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DYNAMICAL COHERENCE AND CENTER BUNCHING

KEITH BURNS AND AMIE WILKINSON

For Yasha Pesin, in friendship and admiration.

Abstract. This paper discusses relationships among the basic notions that
have been important in recent investigations of the ergodicity of volume-preserving

partially hyperbolic diffeomorphisms. In particular we survey the possible defi-
nitions of dynamical coherence and discuss the relationship between dynamical

coherence and center bunching.

Introduction. Partial hyperbolicity provides a natural context in which the Hopf
argument can be used to prove ergodicity. The most recent result in this direction
is our theorem:

Theorem 0.1. [8] Let f be C2, volume-preserving, partially hyperbolic and cen-
ter bunched. If f is essentially accessible, then f is ergodic, and in fact has the
Kolmogorov property.

This result builds on a series of papers [11, 25, 19, 20], initiated by the work of
Grayson, Pugh and Shub [11]. In contrast to its predecessors, Theorem 0.1 makes
no hypothesis of dynamical coherence. Dynamical coherence and the hypotheses of
Theorem 0.1 are defined precisely in the next section.

In this paper, we explore connections between dynamical coherence and the cen-
ter bunching hypothesis in Theorem 0.1. We also discuss various definitions of
dynamical coherence and how they are connected to each other. Along the way, we
pose some questions and try to clarify some of the issues involved.

Although dynamical coherence appears to us to be a strong and rather unnatural
hypothesis, we know of only one type of non-dynamically coherent diffeomorphism
to which Theorem 0.1 applies. This is a family of Anosov diffeomorphisms, described
by A. Hammerlindl [12], in which the central bundles are constructed from weak
stable bundles. In contrast, there are non-Anosov examples of non-dynamically co-
herent diffeomorphisms that come arbitrarily close to satisfying the center bunching
hypothesis. We describe these and related examples of N. Gourmelon [10] in Sec-
tion 3.

1. Partial hyperbolicity, center bunching and accessibility. We now define
the hypotheses in Theorem 0.1, namely, partial hyperbolicity, center bunching, and
accessibility. Let f : M → M be a diffeomorphism of a compact manifold M .
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We say that f is partially hyperbolic if the following holds. First, there is a
nontrivial splitting of the tangent bundle, TM = Es ⊕ Ec ⊕ Eu, that is invariant
under the derivative map Tf . Further, there is a Riemannian metric for which we
can choose continuous positive functions ν, ν̂, γ and γ̂ with

ν, ν̂ < 1 and ν < γ < γ̂−1 < ν̂−1 (1)

such that, for any unit vector v ∈ TpM ,

‖Tfv‖ < ν(p), if v ∈ Es(p), (2)

γ(p) < ‖Tfv‖ < γ̂(p)−1, if v ∈ Ec(p), (3)

ν̂(p)−1 < ‖Tfv‖, if v ∈ Eu(p). (4)

It will be convenient to let s, c and u denote the dimensions of Es, Ec, and Eu,
respectively.

We say that f is center bunched if the functions ν, ν̂, γ, and γ̂ can be chosen so
that:

max{ν, ν̂} < γγ̂. (5)

Center bunching means that the hyperbolicity of f dominates the nonconformal-
ity of Tf on the center. Inequality (5) always holds when Tf |Ec is conformal. For
then we have ‖Tpfv‖ = ‖Tpf |Ec(p)‖ for any unit vector v ∈ Ec(p), and hence we
can choose γ(p) slightly smaller and γ̂(p)−1 slightly bigger than

‖Tpf |Ec(p)‖.
By doing this we may make the ratio γ(p)/γ̂(p)−1 = γ(p)γ̂(p) arbitrarily close to 1,
and hence larger than both ν(p) and ν̂(p).

In particular, center bunching holds whenever Ec is one-dimensional.
The center bunching hypothesis considered here is natural and appears in other

contexts, e.g. [5, 1, 17, 16]. This hypothesis is much weaker than the center bunching
hypothesis in previous ergodicity theorems for partially hyperbolic diffeomorphisms,
notably the result of Pugh and Shub in [20]. It appears that a major new idea would
be necessary in order to weaken or remove this hypothesis from Theorem 0.1.

The stable and unstable bundles Es and Eu of a partially hyperbolic diffeo-
morphism are tangent to foliations, which we denote by Ws and Wu respectively
[5].

