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There is a slight disparity in smooth ergodic theory, between Pesin the-
ory and the Pugh-Shub partially hyperbolic theory. Both theories assume
a weakened form of hyperbolicity and conclude ergodicity. While the two
theories have considerable overlap, Pesin theory assumes a C1+δ hypothesis,
whereas the Pugh-Shub stable ergodicity theorem assumes a C2 hypothesis.
The purpose of this paper is to close the gap between C1+δ and C2.

Let f : M → M be a partially hyperbolic diffeomorphism of a compact
manifold M . Partially hyperbolic means the following. There is a nontrivial
splitting of the tangent bundle, TM = Eu⊕Ec⊕Es, that is invariant under
the derivative map Tf . Further, there is a Riemannian metric for which we
can choose continuous positive functions ν, ν̂, and γ̂ with

ν, ν̂ < 1 and ν < γ ≤ γ̂−1 < ν̂−1 (1)

such that, for a unit vector v ∈ TpM ,

‖Tfv‖ ≤ ν(p), if v ∈ Es(p), (2)

γ(p) ≤ ‖Tfv‖ ≤ γ̂(p)−1, if v ∈ Ec(p), (3)

ν̂(p)−1 ≤ ‖Tfv‖, if v ∈ Eu(p). (4)

A partially hyperbolic diffeomorphism is dynamically coherent if there
are foliations Wcs and Wcu tangent to Ec ⊕ Es and Ec ⊕ Eu respectively.
In this case there is also a foliation Wc tangent to Ec whose leaves are the
intersections of the leaves of Wcs and Wcu. Each leaf of Wcs is foliated by
leaves of Wc and Ws; leaves of Wcu have the analogous property.
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Theorem 0.1 ([PSW], Theorem B) Let f : M → M be a C2, partially
hyperbolic, dynamically coherent diffeomorphism of a compact manifold M
satisfying

ν < γγ̂.

Then the stable distribution is a uniformly C1 bundle when restricted to any
leaf of the center-stable foliation. Consequently, the stable holonomy map
between center transversals is C1.

If the assumption that f is C2 is relaxed, then the first conclusion of
Theorem 0.1 does not hold; that is, the stable bundle may no longer be
a C1 bundle over every leaf of the center-stable foliation. This is easy to
see in the case where the unstable bundle is trivial. Let F : T2 → T2 be
a linear Anosov diffeomorphism of the 2-torus, and let f = ϕ ◦ F ◦ ϕ−1,
where ϕ : T2 → T2 is a C1+δ diffeomorphism that is not C2. Then f is an
Anosov diffeomorphism, with Es

f = ϕ∗(E
s
F ) and Eu

f = ϕ∗(E
u
F ). We regard f

as a partially hyperbolic diffeomorphism, with stable bundle Es
f and center

bundle Eu
f . Then the center-stable foliation has one leaf, the whole 2-torus,

and the stable bundle Es
f = ϕ∗(E

s
F ) is merely Hölder continuous, since Tϕ is

Hölder-continuous, but not C1. Note that the hypothesis ν < γγ̂ is satisfied
by this example, since the center bundle of f is 1-dimensional.

While the first conclusion of Theorem 0.1 does not hold for this example,
the second one does; the stable holonomy for f between center transversals is
C1, and in fact, C1+δ. This is because the stable holonomy for f is conjugate
via ϕ to the stable holonomy for F .

Note also that, even under the hypothesis that f is C2, the techniques
behind the proof of Theorem 0.1 do not give a C1+β condition on the stable
holonomy; for this, a C2+δ hypothesis on f is required. Our main result
shows that we may relax the C2 assumption to C1+δ and still obtain that
the stable holonomy for f between center transversals is C1. The price of
relaxing the differentiability of f is that we require a more stringent bunching
condition, a condition that is nonetheless satisfied by many examples. As an
added benefit, we obtain that the holonomy is C1+β, for some β > 0.

Theorem 0.2 Let f : M → M be a C1+δ, partially hyperbolic, dynamically
coherent diffeomorphism of a compact manifold M satisfying

νθ < γγ̂,

where θ ∈ (0, δ) is a Hölder exponent for Ec. Then there exists β > 0 such
that the stable holonomy map between center transversals is C1+β.
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As far as we know, this result is new, although there are related results
for codimension-1 hyperbolic systems [PR], in the nonuniform setting when
Ec is a hyperbolic Lyapunov subspace in an Oseledec decomposition [BPS],
and for Lie group cocycles [PW] .

