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Abstract. We study the magnetic flow determined by a smooth Riemannian met-
ric g and a closed 2-form Ω on a closed manifold M . If the lift of Ω to the universal
cover M̃ is exact, we can define a critical value c(g,Ω) in the sense of Mañé [29]
for the lift of the flow to M̃ . We have c(g,Ω) < ∞ if the lift of Ω has a bounded
primitive. This critical value can be expressed in terms of an isoperimetric constant
defined by (g,Ω), which coincides with Cheeger’s isoperimetric constant when M is
an oriented surface and Ω is the area form of g. When the magnetic flow of (g,Ω) is
Anosov on the unit tangent bundle SM , we show that 1/2 > c(g,Ω) and any closed
bounded form in M̃ of degree ≥ 2 has a bounded primitive.

Next we consider the 1-parameter family of magnetic flows on SM associated
with the pair (g, λΩ) for λ ≥ 0, where Ω is such that its lift to M̃ has a bounded
primitive.

We introduce a volume entropy hv(λ) defined as the exponential growth rate of
the average volume of certain balls. We show that hv(λ) ≤ htop(λ), where htop(λ)
is the topological entropy of the magnetic flow of (g, λΩ) on SM and that equality
holds if the magnetic flow of (g, λΩ) is Anosov on SM . If λ1 ≤ λ2 and the magnetic
flows for (g, λ1Ω) and (g, λ2Ω) are both Anosov on SM , then hv(λ1) ≥ hv(λ2).

We construct an example of a Riemannian metric of negative curvature on a
closed oriented surface of higher genus such that if φλ is the magnetic flow associated
to the area form with intensity λ, then there are values of the parameter 0 < λ1 < λ2

with the property that φλ1 has conjugate points and φλ2 is Anosov. Variations of
this example show that it is also possible to exit and reenter the set of Anosov
magnetic flows arbitrarily many times along the one-parameter family. Moreover,
we can start with a Riemannian metric with conjugate points and end up with an
Anosov magnetic flow for some λ > 0. Finally we have a version of the example
(in which Ω is no longer the area form) such that the topological entropy of φλ1 is
greater than the topological entropy of the geodesic flow, which in turn is greater
than the topological entropy of φλ2 .

1. Introduction

Let M be a closed n-dimensional manifold endowed with a C∞ Riemannian metric
g, and let π : TM → M be the canonical projection. Let ω0 be the symplectic
form on TM obtained by pulling back the canonical symplectic form of T ∗M via the
Riemannian metric. Let Ω be a closed 2-form on M and consider the new symplectic
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form ω1 defined as:

ω1
def
= ω0 + π∗Ω.

The 2-form ω1 is a symplectic form and defines what is called a twisted symplectic
structure [3].

Let E : TM → R be given by

E(x, v) =
1

2
gx(v, v).

The magnetic flow of the pair (g, Ω) is the Hamiltonian flow of E with respect to ω1.
The magnetic flow models the motion of a particle of unit mass and charge under
the effect of a magnetic field, whose Lorentz force Y : TM → TM is the bundle map
defined by:

Ωx(u, v) = gx(Yx(u), v),

for all x ∈ M and all u and v in TxM . In other words, the curve

t 7→ (γ(t), γ̇(t)) ∈ TM

is an orbit of the Hamiltonian flow if and only if

(1)
Dγ̇

dt
= Yγ(γ̇),

where D stands for the covariant derivative of g. The magnetic flow of the pair (g, 0)
is the geodesic flow of the Riemannian metric g. A curve γ that satisfies (1) will be
called a magnetic geodesic.

Magnetic flows were first considered by V.I. Arnold in [2] and by D.V. Anosov
and Y.G. Sinai in [1]. Recent work on these flows has uncovered several remarkable
properties, see [6, 20, 21, 22, 26, 37, 38, 41, 42, 47, 48].

1.1. Critical values. Let Ω̃ be the lift of Ω to the universal cover M̃ of M . Suppose

that Ω̃ is an exact form, i.e., there exists a smooth 1-form Θ such that Ω̃ = dΘ. Let

us consider the Lagrangian on M̃ given by

L(x, v) =
1

2
|v|2x −Θx(v).