Definition 1.1. A partially hyperbolic diffeomorphism f : M → M is accessible
if any point in M can be reached from any other along an su-path, which is a
concatenation of finitely many subpaths, each of which lies entirely in a single leaf
of Ws or a single leaf of Wu.

The accessibility class of p ∈ M is the set of all q ∈ M that can be reached from
p along an su-path. Accessibility means that there is one accessibility class, which
contains all points. The following notion is a natural weakening of accessibility.

Definition 1.2. A partially hyperbolic diffeomorphism f : M → M is essentially
accessible if every measurable set that is a union of entire accessibility classes has
either full or zero volume.

Pugh and Shub have conjectured that essential accessibility implies ergodicity,
for a C2, partially hyperbolic, volume-preserving diffeomorphism [19]. Theorem 0.1
establishes this conjecture under the center bunching hypothesis.
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2. Dynamical coherence.

2.1. Integrability. Before defining dynamical coherence, we make a few general
remarks about integrability and unique integrability of distributions.

Let E be a continuous distribution of k-dimensional subspaces of TM .

Definition 2.1. E is weakly integrable if through every point in M there exists
an injectively-immersed, complete k-dimensional submanifold that is everywhere
tangent to E (see [4]).

E is integrable if there exists a foliation of M by immersed k-manifolds whose
leaves are everywhere tangent to E. Such a foliation is called an integral foliation
of E.

E is uniquely integrable if E is integrable with integral foliation F , and in addition
any C1 path everywhere tangent to E lies in a single leaf of F .

E is plaquewise uniquely integrable if E is integrable with integral foliation F ,
and in addition any k-dimensional immersed disk everywhere tangent to E lies in
a single leaf of F .

Note that either form of unique integrability of E implies that E has a unique
integral foliation. Having a unique integral foliation is, however, a strictly weaker
condition than either form of unique integrability: an example that illustrates this
is the 1-dimensional distribution E in R2 tangent to the foliation F by the curves
{(t, (t+c)3) : t ∈ R}c∈R. Although F is the unique foliation tangent to E, the curve
{(t, 0) : t ∈ R} is everywhere tangent to E and does not lie in a leaf of F . This
example is modified in [21] to show that plaquewise unique integrability does not
imply unique integrability if k > 1. (Note that the two notions do coincide when
k = 1.)

In [18], Pesin gives a local description of unique integrability:

Definition 2.2. E is locally uniquely integrable if each x ∈ M lies in a k-dimensional
smooth submanifold Wloc(x) with the property that any short enough C1 curve
starting at x and tangent to E must lie in Wloc(x).

It is not difficult to see that local unique integrability and unique integrability
are equivalent.

It is well-known that a 1-dimensional distribution is uniquely integrable if it is
Lipschitz. For higher-dimensional distributions, there is an analogue to this fact:

Proposition 2.3. Suppose that the distribution E is integrable and has an integral
foliation that is transversely Lipschitz (in particular, these hypotheses hold if E is
both Lipschitz and integrable). Then E is uniquely integrable.

See [23] for a proof of this and related results about Lipschitz distributions.

2.2. Definitions of dynamical coherence. In the ten years since the notion of
dynamical coherence first appeared in [19], it has been redefined nearly ten times.
At a minimum, the notion of dynamical coherence should require that each point lie
in a c-dimensional submanifold tangent to Ec. Viewed in the proper way, the time-
one map of the geodesic flow for a complex (or quaternionic or Cayley) hyperbolic
manifold provides an example of a partially hyperbolic diffeomorphism that fails to
have this property. The center distribution for these examples combines the flow
direction with the planes of weakest curvature. Because the curvature is exactly
quarter pinched, these examples lie on the edge of center bunching but are not
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center bunched. More examples, including center bunched ones, are described in
Section 3.

The most common definition of dynamical coherence appears to be that there
exist foliations Wcs and Wcu tangent to Ecs = Ec ⊕ Es and Ecu = Ec ⊕ Eu

respectively, see for example [3, 4, 2].

Proposition 2.4. If there exist foliations Wcs and Wcu as above, then there is a
foliation Wc tangent to Ec. Furthermore, Wc and Wu subfoliate Wcu, while Wc

and Ws subfoliate Wcs.

The original definition of dynamical coherence in [20] assumed all of the con-
clusions of this proposition in addition to the existence of the foliations Wcs and
Wcu.