For any partially hyperbolic diffeomorphism, the stable and unstable sub-
bundles Es and Eu are tangent to foliations, which we denote by Ws and Wu

respectively [BP]. These foliations induce an equivalence relation on M : we
say that p ∼us q if there is a sequence of points p = p0, . . . , pk = q such that
any two consecutive points in the sequence lie in the same Ws-leaf or the
same Wu-leaf. A partially hyperbolic diffeomorphism has the accessibility
property if there is only one ∼us-class, i.e. if p ∼us q for any p, q ∈ M . It has
the essential accessibility property if a set that is measurable (with respect
to the volume) and is a union of ∼us-classes must have 0 or full measure. In
[BW], we use Theorem 0.2 to prove the following:

Theorem 0.3 Let f be C1+δ, volume preserving, and partially hyperbolic.
Suppose that f satisfies the strong center bunching condition:

max{ν, ν̂}θ < γγ̂, (5)

where θ ∈ (0, δ) satisfies the inequalities:

νγ−1 < µθ, ν̂γ̂−1 < µ̂θ. (6)

If f is essentially accessible, then f is ergodic, and in fact has the Kol-
mogorov property.

This has the corollary:

Corollary 0.4 Let f : M → M be a C1+δ, volume-preserving, partially
hyperbolic, dynamically coherent diffeomorphism with 1-dimensional center
bundle. If f is accessible, then f is ergodic.

Note that Theorem 0.2 can equally be applied to the stable foliation of
C1+δ Anosov diffeomorphism by regarding the unstable bundle as a center
bundle. By doing so, we obtain, for example, the following:

Corollary 0.5 Let f be a C1+δ conformal Anosov diffeomorphism. Then for
every β < δ, there exists a neighborhood U of f in Diff1+δ(M), such that, for
every g ∈ U , the stable and unstable holonomies for g are C1+β.
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1 Proof of Theorem 0.2

The proof follows similar lines to the proof of absolute continuity of the
stable foliation for partially hyperbolic systems. The main difference is that,
unlike the Jacobian map x 7→ Jacxf , the multiplicative cocycle x 7→ Txf
over f is not abelian. We exploit instead the fact that the map v 7→ ‖Tfv‖
is an abelian multiplicative cocycle over the projectivized tangent map f∗ :
P (TM) → P (TM). This map is projective in the fibers, with Lipschitz norm
(γγ̂)−1. The inequality νθ < γγ̂ allows us to prove that the stable holonomy
hs has a projectivized derivative hs

∗. Once this is established, a distortion
estimate using the v 7→ ‖Tfv‖ cocycle gives us that hs is differentiable.

We denote by hs the stable holonomy between two center leaves, omitting
reference to domain and codomain. We denote by πs a fixed, uniformly C1+θ,
local approximation to hs. By this we mean that there is a constant C > 0
such that for any p, q ∈ M with q ∈ W s(p, 1) we have a C1+θ diffeomorphism

πs
p,q : W c

loc(p) → W c(q)

such that:

1. d(πs
p,q(p), q) ≤ Cd(p, q);

2. d(Tπs
p,qv, v) ≤ Cd(p, q)θ, for all v ∈ P (Ec(p));

3. if Wc
loc(p) ∩ Wc

loc(p
′) 6= ∅, and the codomains of πs

p,q and πs
p′,q′ also

intersect nontrivially, then πs
p,q = πs

p′,q′ on Wc
loc(p) ∩Wc

loc(p
′).

This can be accomplished by fixing a C1+θ normal bundle to each leaf of
the center foliation Wc. Since the leaves of Wc vary continuously in the C1+θ

topology, this choice of normal bundle can be made to vary continuously from
leaf to leaf. The fibers of this bundle foliate a uniform neighborhood of each
leaf. The holonomy of this local foliation between a local center leaf Wc

loc(p)
and a neighboring center leaf Wc

loc(q) gives the map πs
p,q. By rescaling the

metric if necessary, we may assume that πs
p,q is well-defined on the domain

Wc
loc(p), for all q ∈ W s(p, 1). We will sometimes drop the reference to p and

q and write πs for short.
Fix p, q ∈ M with q ∈ W s(p, 1), and let

hs
n = f−n ◦ πs

pn,qn
◦ fn.
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Note that hs
n : Wc

loc(p) → Wc(q) is well-defined, for all n ≥ 0, since πs
pn,qn

extends uniquely to the domain fn(Wc
loc(p)).

