essentially accessible, then is f ergodic?

Theorem 0.1 is proved in Section 2 as a consequence of Theorem 2.1, which
is really the central result of the paper. Theorem 2.1 is proved in Sections 3
and 4. We thank Marcelo Viana for telling us about his proof of absolute
continuity of stable foliations in the pointwise partially hyperbolic setting
[V]. We thank Charles Pugh and Mike Shub for useful comments. Keith
Burns was supported by NSF grant DMS-0100416, and Amie Wilkinson by
NSF grant DMS-0100314.

1 Prelimaries and Notation

We assume that the Riemannian metric on M is chosen so that the inequali-
ties (1)—(5) involving v, y, 7,4 in the Introduction hold. Such a metric will be
called adapted. Note that a rescaling of an adapted metric is still adapted.
It will be convenient to assume that the metric is scaled so that the geodesic
balls of radius 1 are very small neighborhoods of their centers. Distance with
respect to the metric will be denoted by d.

The optimal choice of the function 7 is:

Yo(p) = inf{[|T fv]| : v € E*(p), ||lv|| = 1}.
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This function 7, is always Holder continuous because the splitting TM =
E" @ E° @ E*, and in particular, the bundle E€, is Hélder continuous (see
Theorem A in [PSW]). Similarly, there are optimal functions vy, 49, and oy,
which are Holder continuous. There is no harm in increasing v and © and
decreasing 7, 7 slightly, provided that the inequalities (1)—(5) still hold. By
doing so, we may, if we wish, assume that these functions are smooth, though
Holder continuity will suffice for our purposes. We will have to make such
adjustments for other reasons.

1.1 Foliation boxes and local leaves

Let F be a foliation of an n-manifold M with d-dimensional smooth leaves.
For r > 0, we denote by F(x,r) the connected component of z in the inter-
section of F(z) with the ball B(x,r). For B any subset of M, we set:

F(B,r)=|J F(z,1).

r€B

A foliation boz for F is the image of R" ¢ x R¢ under a homeomorphism
that sends each vertical R%slice into a leaf of F. The images of the vertical
R¢slices will be called local leaves of F in U. A complete transversal to F
in U is a smooth codimension-d disk in U that intersects each local leaf in U
exactly once. If 71 and 7, are two complete transversals to F in U, we have
the holonomy map hr : 71 — 7o, which takes a point in 74 to the intersection
of its local leaf in U with 7.

By rescaling the metric on M, we may assume that for some R > 1, and
any x € M, the Riemannian ball B(z, R) is contained in foliation boxes for
each of the five foliations W*, a = u, ¢, s, cu, or cs. We assume that R is large
enough so that all the objects considered in the sequel are small compared
with R.

Having fixed such an R, we define the local leaf of W* through x by:

WE(x) = W*(z, R).

Any foliation box U for one of the foliations YWW* that we consider in the rest
of the paper will be small enough so that W{ (z) N U is a local leaf of W*
in U for each z € U.

We may assume that if d(z,y) < 2, then W, (x) "W (y) and W (z) N
W .(y) are single points.



By (if necessary) slightly increasing v and © and slightly decreasing y and
4 and further rescaling the metric to make the local leaves smaller, we may
assume that our metric is still adapted, and that we have the following:

o if g,q' € Wil (

o if q,¢' € Wi( (

o if ¢,¢' € Wi.(p), then d(f(q), f(¢')) < 4(p)'d(q, ¢'); and
( (

o if ¢,¢' € Wi(p), then d(f~'(q), f7'(¢)) < ~(f~'(p)"d(q,q").

Let U be a foliation box for F, and let 7 be a complete transversal to F
in U. Let Y C U be a measurable set. For a point ¢ € 7, we define the fiber
Y(q) of Y over q to be the intersection of Y with the local leaf of F in U
containing ¢. The base 7y of Y is the set of all ¢ € 7 such that the fiber Y (q)
is nonempty (note that 7y is measurable, since we are working in a foliation
box). We will sometimes say “Y fibers over Z” to indicate that Z = 1y. If,
for some ¢ > 1, the inequalities

-1 m}—(Y(q)) c
C S () S

hold for all ¢,¢' € 7y, then we say that Y has c-uniform fibers. The key
estimates in this paper involve volumes of sets with c-uniform fibers.

1.2 Continuity and smoothness of foliations

We need two continuity and smoothness properties of the foliations associated
with our dynamically coherent partially hyperbolic diffeomorphism f.

The first property is an almost immediate consequence of the continuity
of the partially hyperbolic splitting:

Lemma 1.1 We can choose § > 0 small enough and 3 > 0 large enough so
that the following holds. Let py and p3 be any points in M with d(po, p3) <
d. Given any permutation (a1,as,a3) of {u,c,s}, define p; and ps by the
conditions:

pi € Wi (piz1), fori=1,23.

Then d(p;, pi—1) < Bd(po, ps), fori=1,2,3. See Figure 1.2.



Figure 1: Picture for Lemma 1.1.

For the second property, recall that a map between metric spaces is L-
Lipschitz, where L is a positive constant, if the map multiplies distances by
at most L.

Proposition 1.2 There is a constant L > 0 with the following properties:

1. If p' € W} .(p), then the holonomy from W[ .(p) to WE(p') along W*"-
leaves 1s L-Lipschitz.

2. If p € Wi (p), then the holonomy from W .(p) to WE(p') along W?-
leaves 1s L-Lipschitz.

Proof. Both conclusions follow from Theorem B in [PSW]. The first uses
the center-bunching inequality 7 < v¥; the second uses v < v4. ©

Remark: The use of Theorem B from [PSW] requires f to be C?. Every-
where else in this paper it suffices for f to be C'*¢, for some o > 0.