The main ingredient in the proof of Proposition 2.4 is the following lemma,
which applies to any partially hyperbolic diffeomorphism, even one for which the
distribution Ecu is not everywhere integrable.

Lemma 2.5. Any disk tangent to Ecu is subfoliated by Wu-plaques, and any disk
tangent to Ecs is subfoliated by Ws-plaques. (A W∗ plaque is a connected open
subset of a W∗-leaf.)

Proof. Let D be the image of an open disk in Rc+u under an embedding that is
everywhere tangent to Ecu. Let X be the disjoint union of all of the f -iterates of
D, which we call the leaves of X. Each leaf of X is an immersed submanifold of
M , tangent to Ecu. On the manifold X there is a diffeomorphism F , which acts
on each leaf of X as the restriction of f . The diffeomorphism F inherits partial
hyperbolicity from f . The stable bundle for F is trivial. The unstable and central
bundles for F on a leaf of X are the restrictions of the corresponding bundles for f .

One now constructs the unstable foliation Wu
F for F in the usual way. While

X is not compact, there are uniform estimates on F because of its relationship
to f , which does act on a compact manifold. Each leaf of the foliation Wu

F is a
submanifold of M tangent to Eu, and it follows from the unique integrability of Eu

that the leaves of Wu
F are plaques of Wu. But the leaves of Wu

F subfoliate D, and
therefore plaques of Wu subfoliate D.

Similarly, one shows that plaques of Ws subfoliate any disk tangent to Ecs.

Proof of Proposition 2.4. Intersecting the leaves of Wcu and Wcs gives us the leaves
of the desired foliation Wc.

It is obvious from its construction that the leaves of Wc subfoliate the leaves of
Wcu and Wcs. Lemma 2.5 implies that plaques of Wu subfoliate plaques of Wcu

and that plaques of Ws subfoliate plaques of Wcs.

The distributions Eu and Es are always uniquely integrable. Dynamical coher-
ence does not require Ecs and Ecu or Ec to be uniquely integrable, though no
example is known where integrability holds and unique integrability fails for these
distributions. Even invariance of the foliations is not required in the definition of
dynamical coherence, though Pugh and Shub implicity use f -invariance of these
foliations in the proof of their main result in [20]. Note that a unique integral foli-
ation is necessarily invariant. On the other hand, it is conceivable that there might
be several integral foliations, some (but not all) of which are invariant.
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In defining dynamical coherence, one can impose invariance or any of the unique
integrability conditions discussed in the previous subsection. In this way, we obtain
12 definitions of dynamical coherence, summarized in the table below.

Ecs& Ecu Ec

Uniquely integrable ∗ =⇒ ∗
⇓ ⇓

Plaquewise uniquely integrable ∗ ⇐⇒ ∗
⇓ ⇓

Unique integral foliation ∗ ∗
⇓ ⇓

Invariant integral foliation ∗ =⇒ ∗
⇓ ⇓

Integral foliation ∗ =⇒ ∗
⇓ ⇓

Weak integrability ∗ =⇒ ∗

The implications shown in this table are the ones that are currently known to
us. It is possible that the weakest property, existence of an integral foliation for
Ec (which appears in the lower right hand corner), is equivalent to the strongest
property, unique integrability of Ecs and Ecu (which appears in the upper left). We
have no idea about the relation between the two conditions in the third row.

Both properties in the bottom row of the table hold when Ec is 1-dimensional.
The bottom right is a simple consequence of the fact that continuous vector fields
have integral curves; the bottom left is Proposition 3.4 in [4].

We now explain the implications in the table. The downward implications in the
two columns are immediate consequences of general properties of foliations.

The forward implications in the horizontal rows all use Proposition 2.4: the
integral manifolds for Ec are obtained by intersecting the integral manifolds for Ecs

and Ecu. The implications in the two bottom rows are simply this observation. In
the fourth row, we also need the observation that we obtain an invariant foliation
if this construction is applied to invariant foliations. In the first row, we need to
observe that any curve tangent to Ec is also tangent to both Ecs and Ecu, and
therefore must lie in the intersection of a Wcs and a Wcu leaf, if the distributions
Ecs and Ecu are uniquely integrable.

The proof of the equivalence in the second row uses another result. Recall that
c, s and u are the respective dimensions of Ec, Es and Eu.