The proof now proceeds in four steps alluded to above. In the first step,
we show that hs

n converges in the C0 topology to hs. This first step uses
only partial hyperbolicity and dynamical coherence. In the second step, we
show that the projective linear bundle maps hs

n∗ : P (Ec) → P (Ec) converge
in the C0 topology to a projective linear bundle map hs

∗ : P (Ec) → P (Ec).
In Step 3, we show that the derivatives Ths

n : Ec → Ec converge in the C0

topology to a bundle isomorphism Ths : Ec → Ec. It follows that hs is C1,
with derivative Ths. Finally, we show that Ths is Hölder continuous. The
last three steps use the bunching hypothesis νθ < γγ̂.

Step 1: the sequence hs
n converges to hs in the space of all contin-

uous maps from Wc
loc(p) to Wc(q).

Invariance of Ws under f implies that f−nhs
pn,qn

fn = hs, where the stable
holonomy hs

pn,qn
maps from fn(Wc

loc(p)) to Wc(qn), sending pn to qn.
Note that since fn contracts distances in Ws(x, 1) by a factor of νn(x),

we have that d(xn, h
s
pn,qn

(xn)) ≤ νn(x), for all x ∈ Wc
loc(p) and n ≥ 1. By

property 1. of πs, we then obtain that

d(πs(xn), hs
pn,qn

(xn)) ≤ Cνn(x), (7)

for all x ∈ Wc
loc(p) and n ≥ 1.

Now fix x ∈ Wc
loc(p) and n ≥ 1. We have:

d(hs
n(x), hs(x)) = d(f−nπs(xn), f−nhs

pn,qn
(xn))

≤ γ−n(x) d(πs(xn), hs
pn,qn

(xn))

≤ Cγ−n(x)ν−n(x).

Partial hyperbolicity implies that there exists κ < 1 such that the function
γ−nνn is uniformly bounded by κn. Hence hs

n converges uniformly to hs.�

Step 2: the sequence hs
n∗ : P (TWc

loc(p)) → P (TWc(q)) is Cauchy.

We fix some notation. For w ∈ P (TM) and k ∈ Z, let wk = fk
∗ (w) ∈

P (TM). We first prove some lemmas.
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Lemma 1.1 There exists δ > 0 such that, for every v ∈ P (Ec(x)) and
w ∈ P (Ec(y)):

1. if d(vk, wk) ≤ δ, for k = 0, . . . , n− 1, then

d(vn, wn) ≤ (γγ̂)−n(xn)d(v, w)θ;

2. if d(v−k, w−k) ≤ δ, for k = 0, . . . , n− 1, then

d(v−n, w−n) ≤ (γγ̂)−n(x)d(v, w)θ.

In particular, if d(v, w) ≤ δ(γγ̂)n(x), then the conclusions in 1. hold, and if
d(v, w) ≤ δ(γγ̂)n(xn), then the conclusions in 2. hold.

Proof. It suffices to prove the lemma in the case n = 1; the other cases are
proved inductively. In writing f∗(v) for v ∈ S(TxM), we deliberately suppress
the basepoint x. For the following calculation, the basepoint is relevant, so
we shall write v = (x, ζ) and w = (y, ξ). Recall that the Lipschitz norm of f∗
restricted to the fiber P (Ec(x)) is γγ̂(x)−1 = (γγ̂)−1(x1), and the Lipschitz
norm of f−1

∗ restricted to the fiber P (Ec(x)) is γγ̂(x−1)
−1 = (γγ̂)−1(x). We

estimate:

d(v1, w1) = d(f∗(x, ζ), f∗(y, ξ))

≤ d(f∗(x, ζ), f∗(x, ξ)) + d(f∗(x, ξ), f∗(y, ξ))

≤ (γγ̂)−1(x1)d(ζ, ξ) + Hd(x, y)δ

≤ (γγ̂)−1(x1)
(
d(ζ, ξ)1−θ + Hd(x, y)δ−θ

)
sup{d(x, y), d(ζ, ξ)}θ.

If d(v, w) = sup{d(ζ, ξ), d(x, y)} is sufficiently small, then

d(ζ, ξ)1−θ + Hd(x, y)δ−θ < 1,

and we have
d(v1, w1) ≤ (γγ̂)−1(x1)d(v, w)

This completes the proof of 1, in the case n = 1. The case 2. is proved
similarly.�

The next Lemma will also be useful in Step 3.
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Lemma 1.2 For n ≥ 1, and k ≤ n, let

v′k = f−n+k
∗ π∗(vn),

where v ∈ P (TxWc
loc(p)). Then, for n sufficiently large, we have:

d(vk, v
′
k) ≤ Cνk(x)θ,

for all k ≤ n.