1.3 Measures and absolute continuity

If 4 is a measure and A and B are p-measurable sets with p(B) > 0, we
define the density of A in B by:

1(AN B)

uld: B) = (B)



If S € M is a smooth submanifold, we denote by mg the volume of the
induced Riemannian metric on S. If F is a foliation with smooth leaves, and
A is contained in a single leaf of F and is measurable in that leaf, then we
denote by mx(A) the induced Riemannian volume of A in that leaf. We use
the shorthand m, for myy.. Note that m, is not defined as a conditional
measure.

When we say that the diffeomorphism f is volume preserving, we mean
that f preserves a measure m that is equivalent to the Riemannian volume
myps on M. (This definition is independent of the metric, since the volumes
defined by two different metrics on M are always equivalent.) Unless other-
wise specified, measurable will mean measurable with respect to m.

Our arguments in this paper use two versions of the property of absolute
continuity of a foliation.

The first version of absolute continuity involves holonomy maps between
transversals. A foliation F with smooth leaves is transversely absolutely
continuous with bounded Jacobians if, for every angle o € (0, ), there exists
C > 1 such that, for every foliation box U of diameter less than R, any two
complete transversals 7,7 to F in U of angle at least o with F, and any
m,,—measurable set A contained in 7y:

O 'mn(A) < mu(he(A)) < Cmyy (A). (7)

The second version involves a Fubini-like property. A foliation F with
smooth leaves is absolutely continuous with bounded Jacobians if, for every
a € (0,7), there exists C' > 1 such that, for every foliation box U of diameter
less than R, any complete transversal 7 to F in U of angle at least o with
F, and any measurable set A contained in U, we have the inequality:

Cim(A) < / (AN Fioe()) dm () < Cm(A). (8)
TET

If F is transversely absolutely continuous with bounded Jacobians, then
it is absolutely continuous with bounded Jacobians (see [BS] for a proof), but
the converse does not hold (see Remark 3.9 in [B]). Note that the minimal
C' for which (7) holds is not necessarily the same minimal C' for which (8)
holds.

The foliations W* and W* for a partially hyperbolic diffeomorphism are
transversely absolutely continuous with bounded Jacobians. This was shown
in the Anosov case by Anosov [A], in the case of strong partial hyperbolicity
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by Brin-Pesin and Pugh-Shub [BP, PS1]. In the (general) case of partial
hyperbolicity, absolute continuity follows from Pesin theory. A direct proof
in this context has been given by Viana [V]. In fact, all of these results show
that the Jacobians are continuous functions, and so are bounded, since M is
compact. In general, YW¢ does not have either absolute continuity property,

even when f is dynamically coherent (examples were first constructed by
Katok; open sets of examples by Shub-Wilkinson [SW2]).

1.4 Saturated sets and absolute continuity

A set is saturated by a foliation F or F-saturated if it is a union of entire
leaves of F.

Proposition 1.3 Let F be absolutely continuous with bounded Jacobians,
and let U be a foliation box for F with complete transversal 7. Suppose
that {Y, }n>o0 is a sequence of measurable sets in U with c-uniform fibers, for
some ¢ > 1. Then, for every JF-saturated measurable set X, we have the
equivalence:

lim m(X :Y,) =1 <= lim m,(rx : 1y,) = L.

n—oo n—oo

Remark: The hypothesis that X is F-saturated can be weakened: it suffices
for X NU to be a union of local leaves of F in U.

Proof of Proposition 1.3. Let X* be the complement of X in M. Then
X*is also F-saturated. The proposition can be reformulated in terms of X*.
We have to prove the equivalence:

lim m(X*:Y,) =0 < nli_,IEOmT(TX* : Ty, ) = 0.

n—o0
For each n, let
my = nf mz(Ya(g)-
Since the fibers of Y,, are c-uniform, it follows that m,, > 0 for all n, and:

my S m}"(Yn(q)) S CMy,

for all ¢ € 7y,. Absolute continuity implies that there exists a C' > 1 such
that
C'm(Y,) < mz(Yn(q)) dm.(q) < Cm(Y,).

qeT



Together, these inequalities imply that, for any ¢ € 7y,
C 'm,m(Yy,) < m,(1y,) < Cemum(Yy). 9)

Since X* is F-saturated, the F-fiber of X* NY, over a point q € 7y, is
either empty or equal to Y,,(¢). Thus X*NY,, also has c-uniform fibers, and,
as above, we obtain:

C 'm,m(X*NY,) < m (rxny,) < Cem,m(X*NY,). (10)

Noting that 7x«ny, = 7x« N 7y, and dividing the inequalities in (10) by
those in (9), we obtain:

(C%c) 'm(X*: Y,) < my(tx- 1 7y,) < CPem(X*: Y,).
The result follows easily from this. ¢

A set A is essentially F-saturated if there exists a measurable F-saturated
set A', which we call an essential F-saturate of A, with m(AA A’) = 0.

Corollary 1.4 Let F, U and T be as in Proposition 1.3. Let {Y,} and {Z,}
be sequences of measurable subsets of U with c-uniform fibers. Suppose that
Ty, = Tz,, for all n. Then, for any essentially F-saturated set X C U, we
have the equivalence:

lim m(X :Y,) =1 <= lim m(X : Z,) = 1.

n—oo

Proof. Let X’ be an essential F-saturate of X. Using Proposition 1.3, we
have the equivalences:
”li_{glom(X Y, =1 <= nli_)rgom(X' Y, =1

nh—>I£lo mT(TX/ . Tyn)

Jim m(7x : 72,)

lim m(X':Z,) =1

n—oo

lim m(X : Z,) = 1.
n—oo

=1
=1

[



1.5 Notational conventions and a distortion estimate

In the rest of this paper we adhere to the convention that if ¢ is a point
in M and j is an integer, then ¢; denotes the point f’(q), with ¢o = ¢. If
a: M — R is a positive function, and j > 1 is an integer, let

a;(p) = a(p)a(p) - - - a(pj-1),

and
a-j(p) = a(p—;) ‘op—js1) '-o-elpr)
We set ay(p) = 1. Observe that «; is a multiplicative cocycle; in particular,
we have (af); = «;8; and a_;(p) ' = «a;j(p—;). Note also that if « is a
constant function, then o, = o™.
Using this notation, it is easy to formulate a generalization of the esti-

mates in Section 1.1 on how f changes the distance between nearby points.
Lemma 1.5 The following hold for alln > 0. If q¢,¢' € W; .(p), then

d(gn, 4h) < va(p)d(q, q')-

If q,q' € Wi (p), then

d(q pn,q",) < P n(p)Hd(g,q).