It is well known that the extremals of L, i.e., the solutions of the Euler-Lagrange
equations of L,

d

dt

∂L

∂v
(x, v) =

∂L

∂x
(x, v)

coincide with the lift to M̃ of the magnetic geodesics. The energy function

E(x, v) =
∂L

∂v
(x, v)v − L(x, v)

is invariant under the Euler-Lagrange flow. It is easily checked that this definition

of E coincides with the lift to M̃ of the function E defined above. Being able to
express the magnetic flow as a Lagrangian flow is an advantage since it allows us to
use variational techniques to derive results for magnetic flows.



ANOSOV MAGNETIC FLOWS 3

The magnetic flow shares with the geodesic flow the property that the level sets of
the function E are invariant. There is, however, a significant difference. The geodesic
flow is the same for all energy levels up to a uniform change of speed. For the magnetic
flow, on the other hand, the behaviour of the flow depends in an essential way on the
energy. In particular there is a critical value of the energy at which there is a decisive
change in the behaviour of the flow. This critical value has been extensively studied,
notably by A. Fathi [17], R. Mañé [29] and J. Mather [31, 32].

We now give Mañé’s definition of the critical value in our context. The action of

the Lagrangian L on an absolutely continuous curve γ : [a, b] → M̃ is defined by

AL(γ) =

∫ b

a

L(γ(t), γ̇(t)) dt.

The critical value is

c(L) := inf{k ∈ R : AL+k(γ) ≥ 0 for any absolutely continuous closed curve γ

defined on any closed interval [a, b] }.
Like any Lagrangian flow, the magnetic flow for TM̃ in the case when Ω̃ is exact

can be viewed as the Hamiltonian flow defined by the canonical symplectic form on

T ∗M̃ and a suitable Hamiltonian function H : T ∗M̃ → R; in this case

H(x, p) =
1

2
|p + Θx|2.

The Legendre transform L : TM̃ → T ∗M̃ defined by

L(x, v) =
∂L

∂v
(x, v)

carries orbits of the Lagrangian flow for L to orbits of the Hamiltonian flow defined
by H and the canonical symplectic form.

The critical value can also be defined in Hamiltonian terms. We now introduce the
critical value of the pair (g, Ω) as the real number:

c(g, Ω) = inf
u∈C∞(M̃,R)

sup
x∈M̃

H(x, dxu)

= inf
u∈C∞(M̃,R)

sup
x∈M̃

1

2
|dxu + Θx|2.

As u ranges over C∞(M̃, R) the form Θ− du ranges over all primitives of Ω̃, because

any two primitives differ by a closed 1-form which must be exact since M̃ is simply
connected.

We show in Appendix A that c(L) = c(g, Ω) whenever Ω̃ is exact, even if all

primitives of Ω̃ are unbounded. This generalizes Theorem A in [15], which gives
c(L) = c(g, Ω) when Ω itself is exact. Our proof closely follows the arguments of
Fathi and Maderna in [18]. Clearly c(g, Ω) ≥ 0 and we prove in Lemma 2.2 that if Ω
is non-trivial, then c(g, Ω) > 0.
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The Hamiltonian characterization of the critical value can also be expressed in
Lagrangian terms. Let us call two Lagrangians L and L equivalent if there is a

function u ∈ C∞(M̃, R) such that

L(x, v)− L(x, v) = dxu(v)

for all (x, v) ∈ TM̃ . If a Lagrangian is convex and superlinear, so are all Lagrangians
equivalent to it. Equivalent Lagrangians have the same action on closed curves and

define the same Euler-Lagrange equation and the same energy function on TM̃ . The
Hamiltonian definition of c(L) = c(g, Ω) means that if k > c(L) and we choose

k′ ∈ (c(L), k), we can then choose u ∈ C∞(M̃, R) such that

H(x, dxu) = max
v∈TxM̃

{dxu(v)− L(x, v)} ≤ k′

for all x ∈ M̃ , and hence
L(x, v)− dxu(v) + k′ ≥ 0

for all (x, v) ∈ TM̃ . The Lagrangian L defined by L(x, v) = L(x, v)− dxu(v) satisfies