Proof. Property 2. of πs and uniform contraction of Ws(p, 1) by ν together
imply that

d(vn, v
′
n) = d(vn, π

s
∗(vn))

≤ Cd(xn, h
s
pn,qn

(xn))θ

≤ Cνn(x)θ.

Let δ > 0 be given by Lemma 1.1. The bunching hypothesis νθ < γγ̂ implies
that if n is sufficiently large, we have:

d(vn, v
′
n) ≤ δ(γγ̂)n(x).

Assume n is this large.
We prove Lemma 1.2 by backward induction on k. We have shown that

d(vn, v
′
n) ≤ min{Cνn(x)θ, δ(γγ̂)n(x)}.

Lemma 1.1 now implies that for all 1 ≤ k ≤ n, we have

d(vk, v
′
k) = d(f−n+k

∗ (vn), f−n+k
∗ (v′n))

≤ (γγ̂)k−n(x)d(vn, v
′
n)

≤ δ(γγ̂)k(x)

Suppose now that for some k we have

d(vk, v
′
k) ≤ Cνk(x)θ.

Then, since d(vk, v
′
k) ≤ δ, we have

d(vk−1, v
′
k−1) = d(f−1

∗ (vk), f
−1
∗ (v′k))

≤ (γγ̂)−1(xk)d(vk, v
′
k)

≤ (γγ̂)−1(xk)Cνk(x)θ

≤ Cνk−1(x)θ,
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since νθ < γγ̂. �

Returning to the proof of Step 2, we fix v ∈ P (TWc
loc(p)), and n ≥ 1.

Then

d(hn∗(v), hn+1∗(v)) = d(f−n
∗ πs

∗(vn), f−n−1
∗ πs

∗f∗(vn))

≤ (γγ̂)−n(x) d(πs
∗(vn), f−1

∗ πs
∗f∗(vn))

≤ (γγ̂)−n(x)
[
d(πs

∗(vn), (vn)) + d(f−1
∗ f∗(vn), f−1

∗ πs
∗f∗(vn)

]
≤ (γγ̂)−n(x)Cνn(x)θ + (γγ̂)−n−1(x)Cνn+1(x)θ

Since νθ < γγ̂, the sequence is Cauchy.
Let hs

∗ = limn→∞ hs
n∗.

Step 3: the sequence Ths
n : TWc

loc(p) → TWc(q) is Cauchy.

Since we have already found h∗, it suffices to show that the sequence of
functions v 7→ ‖Thnv‖, for v ∈ P (TxWc

loc(p)), is Cauchy. This is uses a
standard C1+θ distortion estimate.

Lemma 1.3 There exists a K ≥ 1, such that, for all v ∈ P (TxWc
loc(p)) and

n ≥ 1, we have:

K−1 ≤ Πn−1
k=0‖Tfvk‖

Πn−1
k=0‖Tfv′k‖

≤ K.

Proof. For w ∈ P (TM), let ϕ(w) = log ‖Tfw‖. Note that ϕ is a δ-Hölder
continuous function. Fix v ∈ P (TxWc

loc(p)) and n ≥ 1. Then

| log
Πn−1

k=0‖Tfvk‖
Πn−1

k=0‖Tfv′k‖
| = |

n−1∑
k=0

ϕ(vk)− ϕ(v′k)|

≤
n−1∑
k=0

Hd(vk, v
′
k)

δ

≤ H
n−1∑
k=0

Cδνk(x)θδ

≤ HCδ(1− νθδ)−1,

where ν = supz∈M ν(z) < 1. Setting K = exp(HCδ(1 − νθδ)−1) completes
the proof. �
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Using this lemma, we fix v ∈ P (TxWc
loc(p)) and n ≥ 1 and estimate:

|‖Ths
nv‖ − ‖Ths

n+1v‖| =
Πn−1

k=0‖Tfvk‖
Πn−1

k=0‖Tfv′k‖
|‖Tπvn‖ − ‖T (fπf−1)vn‖|

≤ C‖Tπvn − T (fπf−1)vn‖
≤ C‖Tπvn − vn‖+ ‖T (ff−1)vn − T (fπf−1)vn‖
≤ C ′νn(x)θ

Hence the sequence ‖Ths
n‖ : P (TWc

loc(p)) → R is Cauchy. Let Th =
limn→∞ Ths

n.

Step 4: the function Ths : TWc
loc(p) → TWc(q) is Hölder continuous.