If 4j, 45 € Wi, (p;) for 0 < j <n—1, then

loc

d(Gn, d.) < An(p) 'd(q, ).

g 4 d 5 € Wklp- ;) for 1 < j <n, then

loc
d(q-n,q",) < v-n(p)d(g,q").

The hypotheses in the last two parts of this lemma are stronger because
f may not map W (p) into W.(f(p)), and similarly, f~' may not map
Wie(p) into Wi (f~(p))-

The next proposition will be used to compare values of Holder cocycles
at nearby points.
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Proposition 1.6 Let a: M — R be a positive Holder continuous function,
with exponent 0 > 0. Then there exists a constant H > 0 such that, for all
p,q € M and all B > 0, if:

for some n > 1, then

Similarly, if

for some n > 1, then
~HB _ a,n(p) < oHB
- a—n(Q) -

(&

Proof. We prove the first part of the proposition. The second part is proved
similarly.

The function log « is also Hoélder continuous with exponent 6. Let H > 0
be the Holder constant of log a, so that for all z,y € M:

log a(z) —loga(y)| < Hd(z,y)".
The desired inequalities are equivalent to:
llog v, (p) — log o, (q)| < HB.

Expanding log o, as a series, we obtain:

logan(p) ~ logan(e) < 3 [loga(p) — loga(a:)
< sz(pj,q]')e-
< uB.
since -
Zo d(pi, )" < B,



by the hypothesis of the Proposition. ¢

As usual P = O(Q) means that there is a constant C > 0 such that
|P| < CQ. Usually P and @ will depend on an integer n and one or more
points in M. The constant C' must be independent of n and the choice of
the points.

A sequence Y,, of measurable sets is reqular if there exist C' > 0 and k > 1
such that, for all n > 0,

Two sequences of sets Y,, and Z,, are comparable if there exists a £ > 1 such
that, for all n > k, we have

Yn—l—k g Zn g Yn—k-

Comparability is an equivalence relation. The following lemma is an easy
consequence of the definitions.

Lemma 1.7 LetY, and Z, be comparable sequences of measurable sets, with
Y, reqular. Then Z, is also reqular. If the sets Y, have positive measure,
then so do the Z,, and, for any measurable set X,

lim m(X:Y,)=1 <= lmm(X:Z,)=1

n—oo n—oo

2 The main theorem

The properties of accessibility and essential accessibility can be reformulated
using the notion of saturation. Accessibility means that a set which is both
We-saturated and W?*-saturated must be either empty or all of M. Essential
accessibility means that a measurable set which is both W"-saturated and
Wé-saturated must have either 0 or full measure.

The central result of this paper is:

Theorem 2.1 Let f be C?, partially hyperbolic, dynamically coherent, and
center bunched. Let A be a measurable set that is both essentially YW"-
saturated and essentially W?*-saturated. Then the set of Lebesgue density
points of A is W"-saturated and W?-saturated.
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Recall that x is a Lebesgue density point of the measurable set A if

ll_r)nom(A : B(z,7)) =1,
where B(z,r) is the Riemannian ball of radius 7 about x. This definition
is independent of choice of metric. If A is a measurable set, the set A of
Lebesgue density points of A satisfies m(A A A) = 0.

The central result of Pugh and Shub in [PS2] is a version of Theorem 2.1,
which involves a different notion of density point (defined in [PS2]) and a
slightly different hypothesis:

For a=u or s, if A is essentially W*-saturated, then the set of julienne
density points of A is W?-saturated.

In contrast, Theorem 2.1 requires that A be both essentially W*-saturated
and essentially YW*-saturated in order to conclude anything.

Theorem 0.1 follows easily from Theorem 2.1 by a version of the Hopf
argument and a result of Brin and Pesin (see Section 2 of [BPSW] for more
details).

Proof of Theorem 0.1. To prove that f is ergodic, it suffices to show
that the Birkhoff averages of continuous functions are almost everywhere
constant. Let ¢ be a continuous function, and let

6u(p) = limsup =3 o(f1(p)  and Gu(p) = limsup = 3" o(f (7))

n—00 nizo n—00 nizo

be the forward and backward Birkhoff averages of ¢ under f. The function ¢,
is constant along W?#-leaves, and ¢, is constant along W"-leaves. It follows
that for any a € R, the sets

As(a) = @7 (=00,a] and  Ay(a) = ¢, (—00,a].

are YW’-saturated and W"-saturated, respectively.

The Birkhoff Ergodic Theorem implies that ¢, = ¢, almost everywhere.
Consequently m(As(a) A A,(a)) = 0, so that the set A(a) = A,(a) N As(a)
has A,(a) as an essential W"-saturate and A,(a) as an essential YW*-saturate.
Thus A(a) satisfies the hypotheses of Theorem 2.1: it is both essentially W*-
saturated and essentially W"-saturated.

It follows from Theorem 2.1 that the set A(a) of Lebesgue density points of
A(a) is both W"-saturated and W¢*-saturated. Essential accessibility implies
that A(a) has 0 or full measure. But m(A(a) A A(a)) =0, so A(a) itself has
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0 or full measure. Since a was arbitrary, it follows that ¢, and ¢, are almost
everywhere constant, and so f is ergodic.