L(x, v) + k ≥ k − k′ > 0

for all (x, v) ∈ TM̃ . Thus if k > c(L) we can find a Lagrangian L equivalent to L

such that L + k is positive and uniformly bounded away from 0 throughout TM̃ .
The critical value is closely related to an isoperimetric constant. For a smooth map

ϕ of the standard unit disk D2 into M̃ , let `(∂ϕ) be the length of ϕ(∂D2) and

a(ϕ) :=

∣∣∣∣
∫

D2

ϕ∗(Ω̃)

∣∣∣∣ .

We define our isoperimetric constant as

iso(g, Ω) = inf
ϕ

`(∂ϕ)

a(ϕ)
.

This constant is defined even when Ω̃ is not exact, but we show in Proposition 2.1
that it is always zero in that case. If M is an oriented surface and Ω is the area form
then iso(g, Ω) coincides with Cheeger’s isoperimetric constant introduced in [11].

Theorem A. If Ω̃ is exact, then√
2c(g, Ω) =

1

iso(g, Ω)
.

The proof is given in Section 2.
Using Theorem A and A. Katok’s methods from [24], we can give a lower bound

for the critical value when M is an orientable surface with Euler characteristic χ < 0.
Given a Riemmanian metric g, let ag be the total g-area of M . By the conformal
equivalence theorem there exists a unique positive scalar C∞ function ρ such that the
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metric ρ2g has constant negative curvature and aρ2g = ag. Let ρg be the conformality
coefficient given by

ρg :=

∫
M

ρ dµg,

where dµg is the normalized Riemmanian measure. By the Cauchy-Schwartz inequal-
ity, ρg ≤ 1 and equality holds if and only if g itself is a metric of constant negative
curvature. In Section 2 we show:

Theorem B. Let M be a closed orientable surface with Euler characteristic χ < 0.
For any pair (g, Ω) we have:

c(g, Ω) ≥
(∫

M
Ω

)2

−4πχ ρ2
g ag

.

1.2. Anosov magnetic flows. We are especially interested in the case when the
magnetic flow on the unit tangent bundle is Anosov. In the theory of Lagrangian
systems, an Anosov energy level is a regular level set of the energy on which the

Euler-Lagrange flow is Anosov. In our case SM̃ = E−1(1/2) and 1/2 is a regular
value of the energy function E.

Theorem C. Suppose that the restriction to the unit tangent bundle of the magnetic
flow of the pair (g, Ω) is Anosov. Then

c(g, Ω) < 1/2.

Moreover any closed bounded form of degree ≥ 2 on M̃ has a bounded primitive.

The first statement in the theorem can be seen as a “twisted version” of Theorem B
in [15]. The second statement means that the L∞-cohomology of M̃ vanishes in
degree ≥ 2. This extends the observation, made by M. Gromov in [23] (see [35,
Proposition 7.1] for a proof), that if M admits a metric of negative sectional curvature,

then every closed bounded form of degree ≥ 2 on M̃ has a bounded primitive. We
remark that we do not know of any example of a manifold with an Anosov magnetic
flow that does not admit a Riemannian metric of negative curvature.

Given a real number λ, we can consider the restriction to the unit tangent bundle
of the magnetic flow associated with the pair (g, λΩ) and we call this flow the λ-
magnetic flow and denote it by φλ : SM → SM . Similarly, a λ-magnetic geodesic
will be a unit speed magnetic geodesic of the pair (g, λΩ). The 0-magnetic flow is the
geodesic flow.

The structural stability of Anosov flows means that the set of λ for which the λ-
magnetic flow is Anosov is open. We call a component of that set an Anosov interval.
It is obvious that the λ-magnetic flow is Anosov if and only if the −λ-magnetic flow
is Anosov.
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ANOSOV FLOWS

λ=0

λ>0

Figure 1. Escape from and reentry into the set of Anosov magnetic flows.