We first show that hs
∗ : P (TWc

loc(p)) → P (TWc(q)) is Hölder continuous,
uniformly in p ∈ M and q ∈ W c(p, 1). Choose ε > 0 so that νθ < (γγ̂)1+ε,
and let ρ = (γγ̂)(2+ε)/θ. Suppose that p′ ∈ W c

loc(p). Then there exists an
n ≥ 1 such that min{d(p, p′), 1} ∈ [ρn(p), ρn−1(p)).

Our previous calculations show that there exists a K > 0 such that

dC0(hs
∗, h

s
n∗) ≤ Kνθ

n(γγ̂)−n.

Let β = θε
2+ε

, and note that

νθ(γγ̂)−1 < ρβ,

for all n. Thus it suffices to show that

d(hn∗(p, ξ), hn∗(p
′, ξ)) ≤ O(ρn(p)β),

for all n ≥ 1, p ∈ M and p′ ∈ W c(p, ρn(p)).
Lemma 1.1 implies that

d(fn
∗ (p, ξ), fn

∗ (p′, ξ)) ≤ (γγ̂)−n(pn)ρn(p)θ < (γγ̂)n(p)1+ε.

Now property 2. of πs implies that

d(πsfn
∗ (p, ξ), πsfn

∗ (p′, ξ)) ≤ d(πsfn
∗ (p, ξ), fn

∗ (p, ξ)) + d(fn
∗ (p, ξ), fn

∗ (p′, ξ))

+d(fn
∗ (p′, ξ), πsfn

∗ (p′, ξ))

≤ Cd(pn, π
s(pn))θ + d(fn

∗ (p, ξ), fn
∗ (p′, ξ)) + Cd(p′n, π

s(p′n))θ

≤ Cνn(p)θ + (γγ̂)n(p)1+ε + Cνn(p′)θ

≤ O((γγ̂)n(p)1+ε)
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Again applying Lemma 1.1, we obtain that

d(hn∗(p, ξ), hn∗(p
′, ξ)) ≤ (γγ̂)−n(p′n)O((γγ̂)n(p)1+ε)

≤ O((γγ̂)n(p)ε)

= O(ρn(p)β).

We now show that log ‖Ths‖ : P (TWc
loc(p)) → R+ is Hölder continuous.

Let v = (p, ξ) and w = (p′, ξ), and suppose as above that min{d(p, p′), 1} ∈
[ρn(p), ρn−1(p)). We showed in Step 3 that

log ‖Ths(v)‖ =
∞∑
i=0

ϕ(vi)− ϕ(hs
∗(vi)),

where ϕ = log ‖Tf‖. From this it follows that

|log ‖Ths(p, ξ)‖ − log ‖Ths(p′, ξ)‖| =

∣∣∣∣∣
∞∑
i=0

(ϕ(vi)− ϕ(hs
∗vi))−

∞∑
i=0

(ϕ(wi)− ϕ(hs
∗wi))

∣∣∣∣∣
≤

n−1∑
i=0

|ϕ(vi)− ϕ(wi)|+
n−1∑
i=0

|ϕ(hs
∗vi)− ϕ(hs

∗wi)|

+
∞∑

i=n

|ϕ(vi)− ϕ(hs
∗vi)|+

∞∑
i=n

|ϕ(wi)− ϕ(hs
∗wi)|

≤ O(
n−1∑
i=0

d(vi, wi)
δ +

n−1∑
i=0

d(hs
∗vi, h

s
∗wi)

δ

+
∞∑

i=n

d(vi, h
s
∗vi)

δ +
∞∑

i=n

d(wi, h
s
∗wi)

δ)

≤ O(
n−1∑
i=0

((γγ̂)−iρ
θ
n)δ +

n−1∑
i=0

((γγ̂)−iρ
θ
n)βδ

+
∞∑

i=n

νθδ
i )

≤ O
((

(γγ̂)−nρ
θ
n)

)βδ
+ νθδ

n

)
Recall that we have chosen n so that

d(vn, wn) ≤ (γγ̂)−n(pn)ρn(p)θ < (γγ̂)n(p)1+ε = ρn(p)θ(1+ε)/(2+ε).

We also have that
νθ < (γγ̂)1+ε
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From these facts we conclude that

|log ‖Ths(p, ξ)− log ‖Ths(p′, ξ)‖| ≤ O(ρn(p)β′
),

where

β′ = δβ
θ(1 + ε)

2 + ε
=

δθε(1 + ε)

(2 + ε)2
.
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