To prove that f has the Kolmogorov property, it suffices to show that
all sets in the Pinsker subalgebra P have 0 or full measure. According to
Proposition 5.1 of [BP], if f is partially hyperbolic, then any set in P € P is
both essentially W¥-saturated and essentially W?-saturated. It again follows
from Theorem 2.1 and essential accessibility that P has 0 or full measure. ¢

In order to prove Theorem 2.1 it suffices to show that the set of Lebesgue
density points of A is W?-saturated; applying this result with f replaced
by f~! then shows that the set of Lebesgue density points of A is also W¥-
saturated.

Following Pugh and Shub, we consider for each p € M a sequence of
sets, called center-unstable juliennes, that lie in the center-unstable manifold
We(p) and shrink exponentially as n — oo while becoming increasingly thin
in the W*-direction. We choose Holder continuous functions 7 and o such
that

v<1<oy and o <min{¥,1}.

This is possible because of the center bunching assumption. The reader
should think of 7 as being just a little bigger than v and o as just a little
bit less than min{9,1}. The reader might also choose to keep in mind the
global case where the functions v, 7, v, and % are constants, and where 7 and
o can be chosen to be constant. In this case the cocycles 7, and o,, are just
the constants 7" and o".

We then define

B (p) = W (p, on(p)),

Ju(0) = f7"W* (Pn, ™ (p)))
and
)= U J()
9€B;, (p)

This definition is the most convenient for our arguments. The distortion es-
timates in Section 1.5 imply that the varying radii 7,(q) for ¢ € BS(p) used
in the definition of J¢(p) could be replaced by the fixed radius 7, (p) without
affecting the conclusions of the main results (Propositions 2.3 and 2.4) below.
More precisely, the sequences of sets J5*(p) and Ugepe p) f ™" (W*(¢n, Tn(p)))

15



are comparable. This is a straightforward consequence of the following
lemma.

Lemma 2.2 Let a : M — R be a positive, Holder continuous function.
Then there is a constant C > 1 such that

C—l S an(y) S C,
o ()

whenever x,y € M satisfy any of the following:
1.y € Wie(x),
2. y € We(z, o,(x)), or
3.y € [T Wige(2n))-

Proof. This is an easy consequence of Proposition 1.6. In case 2., we use
the facts that ¢ < min{4,1}, and

d(wj,y;) < 9;(z) " d(z,y)
for j =0,...,n— 1, which follows from Lemma 1.5.¢

Our cu-juliennes are closely related to, but not exactly the same as,
those of Pugh and Shub. In the case where o and 7 are constant func-
tions, their center-unstable julienne is the foliation product of W¢(p,o™)
and f~"(W"(p,,™")); see Figure 2. In this case, the image under f" of
our J*(p) appears in [PS2] as a tubelike approximation to the Pugh-Shub
center-unstable postjulienne of rank n. The results of [PS2] show that the
cu-juliennes defined here and in [PS2] are comparable. Thus our cu-juliennes
could be replaced by the Pugh-Shub cu-juliennes in Propositions 2.3 and 2.4.

As in [PS2], the cu-juliennes have a quasi-conformality property: they
are approximately preserved by holonomy along the stable foliation.

Proposition 2.3 There exists a positive integer k such that if p and p' are
any points in M with p' € W*(p, 1), then the holonomy map h* : W (p) —
We(p') induced by the stable foliation W* has the property that

i) € (" (p)) € T3 (),

for alln > k.
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J¢"(p) in this paper.

Figure 2: Two types of center-unstable juliennes, when 7 and ¢ are constant.
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The other crucial property of the cu-juliennes is that, for the sets that
appear in the proof of Theorem 2.1, Lebesgue density points are precisely
cu-julienne density points.

Proposition 2.4 Let X be a measurable set that is both W?-saturated and
essentially W*-saturated. Then p € M is a Lebesque density point of X if
and only if:

lim me, (X : J*(p)) = 1.

n—oo

Remark: Pugh and Shub show that Lebesgue almost every point of any
measurable set is a cu-julienne density point. In their argument they prove
a Vitali covering lemma for their juliennes. This argument accounts for
their definition of cu-juliennes as a foliation product and for the stronger
bunching hypothesis in their main result. We do know whether their result,
specifically Theorem 7.1 of [PS2], still holds under our weaker bunching hy-
pothesis (although it can be shown that their hypothesis can be weakened
from v < y2+2/% to v < y1/%).

Proof of Theorem 2.1. Let A® be an essential W?-saturate of A. Since
m(AA A®) = 0, the Lebesgue density points of A are precisely the same as
those of A%, which by Proposition 2.4 are precisely the cu-julienne density
points of A*. On the other hand, it follows easily from the transverse absolute
continuity of W?* and Proposition 2.3 that the set of cu-julienne density points
of A® is W9-saturated. Thus the set of Lebesgue density points for A is W*-
saturated. As we noted above, to see that this set is WW*-saturated, we just
consider f~! instead of f. ¢

The proof of Proposition 2.3 is the same as in [PS2]. For completeness
we reproduce the argument in the next section. The proof of Proposition 2.4
is in the final section; what is new in this paper is to be found there.

3 Julienne quasiconformality

We outline Pugh and Shub’s proof of Proposition 2.3. It will suffice to show
that k£ can be chosen so that

h* (I3 (p)) € Joti (D), (11)
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for all n > k, whenever p and p’ satisfy the hypotheses of the proposition.
The hypotheses of the proposition treat p and p’ symmetrically, so we can
then reverse their roles to obtain:

BT P)) € T3t (D),

for all n > k, where 2" : W% (p') — W(p) is the holonomy induced by the

e loc
stable foliation. Since &° and h* are inverses, we then obtain:

Ja' (') € B (7" (p)),

for all n > k, which is even slightly stronger than the claim in the statement
of Proposition 2.3.

In order to prove that k& can be chosen so that (11) holds, we need two
lemmas.