It follows from Theorem C that if the λ-magnetic flow is Anosov, then

1/2 > c(g, λΩ) = λ2c(g, Ω) ≥ λ2c(g, Ω).

Unless Ω ≡ 0 we have c(g, Ω) > 0 and hence

λ2 <
1

2 c(g, Ω)

if the λ-magnetic flow is Anosov. In [41] G. and M. Paternain obtained a different
bound on the λ for which the λ-magnetic flow is Anosov. At the end of Section 2 we
use Theorem B to show that their bound is not as sharp as the above estimate.

The fact that the λ-magnetic flow must be non Anosov when λ is large enough
naturally raises the question:

Question. Is it true that if the λ0-magnetic flow is Anosov for some λ0 > 0, then the
λ-magnetic flow is Anosov for all λ ∈ [0, λ0]?

We answer this question in the negative (see Figure 1). In Section 7 we construct
a simple and explicit example with Anosov geodesic flow and more than one Anosov
interval. Our example is a closed oriented surface with negative Gaussian curvature
and Ω is the area form. We also exhibit a surface with non Anosov geodesic flow such
that the λ-magnetic flow is Anosov for some λ > 0.

In [20, 21, 48], N. Gouda, S. Grognet and M. Wojtkowski established geometric
conditions on the Riemannian metric and the form Ω to ensure that φλ is Anosov.
For closed oriented surfaces with negative curvature and for Ω the area form, these
conditions read:

K(x) + λ2 < 0,
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for all x ∈ M , where K is the Gaussian curvature of M . If we define the magnetic
curvature as Kλ

mag(x) := K(x)+λ2, then their result simply says that if the magnetic

curvature is negative then φλ is Anosov. Our first example shows that their condition
is not optimal since if Kλ0

mag < 0 implies Kλ
mag < 0 for all λ ∈ [0, λ0].

Recently, M. Bialy [4] has shown that if we take a Riemannian metric on the n-
torus which is conformally flat then for any non-trivial 2-form Ω the magnetic flow φ1

has conjugate points. In Bialy’s proof it is essential to assume that M is an n-torus.
Our second example shows how different the situation is for surfaces of higher genus.
The surface in that example has conjugate points because there is a closed geodesic
along which the curvature is positive. But the Anosov λ-magnetic flow does not have
conjugate points [36].

1.3. Topological entropy. Finally we discuss how topological entropy of the λ-
magnetic flow changes with λ. Let htop(λ) denote the topological entropy of φλ

t on

SM . Given a point x ∈ M̃ and T > 0 set

Bmag(x, λ, T ) = {y ∈ M̃ : there is a λ-magnetic geodesic

from x to y with length < T}.
We call Bmag(x, λ, T ) a magnetic ball with center x and radius T . Our next theorem
shows that we can define an average volume entropy by considering the exponential
growth rate of the average volume of magnetic balls and that this quantity enjoys
similar properties to those obtained by A. Manning in [27] and A. Freire and R.
Mañé in [19] for geodesic flows. Let VolBmag(x, λ, T ) be the Riemannian volume of
Bmag(x, λ, T ); we shall see at the beginning of Section 4 that x 7→ Vol Bmag(x, λ, T ) is
invariant under covering transformations and hence it defines a function on M , which
we still denote by Vol Bmag(x, λ, T ).

Theorem D. Let hv(λ) be the exponential growth rate of the average volume of a
magnetic ball, i.e.

hv(λ) := lim sup
T→∞

1

T
log

∫
M

Vol Bmag(x, λ, T ) dx.

Then

htop(λ) ≥ hv(λ).

If the λ-magnetic flow is Anosov, then

htop(λ) = hv(λ) = lim
T→∞

1

T
log

∫
M

Vol Bmag(x, λ, T ) dx.