Proposition 2.6. Let D be a c-dimensional disk tangent to Ec. Then the set⋃
x∈D Ws

loc(x) is a C1 disk tangent to Ecs of dimension c + s, and
⋃

x∈D Wu
loc(x)

is a C1 disk tangent to Ecu of dimension c + u.

This result is the natural generalization to the case of higher-dimensional center
of Proposition 3.4 in [4], which assumed that c = dim Ec = 1. The proof given there
extends easily to the general case. The result can also be obtained from Theorem
6.1 in [13] by considering the immersion of the disjoint union of all of the iterates
of the disk into the manifold, as can Proposition 2.4.

We now establish the equivalence in the second row:
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Proposition 2.7. Ecs and Ecu are plaquewise uniquely integrable if and only if Ec

is plaquewise uniquely integrable.

Proof. Suppose that Ecs and Ecu are both plaquewise uniquely integrable. Propo-
sition 2.6 implies that any c-dimensional disk D tangent to Ec can be extended
to disks tangent to Ecs and Ecu. Plaquewise unique integrability of Ecs and Ecu

implies that each of these extended disks lies in a single leaf of the corresponding
foliation Wcs or Wcu. Thus their intersection, which is D, lies in a single Wc leaf,
implying plaquewise unique integrability of Ec.

We now turn to the converse implication. Suppose that Ec is plaquewise uniquely
integrable. Then there is a canonical way to construct center-stable and center-
unstable plaques. For any small enough δ > 0 the local center leaf of size δ through
x, Wc(x, δ), is well-defined, and so we can define

Wcs(x, δ) =
⋃

y∈Wc(x,δ)

Ws(y, δ) and Wcu(x, δ) =
⋃

y∈Wc(x,δ)

Wu(y, δ).

We will show that the discs Wcs(x, δ) and Wcu(x, δ) are local plaques of foliations.
Define W∗

loc(x) to be W∗(x,∆) for a suitably small ∆ > 0. Then there is a δ0 such
that if d(p, q) < δ0, then both Wcs

loc(p) ∩ Wu
loc(q) and Wcu

loc(p) ∩ Ws
loc(q) are single

points.
Proposition 2.4 ensures that center-stable and center-unstable plaques are sub-

foliated by stable and unstable plaques, respectively. They are also subfoliated by
center plaques. Indeed if x′ ∈ Wcs

loc(x), then Wcs
loc(x) ∩ Wcu

loc(x
′) is an immersed

c-dimensional manifold tangent to Ec, which must contain Wc(x′, ε) for some small
enough ε > 0, because Ec is plaquewise uniquely integrable. A similar argument
applies to Wcu.

We now see that the cs-plaques at different points are compatible: if x′ ∈
Wcs

loc(x), then Wcs
loc(x) contains Wcs(x′, δ′) for some small enough δ′ > 0. Simi-

larly, if x′′ ∈ Wcu
loc(x), then Wcu

loc(x) contains Wcu(x′′, δ′′) for some small enough
δ′′ > 0. Furthermore, if δ is small enough, then either Wcs(x, δ) ∩ Wcs(x′, δ) = ∅
or Wcs(x′, δ) ⊂ Wcs

loc(x), and similarly, either Wcu(x, δ) ∩ Wcu(x′′, δ) = ∅ or
Wcu(x′′, δ) ⊂ Wcu

loc(x).
This last property ensures that if δ > 0 is small enough and x 6= x′, then

Wcs(x, δ)∩Wcs(x′, δ) = ∅ if x′ ∈ Wu
loc(x), and similarly Wcu(x, δ)∩Wcu(x′, δ) = ∅

if x′ ∈ Ws
loc(x). For otherwise Wcs

loc(x)∩Wu
loc(x) or Wcu

loc(x)∩Ws
loc(x) would contain

both x and x′.
On the other hand,

⋃
x′∈Wu

loc(x)Wcs(x′, δ) is a neighborhood of x for any δ > 0.
If y is close enough to x, then Wcs

loc(y) intersects Wu
loc(x) in a point x′ such that

d(x′, y) < δ. The compatibility of the cs-plaques means that y ∈ Wcs(x′, δ).
It is now easy to construct a foliation chart for Wcs that maps the set⋃

x′∈Wu
loc(x)

Wcs(x′, δ)

to Rn, sending x to the origin, Wu
loc(x) to {0} × Ru, and each of the Wcs(x′, δ)

disks into a hyperplane Rc+s × {v}. The compatibility of the cs-plaques ensures
that the overlaps for these charts preserve the hyperplanes Rc+s × {·}, and so we
have foliation charts for Wcs. Foliation charts for Wcu are constructed analogously.