Lemma 3.1 There exists a positive integer ki such that:

h*(By(p)) € By, (P),

for all n > ki, whenever p' € W*(p,1).

Proof. Since h* is L-Lipschitz by Proposition 1.2, the image of W*(p, 0,,(p))
under h® is contained in We(p', Lo, (p)) C We(p', 0k, (p')), for any k; large
enough so that o_y, > L. ¢

Lemma 3.2 There erists a positive integer ko such that the following holds
for every integer n > ko and every x € M. If 2’ € W*(z,2) and y €
" W™ (2, Tn())), then

y, € Jrclqikz (33’),

where y' is the image of y under stable holonomy from W(L(x) to W (x').

A picture of the setup in Lemma 3.2 is found in Figure 3.

Proof of Lemma 3.2. Let 2’ be the unique point in W _(y') N WE_.(z').
Then 2], is the unique point in W (y,,) NWE.(z!,). It will suffice to prove that
d(yl, z) = O(1,(2")) and d(',2") = O(o,(2")). Since 0,7 and v are Holder
continuous, it follows from Lemma 2.2 that if « is any of these functions,
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Figure 3: Picture for the proof of Lemma 3.2.

then a,(a) = O(ay, (b)), where a and b are any of the points z,y, z,y’, and
Z.

We have d(z,,y,) < 7(x) because y € f~"(W"(z,,T(x))). By Lemma
1.5, we also have that d(z,,z)) = O(v,(z)) and d(yn,y,) = Owa(y)) =
O(vn(x)), since d(z,z") and d(y,y') are both O(1). Since v < 7, it follows
that d(z!,y;,) = O(7a(x)). It now follows from Lemma 1.1 that d(«},, z;,) and
d(y,, ;) are both O(7,(x)) = O(7,(#))-

Since 7], and 2/, lie in the same center leaf at distance O(7,(x)) = O(7,(z")),
Lemma 1.5 now implies that d(z',2') = O(y_n(2")7(2")). But 7 and o
were chosen so that 7 < yo. Hence v_,(2")7(2") < on(2') and d(2',2') =
O(on(x')), as desired. ©

Proof of Proposition 2.3. As noted above, it suffices to prove the
inclusion (11). For ¢ € Bj(p), let ¢ = h*(q). Then ¢ € B;_, (p') by

Lemma 3.1. Hence d(g,q') < 2 and we can apply Lemma 3.2 to obtain

@) e U R@)=U L),

¢eBs_, () 2€Q
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where

Q= U BZ—kQ (ql)-

¢EBS_,, (0

For k > ko, we have:

U J2y,(2) € U T2 i(2).

2€Q 2€Q

It therefore suffices to find k& > kq so that Q) C BE_,(p'). This latter inclusion
holds if:

On—k; (pl) + On—ky (ql) S On—k (pl)a

which is equivalent to:

0k (p:),) + Ok, (q’:l,) < O-_k(p:),)'

We complete the proof by choosing k£ large enough so that o_; > o_g, +
sup o_g, (which automatically gives k > ks). ©

Some related results will be needed in the next section. Define the ex-
tended cu-julienne E,(p) by

E.p)= U 0.

p'EWS(p,on(p))

Let F,,(p) be the foliation product of J*(p) and W*(p, o, (p)). The set F,(p)
consists of points ¢ such that W} .(q) passes through J¢(p) and W{k(q)
passes through W*(p, 0, (p)). Both E, and F,, fiber over W*(p, o, (p)). In
the case of F, the fibers are the juliennes J(p'), p' € W3(p,0,(p)). In
the case of F}, the fiber over p’ € W*(p, 0,,(p)) is the image of JS*(p) under
holonomy along W* from W% (p) to W (p').

The following is an immediate consequence of Lemma 3.2:

Corollary 3.3 Let ko be as in Lemma 3.2. Then

Btk (p) C Fu(p) € En 1, (p)

for any p € M and any n > ky. Therefore the sequences E,(p) and F,(p)
are comparable.
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We can also think of F),(p) as fibering over J¢*(p). The fibers are the
images of W*(p, 0,,(p)) under holonomy along center-unstable leaves. The
fiber over ¢ € J:(p) is comparable to W*(q, 0,(p)). This is made precise in
the next lemma.

Lemma 3.4 Let
Gulp)= U W(g,0a(p))

q€J3 (p)
Then there is a positive integer ks such that

Griks(p) € Fro(p) € Gnis(p)

for any p € M and any n > k3. The sequences F,(p) and G,(p) are compa-
rable.

Proof.

Suppose ¢’ lies in the boundary of the fiber of F,(p) that lies in W} (q)
for some ¢ € J(p). Then ¢’ € J*(p') for a point p' that lies in the boundary
of W#(p,o™(p)). The diameters of J*(p) and J<%(p') are both O(o,(p)) =
O(on(p')), and d(p,p") = on(p). Hence, if k3 is large enough, we will have

Ontks (P) < d(q,4") < 0piy(p)-

Thus all points on the boundary of the fiber of F,(p) in W} _(q) lie outside
1% (CI: On+ks (p)) and inside W* (q, On—ks (p)) <

Figure 3 is a schematic illustration of the relationship between the sets
E.(p), F.(p) and G,,(p). All three sets contain J¢(p) and W*(p, 0,,(p)). The
set E,(p) fibers over W*(p, 0,,(p)) with fibers of the form J¢(-). The set
G, (p) fibers over J¢*(p) with fibers of the form W*(-,0,(p)). The foliation
product F,(p) of J*(p) and W?*(p,0,(p)) is, in some sense, intermediate
between E,(p) and G,(p). Corollary 3.3 and Lemma 3.4 tell us that the
sequences E,(p), F,,(p) and G, (p) are all comparable.