A particular case of our theorem was obtained by S. Grognet in [22].
Theorem D applies to any magnetic flow; it is not even necessary to assume that

the lift Ω̃ of the magnetic field to the universal cover has a primitive. In the case

when Ω̃ does have a primitive Θ, the lifts to M̃ of the λ-magnetic geodesics (which
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we still call λ-magnetic geodesics) are solutions to the Euler-Lagrange equation for
the Lagrangian

Lλ(x, v) = |v|2x/2− λΘx(v).

They are extremals for the action of Lλ + 1/2. A λ-magnetic geodesic γ between x
and y is called minimizing if

ALλ+1/2(γ) ≤ ALλ+1/2(γ)

for any other curve γ joining x to y (γ is defined on arbitrary time intervals). We
show in Lemma 2.3 that the action of Lλ + 1/2 along a curve which does not have
unit speed will decrease if the curve is reparametrized to have unit speed. Thus a
minimizer must have speed one.

A theorem due to Mañé [12, 29] ensures that any two distinct points in M̃ are
joined by a minimizing λ-magnetic geodesic, provided

1/2 > c(Lλ) = c(g, λΩ) = λ2 c(g, Ω).

In this case, i.e. when 0 ≤ λ < 1/
√

2c(g, Ω), we can define the minimal ball

Bmin(x, λ, T ) = {y ∈ M̃ : there is a minimizing λ-magnetic geodesic

from x to y with length < T}.
It is obvious that

Bmin(x, λ, T ) ⊂ Bmag(x, λ, T ).

In the case when the λ-magnetic flow is Anosov on SM , which entails 0 ≤ λ <

1/
√

2c(g, Ω) by Theorem C, there is only one λ-magnetic geodesic from a point of M̃
to another. It must perforce be the minimizing λ-magnetic geodesic guaranteed by
Mañé’s theorem, and hence

Bmin(x, λ, T ) = Bmag(x, λ, T )

when the λ-magnetic flow is Anosov on SM .
We show in Section 4 that VolBmin(x, λ, T ) is a nonincreasing function on the

interval 0 ≤ λ < 1/
√

2c(g, Ω) for any given x and T . It follows from this and
Theorem D that htop(λ) is nonincreasing on the set of λ such that the λ-magnetic
flow is Anosov on SM .

In [41, 42] G. and M. Paternain showed that if we start with an Anosov geodesic
flow and Ω 6≡ 0 then, the function λ 7→ htop(λ) is strictly decreasing in the Anosov
interval containing zero. But their arguments in [42] in fact show more. They prove
that if the λ-magnetic flow is Anosov, then h′top(λ) 6= 0 and for this property 0 does
not need to belong to the Anosov interval that contains λ. Combining this result
with the above discussion gives

Theorem E. Suppose that 0 ≤ λ1 < λ2 and that the λi-magnetic flow is Anosov for
i = 1, 2. Then

htop(λ1) > htop(λ2).
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Our earlier examples show that there can be more than one Anosov interval in
[0, 1/

√
2 c(g, Ω)). This raises the following natural question.

Question. Can the topological entropy go up in between two Anosov intervals?

A further refinement of our examples shows that this is indeed possible.

Acknowledgements: The first author thanks the Universidad de la República in
Uruguay for hospitality while this work was started and the Centro de Investigación
in Matemáticas in Mexico while this work was finished.

2. Proof of Theorems A and B

We first prove the following result that we mentioned in the introduction.

Proposition 2.1. Suppose that Ω̃ is not exact. Then iso(g, Ω) = 0.

Proof. Since Ω̃ is not exact, there exists a cycle c ∈ H2(M̃, Z) such that∫
c

Ω̃ 6= 0.

Since M̃ is simply connected, the Hurewicz isomorphism theorem ensures that π2(M)

is isomorphic to H2(M̃, Z). Hence there exists a smooth map f : S2 → M̃ such that∫
S2

f ∗(Ω̃) 6= 0.

Endow S2 with the canonical metric and fix a point x ∈ S2. Consider a disk Uε in
S2 which is given by the complement of an open geodesic disk with center at x and
radius ε. As ε → 0 we have ∫

Uε

f ∗(Ω̃) →
∫

S2

f ∗(Ω̃) 6= 0,

`(f |∂Uε) → 0,

and hence iso(g, Ω) = 0.
¤

In the rest of this section we assume that Ω̃ is exact.