Finally, we show that Ecs and Ecu are plaquewise uniquely integrable. We give
the proof for Ecs. Let D be a disk with dimension c+ s tangent to Ecs through the
point x. Let D′ be the intersection of D with Wcu(x). Then D′ is a c-dimensional
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disk tangent to Ec; plaquewise unique integrability of Ec implies that D′ is a plaque
of Wc. The union of the Ws-plaques through points of D′ is a Wcs plaque, which
must contain D. Hence, Ecs is plaquewise uniquely integrable.

All the examples we know of dynamically coherent diffeomorphisms are robustly
dynamically coherent: any C1 perturbation is again dynamically coherent. We do
not know whether dynamical coherence must always be robust. A result in this
direction is the following.

Theorem 2.8. If Ec is C1 and integrable, then f is robustly dynamically coherent.
In particular, for any g sufficiently C1 close to f , the distributions Ecs

g and Ecu
g are

integrable, with g-invariant integral foliations.

This theorem follows from results in Chapter 7 of [13], in particular Theorem
7.6. See also Proposition 3.1 in the survey [6].

The hypothesis that Ec be C1 in Theorem 2.8 can be weakened to a hypothesis
of plaque expansiveness, a concept defined in [13]. Another condition that implies
plaque expansiveness is the condition that the derivative of f restricted to Ec be
isometric. This was stated without proof in [13]; a proof appears in [22] (dynam-
ical coherence under this hypothesis was proved in [3]). In many examples (e.g.,
the time-1 map of an Anosov flow, skew products, affine transformations of ho-
mogeneous spaces), the center distribution is both Lipschitz (in fact, smooth) and
integrable; Theorem 2.8 implies that such examples are stably dynamically coherent.

If Ec is Lipschitz and integrable, Proposition 2.3 also implies that Ec is uniquely
integrable. It is not known whether perturbations of such examples share this
stronger form of dynamical coherence. There are many examples of such pertur-
bations where the center distribution is merely Hölder continuous, and the center
foliation fails to be absolutely continuous.

3. The Borel-Smale examples. There is an example, attributed by Smale to
A. Borel, of a partially hyperbolic diffeomorphism for which the center bundle is
C2 but is not closed under the formation of Lie brackets. The example is also
described in [14]. It is presented there and in Smale’s original paper [24] as a linear
Anosov diffeomorphism on a nilmanifold that is not a torus. Wilkinson [25] observed
that if one creates a center subbundle for this diffeomorphism by grouping together
invariant weak subbundles, one obtains a partially hyperbolic diffeomorphism whose
center subbundle is not integrable. This is described in more detail in [18].

We now give a brief description of these examples. Let H be the Heisenberg
group, which is the subgroup of GL(3,R) consisting of matrices of the form: 1 x z

0 1 y
0 0 1

 .

Then H is a non-abelian simply-connected nilpotent Lie group, whose Lie algebra
h is generated by the matrices

X =

 0 1 0
0 0 0
0 0 0

 , Y =

 0 0 0
0 0 1
0 0 0

 , Z =

 0 0 1
0 0 0
0 0 0

 ,

which satisfy the relations:

[X, Z] = [Y,Z] = 0; [X, Y ] = Z.
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We identify (ξ, η, ζ) ∈ R3 with ξX + ηY + ζZ ∈ h. With this identification, the
exponential map exp : h → H is

exp(ξ, η, ζ) =

 1 ξ ζ + 1
2ξη

0 1 η
0 0 1

 .