4 Lebesgue density and cu-julienne density

We now come to the proof of Proposition 2.4. We must show that if a
measurable set X is both W?*-saturated and essentially YW"-saturated, then
a point p € M is a Lebesgue density point of X if and only if

nll)rglomcu(X 2Rt (p) = 1.
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/\ Je(p) /\

W?(p, on(p))

B

Figure 4: Comparison between E, (p), Fy,(p) and G, (p).
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The proof involves several sequences of sets containing p. Some have
already been introduced; the others are defined below. Our strategy is to
establish the following chain of equivalences:

p is a Lebesgue density point of X' <= lim m(X : By(p)) =1
< lim m(X : Cyp(p)) =1
< lim m(X : Dy(p)) =1
— lim m(X : Ey(p)) =1
= Jimm(X: F(p) =1
< lim m(X : Gu(p)) =1
= lim me (X J2() =1

The final equivalence requires W#-saturation of X, and the equivalence
Jim m(X : Dy(p)) =1 <= Jim m(X : E,(p)) =1

requires essential YW"-saturation of X; the other equivalences require only
measurability of X. We have already seen in the previous section that the
sequences E,(p), F,(p) and G, (p) are all comparable. We show in this section
that G, (p) is regular, in the sense of Lemma 1.7. We shall see below that the
sequences By, (p), C,(p) and D,(p) are all comparable and B, (p) is regular.

The forward implication in the first equivalence is obvious from the defi-
nition of B, (p):

Bn(p) = B(p, on(p))-

The backward implication follows from this definition and the fact that the
ratio 0,41(p)/0n(p) = o(pn) of successive radii is less than 1, and is bounded
away from both 0 and 1 independently of n. From this we also see that B, (p)
is regular.

We now define C,,(p) and D, (p). Like the sets E,(p) and F,,(p) introduced
in the previous section, both C,(p) and D, (p) fiber over W*(p, o,,(p)). Over
a point p' € W5(p, o,,(p)), the fiber of C,(p) is

WHWE(p', 0n(p)), on(P)),
and the fiber of D,(p) is

WHEWE(D', 0n(p'), on(D)).
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It is easily shown using Lemma 1.1 that the sequences B, (p) and C,(p) are
comparable, for all p € M. It follows immediately that:
lim m(X : By(p)) =1 <= lim m(X : Cy(p)) = 1.

n—oo

The equivalence

Jim m(X : Cu(p)) =1 <= lim m(X : D,(p)) =1
is proved using Lemma 2.2, which implies that o, (p') = O(0,(p")), for any
p,p" € Wi .(p). Tt follows from this that the sequences W¢(p', 0,,(p)) and
We(p',0,(p")) are comparable for any p' € W (p). Hence, the sequences
Cy,(p) and D, (p) are comparable, for any p € M.
We now consider the equivalence:
lim m(X : D,(p)) =1 <= nlggom(X : Eq(p) = 1.

n—oo

This is proved by applying Corollary 1.4, with F = W* and 7 = W[ (p), to

loc

the sequences of sets D, (p) and E,(p). Both sets D,(p) and E,(p) fiber over
the same base D¢ (p), where:

Deip)= U W0, o))

P EWS(p,on(p))

Our desired equivalence follows immediately from Corollary 1.4 provided
the fibers of D,(p) and E,(p) are c-uniform for some c. The fibers of D, (p)
are the balls W¥(q, 0,(p)), for ¢ € D&(p), which are clearly c-uniform for
any large enough c. The fibers of E,(p) are J*(q) = f~"W¥(gn, Tn(q)), for
q € D& (p). Uniformity of these fibers is the content of the next lemma.

Lemma 4.1 There exists ¢ > 1 such that for all q,¢' € D(p), and all
n > 0, we have:

)

Muln ') ¢

my(J(q'))

Proof. We use the uniformity of the balls W*(¢,, 7,(¢)) and the distortion
estimate from Section 1.5. As an immediate consequence of Lemma 2.2 we
have:
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Figure 5: Cubelike object D, (p).

Lemma 4.2 Let o : M — R be positive and Hélder continuous. Then for
alln >0 and any q,q' € D (p), we have:

an(q) = O(an(q))-

Applying this lemma with o = 7, it is then clear that we may choose S > 1
so that for all n > 0 and ¢, ¢ € D (p), we have

-1 mu(Wu(Qan(q)))
S S OV g = (12)

We next observe that the jacobian Jac(T f~"|g«) is nearly constant when
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Figure 6: Extended julienne E,(p).

restricted to the set

fYEP) = U W, m(9))-

q€Dg* (p)

More precisely, we have:

Lemma 4.3 There exists C' > 1 such that, for alln > 1, and all xz,y €
E.(p),

. Jac(Tf ™ gu)(zn)
O S FacT ) ()

Proof. The desired inequalities are equivalent to:

L Jae(T ) (@)
O = e w) <
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These inequalities follow from Proposition 1.6 with o = Jac(7T f|gu), once we
show that there exists a positive constant x < 1 such that

max diam(f?(E,(p))) = O(x"),

0<j<n—1

for all n > 1. To find &, note first that

FEm)C U POV m@) C U W (gm()

geDes (p) qeDg (p)

If ¢ € D(p), then ¢ € W(p', 0,,(p')), for some p' € W?*(p,0,(p)). By
Lemma 4.2, we have o,(p') = O(o,(p)), and hence d(p,q) = O(o,(p)). It
follows that the diameter of D%*(p) is O(o,(p)).

Our choice of o ensures that 9 o < 1. It now follows from Lemma 1.5
and an inductive argument that, for ¢,¢" € D¢ (p), we have

d(q;,45) < %(p) " d(g,¢') = O(An(p) ' on(p)),

for0<j;<n—1.
We finish the proof by setting x = max{9 o, 7}. We have shown that
2(D%(p)), which is the base of the set f7(E,(p)), is contained in a ball in
s (pj) of radius O((5'0)n(p)) = O(k™). The fiber of f/(E,(p)) over a
point ¢; € f7(D(p)) is contained in W*(g;, 7,(q)) € W*(gj, k™). ©

Let ¢ € D%(p), and let X C J%(q) be a measurable set (such as J*(q)
itself). Then:

my(X) = my(f(f"(X))
= /fn(X) Jac(T f~"|pu)(z) dz.