Lemma 2.2. c(g, Ω) > 0 if Ω is non-trivial.

Proof. Suppose that c(g, Ω) = 0. Since the image of γ is a compact set, there exists,

for any ε > 0, a smooth function u : M̃ → R such that |dxu + Θx| < ε for all x in the
image of γ. Hence ∣∣∣∣

∫
γ

Θ

∣∣∣∣ =

∣∣∣∣
∫

γ

du + Θ

∣∣∣∣ ≤ ε `,
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where ` is the length of γ. Since this holds for all ε,∫
γ

Θ = 0.

Since γ was arbitrary, this implies that Θ is exact and thus Ω ≡ 0.
¤

2.1. Proof of Theorem A. If c(g, Ω) = 0, then Ω is trivial by the previous lemma
and we have iso(g, Ω) = ∞. Thus we can assume that c(g, Ω) > 0.

Suppose 0 < k < c(g, Ω). Then there exists an absolutely continuous closed curve

α : [0, T ] → M̃ such that AL+k(α) < 0.
Since α([0, T ]) is a compact set, by Theorem 3.5.2 in [17] there exists a constant

δ0 > 0 such that if x, y ∈ α([0, T ]) and δ ∈ [0, δ0] satisfy d(x, y) ≤ δ, then there
exists a magnetic geodesic defined in [0, δ] that connects x to y and that minimizes
the action among all absolutely continuous curves from the fixed interval [0, δ] into

M̃ that connect x to y. Therefore by dividing the interval [0, T ] into sufficiently small

subintervals we can find a curve γ : [0, T ] → M̃ which is a piecewise magnetic geodesic
and such that

AL+k(γ) ≤ AL+k(α) < 0.

Lemma 2.3. Let σ : [0, `] → M̃ be an absolutely continuous curve parametrized by

arc length. The reparametrization of σ that minimizes AL+k has constant speed
√

2k.

Proof. This is an immediate consequence of Lemma 3-3.2 in [14]. Alternatively, sup-
pose the reparametrization has speed v(t) at σ(t). Then the action of L+k along the
reparametrization is∫ `

0

v(t)2

2
+ k −Θ(v(t)σ̇(t))

dt

v(t)
=

∫ `

0

v(t)

2
+

k

v(t)
dt−

∫
σ

Θ.

Since the last integral is independent of the reparametrization and the function

v 7→ v

2
+

k

v

has a unique minimum at v =
√

2k, the action is minimized when v(t) ≡ √2k. ¤

If necessary, we now reparametrize γ so that it has constant speed
√

2k. Since this
reparametrization can only decrease the L+k action, γ now has energy k and negative
L+k action. The curve γ is smooth except for a possible finite number of corners. By
rounding off these corners if necessary we can obtain a curve, which we still denote

by γ, with negative L + k action that defines a smooth map of S1 into M̃ and has
energy k. It is clear from the proof of the lemma that the new parametrization gives
us

AL+k(γ) =
√

2k`−
∫

γ

Θ,
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where ` is the length of γ. Since AL+k(γ) < 0, we obtain

√
2k <

∫
γ
Θ

`
,

and since the left hand side is independent of the parametrization we can assume that

γ is a smooth map from the unit circle in the plane into M̃ .

On the other hand, since M̃ is simply connected γ can be extended to a smooth

map ϕ : D2 → M̃ such that ϕ|∂D2 = γ. For any such extension ϕ we have∫
D2

ϕ∗(Ω̃) =

∫
γ

Θ.

We obtain:

√
2k <

∫
γ
Θ

`
=

a(ϕ)

`(∂ϕ)
≤ 1

iso(g, Ω)
.

Since k < c(g, Ω) was arbitrary, this yields:

√
2 c(g, Ω) ≤ 1

iso(g, Ω)
.