It is a diffeomorphism.
There are partially hyperbolic automorphisms of compact quotients of H, which

are dynamically coherent. Let A ∈ SL(2,Z) be a hyperbolic matrix, and let Γ0 =
exp(Z × Z × 1

2Z). It is easily checked that Γ0 is a subgroup of H; it is discrete
and cocompact because the exponential map is a diffeomorphism and the lattice
Z× Z× 1

2Z is cocompact in h. The map ξ
η
ζ

 7→
(

A 0
0 1

)  ξ
η
ζ


is an automorphism of h that preserves the lattice Z × Z × 1

2Z. It induces an
automorphism fA of the compact manifold H/Γ0 that is partially hyperbolic. The
center foliation is a nontrivial fibration of H/Γ0 by circles that fibers over the torus
T2. The projection of fA onto this torus is the automorphism induced by A. The
diffeomorphism fA is accessible, because the stable and unstable directions lie in the
span of (the left-invariant vector fields corresponding to) X and Y , and [X, Y ] = Z.
Note that there are no Anosov automorphisms of H/Γ0, because the only Anosov
diffeomorphisms of three-dimensional manifolds are on tori (and more generally only
tori can support Anosov diffeomorphisms in which one of the distributions Es or
Eu is one-dimensional).

Now consider the group G = H ×H. Its Lie algebra g = h ⊕ h is generated by
{X1, Y1, Z1, X2, Y2, Z2} whose nontrivial bracket relations are:

[X1, Y1] = Z1; [X2, Y2] = Z2.

We identify (ζ1, η1, ξ1, ξ2, η2, ζ2) ∈ R3×R3 with ξ1X1 +η1Y1 +ζ1Z1 +ξ2X2 +η2Y2 +
ζ2Z2 ∈ g (the reason for rearranging the terms in the first R3 factor will become
clear in a minute).

As above, consider a hyperbolic matrix A ∈ SL(2,Z) and let λ > 1 and λ−1 < 1
be the eigenvalues of A. Then λ and λ−1 are units in the ring of algebraic integers.
The field Q(λ) is a quadratic extension of Q; its Galois involution σ interchanges
λ and λ−1. Let Γ̃ be the irreducible cocompact lattice in g consisting of vectors of
the form:1

( 1
2w, v, u, σ(u), σ(v), σ( 1

2w)),
with u, v, w ∈ Z[λ], the ring of algebraic integers in Q(λ). It is easily checked that
Γ = exp(Γ̃) is a subgroup of G and is discrete and cocompact. In fact G/Γ is a
2-torus bundle over the 4-torus. The fibers are tangent to Z1 ⊕ Z2.

For any real numbers a and b, the linear map

B : (ζ1, η1, ξ1, ξ2, η2, ζ2) 7→ (λa+bζ1, λ
bη1, λ

aξ1, λ
−aξ2, λ

−bη2, λ
−a−bζ2)

is an automorphism of g, and therefore induces a homomorphism FB : G → G whose
derivative at the identity is B. If a and b are integers, the automorphism B preserves

1We have slightly modified the lattice given in [24] to ensure that its image under the expo-
nential map is a subgroup.
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Γ̃, the homomorphism FB preserves Γ, and there is an induced diffeomorphism
fB : G/Γ → G/Γ. The diffeomorphism fB is partially hyperbolic if one of a, b, a+ b
is nonzero and Anosov if all three are nonzero. Smale describes in [24] the cases
a = 1, b = 2 and a = 1, b = −3. More general algebraic constructions of Anosov
diffeomorphisms along these lines can be found in [15].

We now assume that a + b > b ≥ a > 0. In this case fB is Anosov, with the
bundle Ec trivial, Eu spanned by the left invariant vector fields X1, Y1, Z1 and Eu

spanned by X2, Y2, Z2. But there is a second way to view fB as partially hyperbolic,
described in [25]: Eu is spanned by Z1, Es is spanned by Z2, and Ec is spanned
by X1, X2, Y1, and Y2. Now fB is not dynamically coherent, since Ec is not closed
under formation of Lie brackets; in fact, [Ec, Ec] is spanned by Z1 and Z2.

Nicolas Gourmelon has recently shown that it is possible to deform fB in the
case a > 0 to obtain a stably ergodic, volume-preserving, partially hyperbolic dif-
feomorphism that is neither dynamically coherent nor Anosov [10].

It is perhaps worth discussing why it is possible to obtain dynamically incoher-
ent examples on infranil manifolds but not on tori using this approach. In both
cases the exponential map of the group (Rn or a nilpotent Lie group) conjugates a
homomorphism of the group and its derivative at the identity. Being a linear map,
the derivative is always dynamically coherent. When the group is Rn, the exponen-
tial map is an isometry and it carries a dynamically coherent partially hyperbolic
splitting for the derivative to a dynamically coherent partially hyperbolic splitting
for the homomorphism. For a nilpotent group, the exponential map still carries an
invariant bundle or foliation for the derivative to an invariant bundle or foliation
for the homomorphism and vice versa. But the group is noncompact and the expo-
nential map is not an isometry, so the image of a partially hyperbolic splitting may
not be partially hyperbolic.