From this and Lemma 4.3 we then obtain:

Lemma 4.4 There exists a K > 0 such that, for alln > 0, for any q,q¢ €
D& (p), and any measurable sets X C J¥(q), X' C J*(¢'), we have:

my (fm(X")) my(f*(X'))

(x)
oy ="

m
S U
My
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Lemma 4.1 now follows from (12) and Lemma 4.4 with X = J%(q) and
X'=JM¢ )

The final equivalence,

lim m(X : Gh(p)) =1 <= nli_)Igomcu(X It (p) =1,

n—oo

is an application of Proposition 1.3, with F = W* and Y,, = G,(p). The
set Gj(p) fibers over J*(p) (which lies in the transversal 7 = WS (p)) with
fibers W?(q, 0,,(p)), which are clearly c-uniform, for some ¢ > 1.

Lemma 4.5 The sequence G, (p) is reqular for each p € M.

Proof. Recall that:

Gulp)= U W(g,0a(p)),

qeJg(p)

where

Jrm = U ).

qE€BS (p)

As we saw above, the ratio o,.1(p)/on(p) = o(p,) is uniformly bounded
below away from 0. Consequently, the ratio

ms(W?*(q, ons1(p)))
ms(W (g, 0,(p)))

is bounded away 0, uniformly in p,q, and n. It follows from this and the
absolute continuity of W? that it will suffice to show that

Mey (Jﬁ—f-l (p))
Meu (TS (D))

is bounded away from 0, uniformly in n > 0.
Again using the fact that 0,1/0, is uniformly bounded away from 0, we
obtain that the ratio
mc(BfLH(p))

me(B;(p))
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is bounded away from 0, uniformly in p and n. By the Lipschitzness of WW*
inside W, it thus suffices to show that:

My (‘]71:4—1 (Q))
(i) 2O (13)

for some C' > 0 and all n > 0 and ¢ € BS(p). In fact, we shall show that
(13) holds for some C > 0, and alln > 0, ¢ € M.

To obtain (13), we will apply Lemma 4.4 with ¢ = ¢/, X = J* (q), and
X' = J*(q). This gives us:

M —1mu( (J;»LH( )))
(i) = ma((Je()

But f*(J3,1(q)) = f7 V" (gnr1, Tas1(9))) and f7(J3(q)) = W*(gn, 7u(q)),

and hence:

mu(f"(J312(@)  _ mu(f T OV (a1, Tar1(9))))
my (f"(J3(q))) mu(W(gn, 7(0)))

This ratio is uniformly bounded below away from 0, since f~! is a diffeomor-
phism, the leaves of W* are uniformly smooth, and the ratio 7,,41(¢)/7n(q) =
7(gy) is uniformly bounded below away from 0. ©

Finally, Lemma 1.7, Corollary 3.3, Lemma 3.4, and Lemma 4.5 give us:
nli_)ngom(X :E,(p)=1 <= nh_)nolom(X : F(p)) =1
= Jl)rgom(X :Gu(p)) = 1.

This completes the proof of Proposition 2.4. ¢

Remark: It is tempting to try to shorten the proof of Proposition 2.4 by
showing directly that

lim m(X : Dy(p)) = 1 <= lim meu(X : J(p)) = 1.

This could be done if X N WS (p) were essentially W*-saturated. The proof
would be similar to the above arguments, but easier, because W* is C!
inside a W¢-leaf. However, since the foliation YW might not be absolutely
continuous, we have no way of knowing that X N W¢(p) is essentially WU-
saturated.
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5 Appendix: Center Bunching and Dynami-
cal Coherence

As mentioned in the Introduction, there is an example, attributed by Smale
to A. Borel, of a partially hyperbolic diffeomorphism for which the center
bundle is C? but is not closed under the formation of Lie brackets. The
example is also described in [KH]. It is presented there and in Smale’s original
paper [S] as a linear Anosov diffeomorphism on a nilmanifold that is not a
torus. Wilkinson [W] observed that if one creates a center subbundle for
this diffeomorphism by grouping together invariant weak subbundles, one
obtains a partially hyperbolic diffeomorphism whose center subbundle is not
integrable. This is described in more detail in [P].

We now give a brief description of these examples. Let H be the Heisen-
berg group, which is the subgroup of GL(3,R) consisting of matrices of the

form:
1 =z 2

01 y
0 01

Then H is a non-abelian simply-connected nilpotent Lie group, whose Lie
algebra b is generated by the matrices

010 0 00
X=]1000|,Y=]1001],Z=
0 0O 0 0O

o O O
o O O

which satisfy the relations:
(X, Z]=[Y,Z]=0; [X,Y]=Z.

We identify (£,71,¢) € R® with £X 4+ nY +(Z € b. Since H is nilpotent
and simply-connected, any lattice in H is cocompact and, up to finite index,
the image of a lattice in h under the exponential map. We note that there
are partially hyperbolic automorphisms of compact quotients of H, which
are dynamically coherent. Let A € SL(2,Z) be a hyperbolic matrix, and let
Lo =-exp(Z x Z x Z). It is easily checked that

iﬁ(“)i
¢ 0 1)\ ¢
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is an automorphism of h that preserves the integer lattice Z x Z x Z. It
induces an automorphism f4 of the compact manifold H/I'y that is partially
hyperbolic. The center foliation is a nontrivial fibration of H/Ty by circles
that fibers over the torus T?. The projection of f4 onto this torus is the
automorphism induced by A. The diffeomorphism f4 is accessible, because
the stable and unstable directions lie in the span of (the left-invarariant vector
fields corresponding to) X and Y, and [X,Y] = Z. Note that there are no
Anosov automorphisms of H/T.