To prove that this inequality is in fact an equality we argue by contradiction.
Suppose that there exists r > 0 such that

√
2 c(g, Ω) < r <

1

iso(g, Ω)
.

This means that we can find a smooth regular closed curve γ : S1 → M̃ with length
` such that

r <

∫
γ
Θ

`
,

which implies:

r `−
∫

γ

Θ < 0.

If we reparametrize γ to a curve γ̃ : [0, T ] → M̃ so that γ̃ has energy k := r2/2 we
obtain:

2kT −
∫

γ

Θ < 0,

which by the Lagrangian definition of the critical value means that r2/2 = k < c(g, Ω).
This contradiction completes the proof of the theorem.

¤
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2.2. Proof of Theorem B. Let g0 = ρ2g be the metric of constant negative cur-

vature such that ag0 = ag. Lift g and g0 to metrics g̃ and g̃0 in M̃ . Let C(R) be a
geodesic circle of radius R with respect to the metric g̃0 and let D(R) be the disk
bounded by C(R). Let Ω0 be the area form of g0. Write:

Ω = f Ω0, where f is smooth function on M,

`0(R) := g̃0-length of C(R),

`(R) := g̃-length of C(R),

a0(R) := g̃0-area of D(R),

a(R) :=

∫
D(R)

Ω̃ =

∫
D(R)

f̃ Ω̃0.

In the disk D(R) we introduce coordinates (r, s), where r is the g̃0-arc length pa-
rameter along radial geodesics and s is the g̃0-arc length parameter along concentric
circles. Let k be the square root of minus the curvature of g0. We have:

(2) `0(R) =
2π

k
sinh kR =

da0

dR
(R),

(3) a0(R) =
2π

k2
(cosh(kR)− 1),

(4) `(R) =

∫ `0(R)

0

ρ̃−1(R, s) ds,

(5) a(R) =

∫ R

0

∫ `0(r)

0

f̃(r, s) dsdr.

The key observation is that the projection to M of a circle in M̃ converges to a
horocycle when the radius goes to infinity, and the projection to the unit sphere bundle
of (M, g0) of the normalized arc length measure weakly converges to an invariant
measure for the horocycle flow. But the only invariant measure for the horocycle flow
is the Liouville measure. Hence from (4) we obtain:

(6) lim
R→+∞

`(R)

`0(R)
= lim

R→+∞
1

`0(R)

∫ `0(R)

0

ρ̃−1(R, s) ds =

∫
M

ρ−1 dµ0 = ρg.

Similarly, we obtain:

(7) F := lim
R→+∞

1

`0(R)

∫ `0(R)

0

f̃(R, s) ds =

∫
M

f dµ0 =
1

ag

∫
M

Ω.

The last equality implies that given ε > 0 there exists m > 0 such that for all R ≥ m
we have

(F + ε)`0(R) ≥
∫ `0(R)

0

f̃(R, s) ds ≥ (F − ε)`0(R),
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and hence from (2) and (5) we obtain:

lim sup
R→+∞

a(R)

`0(R)
≥ (F − ε) lim sup

R→+∞

1

`0(R)

∫ R

m

`0(r) dr

= (F − ε) lim sup
R→+∞

1

`0(R)
(a0(R)− a0(m)).

Now observe that from (2) and (3) we get:

(8) lim
R→+∞

a0(R)

`0(R)
= 1/k,

and hence

(9) lim sup
R→+∞

a(R)

`0(R)
≥ (F − ε)/k.

It follows from (6), (8) and (9) that:

(10) lim sup
R→+∞

a(R)

`(R)
= lim sup

R→+∞

a(R)

`0(R)

`0(R)

`(R)
≥ F

k ρg

.

Combining Theorem A with (10) yields:

c(g, Ω) ≥ F 2

2k2 ρ2
g

=
ag F 2

−4πχ ρ2
g

.

This inequality and equation (7) complete the proof of Theorem B.
¤

We conclude this section with the following remarks. Let us normalize the metric
g so that ρ2g has curvature −1. Then −2πχ = ag and hence Theorem B says that:

c(g, Ω) ≥
(∫

M
Ω

)2

2 ρ2
g a2

g

≥
(∫

M
Ω

)2

2 a2
g

.