3.1. Hammerlindl’s observation. Hammerlindl has made the simple and beau-
tiful observation that the diffeomorphim fB considered above can be viewed as
partially hyperbolic in a third way [12]. One chooses the bundle Eu to be spanned
by Z1, Y1 and X1, the bundle Ec to be spanned by X2 and Y2, and the bundle Es

to be spanned by Z2. Again Ec is not integrable because [X2, Y2] = Z2. But now
it is easy to arrange for fB to be center bunched by choosing the integers a and b
suitably. In particular, fB is center bunched if a = b.

It is interesting to note that fB is essentially accessible when viewed with this
partially hyperbolic structure, but is not essentially accessible when viewed with the
partially hyperbolic structure introduced above. For Hammerlindl’s structure, the
unstable leaves are the same as when fB is viewed as an Anosov diffeomorphism with
three dimensional stable and unstable bundles. For the other partially hyperbolic
structure, the bundle Es ⊕Eu is spanned by the left invariant vector fields Z1 and
Z2 and is thus tangent to the 2-tori that are the fibers of the bundle structure
of G/Γ.

4. Bunching and coherence. Let us examine the center bunching hypothesis for
the diffeomorphism fB considered in the previous section when a + b > b ≥ a > 0.
We have

ν = ν̂ = λ−a−b, and γ = γ̂ = λ−b.

Consequently,
ν = ν̂ = λ−a−b ≥ λ−2b = γγ̂,
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with equality holding if and only if a = b. Thus fB is never center bunched. It falls
just short of being center bunched in the best possible case, when a = b. In fact, as
the next theorem shows, a symmetric construction of this type will never produce
a center bunched diffeomorphism that is not dynamically coherent.

Let us say that a partially hyperbolic diffeomorphism is strongly symmetrically
partially hyperbolic if the inequalities (1)–(5) involving ν, γ, ν̂, γ̂ in the Introduction
can be satisfied with ν̂ = ν, γ̂ = γ and γ and ν constant. This requires ν < γ < 1. A
strongly symmetrically partially hyperbolic diffeomorphism is symmetrically center
bunched if these constants satisfy ν < γ2.

Theorem 4.1. Suppose that f : M → M is C2 and strongly symmetrically partially
hyperbolic. If f is symmetrically center bunched and the partially hyperbolic splitting
is C2, then f is dynamically coherent.

Note that the symmetry condition γ̂ = γ and ν̂ = ν is the only hypothesis
of this theorem not satisfied by Hammerlindl’s example, so the asymmetry in his
construction is crucial.

Remark 4.2. After Theorem 4.1 appeared in the unpublished preprint [7], several
versions of it, also unpublished, have appeared under the weaker hypothesis that
Ec is Lipschitz: we are aware of such versions of this theorem due to N. Gourmelon,
K. Parwani, R. Saghin and A. Hammerlindl. The generalization follows the argu-
ment below, but uses a Lie bracket between Lipschitz vector fields, defined as a
distribution. See, e.g. [23] for a description of this Lie bracket.

Before proving this theorem, we make some preliminary observations. We assume
that the Riemannian metric on M is chosen so that the inequalities (1)–(5) in the
Introduction hold. Such a metric will be called adapted. Note that a rescaling of
an adapted metric is still adapted. It will be convenient to assume that the metric
is scaled so that the geodesic balls of radius 1 are very small neighborhoods of their
centers. Distance with respect to the metric will be denoted by d.

By (if necessary) slightly increasing ν = ν̂ and slightly decreasing γ = γ̂ and
further rescaling the metric to make the local leaves smaller, we may assume that
our metric is still adapted and we have the following:

• if q, q′ ∈ Ws
loc(p), then d(f(q), f(q′)) ≤ νd(q, q′);

• if q, q′ ∈ Wu
loc(p), then d(f−1(q), f−1(q′)) ≤ νd(q, q′);

• if q, q′ ∈ Wcs
loc(p), then d(f(q), f(q′)) ≤ γ−1d(q, q′); and

• if q, q′ ∈ Wcu
loc(p), then d(f−1(q), f−1(q′)) ≤ γ−1d(q, q′).