Now consider the group G = H x H. Its lie algebra g = h @ b is generated
by {X1,Y1, Z1, X, Ya, Zo} whose nontrivial bracket relations are:

[XI,}/I] :Zl’ [X27}/2] :ZZ-

We identify (C1, 71, &1, €2, M2, G2) € R? x R with &.X, +mYy + (121 + & Xo +
n2Ya + (27, € g (the reason for rearranging the terms in the first R factor
will become clear in a minute).

As above, consider A € SL(2,Z) and let A > 1 and A™! < 1 be the eigen-
values of A. Then A and A~! are units in the ring of algebraic integers. The
field Q(A) is a quadratic extension of Q; its Galois involution ¢ interchanges
A and \7'. Now let I' be the irreducible lattice in g consisting of vectors of
the form:

(’U,l, Ug, U3, 0(u1)7 O'(’U,g), 0(u3))7
with w1, ug, us € Z[)], the ring of algebraic integers in Q()). Since G is
simply connected and nilpotent, I' = exp(I") is a cocompact lattice in G. For
any real numbers a and b, the linear map

B (Cl’ s 61’ 62’ T2, CQ) = ()\a_H)Cla )\b771, Aagla )\_aé-Qa )\_b’rh) A_a_bCQ)

is an automorphism of g. If a and b are integers, this automorphism preserves
I and thus induces a diffeomorphism fp : G/T' — G/T. The diffecomorphism
fB is partially hyperbolic if one of a, b, a4 b is nonzero and Anosov if all three
are nonzero. Smale describes in [S] the cases a = 1,b=2and a = 1,b = —3.
More general algebraic constructions of Anosov diffeomorphisms along these
lines can be found in [L].

We now now assume that a +b > b > a > 0. In this case fp is partially
hyperbolic, with E* spanned by Z;, E° spanned by Z, and F° spanned by
X1, X5,Y;, and Y5. Then fg is not dynamically coherent, since E° is not
closed under formation of Lie brackets; in fact,

[E¢, E] = g.
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Note that there is always another way to view fg as partially hyperbolic with
an integrable center. If a = 0, then a +b = b > 0, and we can take E° to be
the bundle spanned by X; and Xy; if @ > 0, then fp is Anosov and we can
take E° to be the trivial bundle. Recently, Nicolas Gourmelon showed that it
is possible to deform fgz in the case a > 0 to obtain a stably ergodic, volume-
preserving, partially hyperbolic diffeomorphism that is neither dynamically
coherent nor Anosov.

Now we examine the center bunching hypothesis for fg when a+b6 > b >
a > 0. We have

v=0=A"%% and y=4=\""

Consequently,
v=1—= )\—a—b 2 )\—Qb — ,y,%

with equality holding if and only if @ = b. Thus fp is never center bunched.
It falls just short of being center bunched in the best possible case, when
a = b. In fact, as the next theorem shows, this type of construction will never
produce a center bunched diffeomorphism that is not dynamically coherent.

Theorem 5.1 Suppose that f : M — M is C? and partially hyperbolic, and
satisfies the symmetry conditions v = U and v = 7. If f is center bunched
and the partially hyperbolic splitting is C?, then f is dynamically coherent.

Proof. We show that E° @ E* is integrable. The proof that E* & E° is
integrable is very similar. If E° @ E°® is not integrable, then there exist a
constant C' > 0, a point p € M, and a sequence of C! paths x; : [0,1] = M
such that

1. k;(0) =p and &;(1) € W*(p),
2. kj(t) € (E°® E®) (k;(t)), for all t € (0,1), and
3. d(k;(0),s;(1)) > C67, where d; := length(x;) — 0 as j — oo.

Condition 3. is where we use the fact that E* @ E* is C?.
For j sufficiently large, we can choose n; so that

d(f™ (k3(0)), f™ (k;(1))) > 1,
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and
d(f*(k;(0)), f1(k;(1))) < 1,

for i < n;. Consequently, there exists an M > 0 such that, for all j:
d(f™ (k;(0)), /" (k;(1))) < M.
Lemma 1.5 implies that

M d(f™ (k;(0)), f (k;(1)))
D, (p) ™ d(;(0), 555(1))

Dn; (p) 71 C3,

AVARAVARLV]

so that
5; < My, (p) .
C
Since d; — 0 as j — 0o, we also have that n; — oo as j — oo.
It is not difficult to show, using Lemma 2.2, that there is a constant
K > 1 such that
ot < ()
= Ay (k5(2))
for all s,¢ € [0,1] and j > 0. Since &; is tangent to £ @ E*, we thus obtain:

length(f™ (x;))

<K,

< KAy, (p)'length(x;)
< Kﬁ’nj(p)_léj

M im;(p)

C A, (p)?

IN

K

Center bunching and symmetry imply that 7 < (v4) = 42, so it follows that
length(f" (k;)) =0 as j — oo.
But this contradicts the fact that

d(f™ (k;(0)), [ (k;(1))) > 1.

Two natural questions raised by the above discussion are:
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Question: Let f: M — M be partially hyperbolic and center bunched. Is
f then dynamically coherent?
and:

Question: Let f: M — M be a partially hyperbolic affine transformation
of a compact homogeneous space G/I'. If f is accessible, then is f also
dynamically coherent?

If f fails to be dynamically coherent, we say that f is dynamically inco-
herent. It is not known whether the algebraic examples discussed here are
stably dynamically incoherent. In fact the following question is open:

Question: Is dynamical incoherence a C'-stable property?

If the answer to this question is “yes” then by the results in [DW], in
a C! neighborhood of any non dynamically coherent diffeomorphism, there
is a C''-dense set of stably accessible and stably non dynamically coherent
diffeomorphisms.
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