Proof of Theorem 4.1. We show that Ecs is integrable. The proof that Ecu is inte-
grable is very similar. If Ecs is not integrable, the Frobenius theorem tells us that
Ecs is not closed under Lie brackets. It follows that there exist a constant η > 0, a
point p ∈ M , and a sequence of C1 paths κj : [0, 1] → M such that

(1) κj(0) = p and κj(1) ∈ Wu(p),
(2) κ̇j(t) ∈ (Ecs) (κj(t)), for all t ∈ (0, 1),
(3) δj := length(κj) → 0 as j →∞, and
(4) d(κj(0), κj(1)) ≥ ηδ2

j for all j.
For j sufficiently large, we can choose nj so that

d(fnj+1(κj(0)), fnj+1(κj(1))) ≥ 1,

and
d(f i(κj(0)), f i(κj(1))) < 1,
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for i ≤ nj . Since δj → 0 as j → ∞, we have nj → ∞ as j → ∞. Since κj(0) and
κj(1) are in the same local unstable manifold,

1 ≥ d(fnj (κj(0)), fnj (κj(1)))

≥ ν−nj d(κj(0), κj(1))

≥ ν−nj ηδ2
j ,

so that

δj ≤
√

νnj

η
.

On the other hand, since κj is tangent to Ecs,

length(fnj+1(κj)) ≤ γ−nj−1length(κj) ≤ γ−nj−1δj ≤

√
γ−2

η
· νnj

γ2nj
.

Since f is strongly symmetrically partially hyperbolic and center bunched, we
have ν < γ2. It follows that

length(fnj+1(κj)) → 0 as j →∞.

But this contradicts the fact that

d(fnj+1(κj(0)), fnj+1(κj(1))) ≥ 1.

5. Further questions. Two natural questions raised by the above discussion are:

Question: Let f : M → M be symmetrically partially hyperbolic and center
bunched. Is f then dynamically coherent?
and:

Question: Let f : M → M be a partially hyperbolic affine transformation of
a compact homogeneous space G/Γ. If f is accessible, then is f also dynamically
coherent?

If f fails to be dynamically coherent, we say that f is dynamically incoherent.
The algebraic examples discussed here are stably dynamically incoherent. If f is
such an example and fn is a sequence of dynamically coherent partially hyperbolic
diffeomorphisms with fn → f , then it is easy to see that f must have plaques
tangent to Ec. But since Ec is nowhere integrable, this is impossible. We thank
the referee for pointing this out.

Since we do not know whether dynamical incoherence in general implies nowhere
integrability of Ec, we pose the following:

Question: Is dynamical incoherence a C1-stable property?

If the answer to this question is “yes” then by the results in [9], in a C1 neigh-
borhood of any non dynamically coherent diffeomorphism, there is a C1-dense set
of stably accessible and stably dynamically incoherent diffeomorphisms.

Acknowledgements. We thank the referees for helpful comments, which improved
the paper.
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[16] M. Nicol and M. Pollicott, Livšic’s theorem for semisimple Lie groups, Ergodic Theory

Dynam. Systems, 21 (2001), 1501–1509.
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[23] S. Simić, Lipschitz distributions and Anosov flows, Proc. Amer. Math. Soc., 124 (1996),

1869–1877.

[24] S. Smale Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747–817.
[25] A. Wilkinson, Stable ergodicity of the time-one map of a geodesic flow, Ergodic Theory

Dynam. Systems, 18 (1998), 1545–1587.

Received July 22, 2007; revised January 15, 2008.
E-mail address: burns@math.northwestern.edu

E-mail address: wilkinso@math.northwestern.edu

http://www.ams.org/mathscinet-getitem?mr=1981401&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2122214&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1972227&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2090777&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0343316&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1858538&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2039999&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1298715&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0501173&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1326374&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1970807&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1855844&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1653240&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2068774&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1449765&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1750453&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1432307&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1328378&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0228014&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1658611&return=pdf

	Introduction
	1. Partial hyperbolicity, center bunching and accessibility
	2. Dynamical coherence
	2.1. Integrability
	2.2. Definitions of dynamical coherence

	3. The Borel-Smale examples
	3.1. Hammerlindl's observation

	4. Bunching and coherence
	5. Further questions
	Acknowledgements
	REFERENCES