Assume further that the cohomology class of Ω is the same up to sign as that of the
area form Ωg or equivalently that∫

M

Ω = ±
∫

M

Ωg.

Then the last inequality implies that

c(g, Ω) ≥ 1/2,

and g has constant curvature −1 if equality holds. It follows that the functional

g 7→ c(g, Ωg),

over the space of metrics g with ag = −2πχ achieves its minimum 1/2 if and only if
g has constant curvature −1.
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In [41, Theorem 1.3] Paternain and Paternain proved that if the magnetic flow of
(g, λΩ) is Anosov, then there is an upper bound for λ2 in terms of the curvature
tensor of g and the form Ω. When M is a surface and Ω ≡ Ωg this bound reads:

λ2 <
− ∫

M
K(x) dx

ag

=
−2πχ

Ag

,

where K is the Gaussian curvature. On the other hand our Theorems B and C give:

λ2 <
1

2 c(g, Ωg)
≤ −2πχ ρ2

g

Ag

≤ −2πχ

ag

,

It follows that the bound in Theorem C is always sharper than Paternain and Pater-
nain’s bound unless g has constant negative curvature in which case they coincide.

3. Proof of Theorem C

We recall the following key fact proved by G. Paternain and M. Paternain in [40, 36].

Proposition 3.1. Suppose that the magnetic flow φ of the pair (g, Ω) is Anosov.
Then the weak stable foliation Ws of φ is transverse to the fibres of the fibration
π : SM → M .

Let M̃ be the universal covering of M with covering projection p : M̃ → M . Let W̃s

be the lifted foliation which is in turn a weak stable foliation for the lifted magnetic
flow. The next observation appears also in [15, 43].

Lemma 3.2. For any (x, v) ∈ SM̃ , W̃s(x, v) intersects each fibre of the fibration

π̃ : SM̃ → M̃ at just one point.

Proof. By Proposition 3.1 the foliation W̃s is transverse to the fibration π̃ : SM̃ → M̃ .
Since the fibres are spheres (which are compact) a result of Ehresman (cf. [10]) implies

that for every (x, v) ∈ SM̃ the map

π̃|W̃s(x,v) : W̃s(x, v) → M̃,

is a covering map. Since M̃ is simply connected, π̃|W̃s(x,v) is in fact a diffeomorphism

and W̃s(x, v) is simply connected. Consequently, W̃s(x, v) intersects each fibre of the

fibration π̃ : SM̃ → M̃ at just one point.
¤

The lemma implies that each leaf W̃s(x, v) is diffeomorphic to M̃ and hence M̃ is

diffeomorphic to Rn. This implies that Ω̃ is an exact form, so we can write Ω̃ = dΘ
for some smooth 1-form Θ. As in the introduction, let us consider the Lagrangian on

M̃ given by

L(x, v) =
1

2
|v|2x −Θx(v).
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The extremals of L, i.e., the solutions of the Euler-Lagrange equations of L coincide

with the lift to M̃ of the magnetic geodesics. The Hamiltonian associated with L is

H(x, p) =
1

2
|p + Θx|2.

The Legendre transform L : TM̃ → T ∗M̃ takes orbits of L to orbits of the Hamilton-

ian flow of H with respect to the canonical symplectic form of T ∗M̃ .

Lemma 3.3. There exists ε > 0 such that for any k ∈ (1/2− ε, 1/2 + ε), there exists

a smooth function u : M̃ → R such that for all x ∈ M̃ we have

H(x, dxu) = k.

Proof. The Legendre transform L : TM̃ → T ∗M̃ associated to L carries SM̃ diffeo-
morphically onto the level set {H = 1/2}. Using L we can push forward the weak

stable foliation W̃s to obtain the weak stable foliation of the Hamiltonian flow of H
with respect to the canonical symplectic form of T ∗M̃ . By the last lemma, the leaves

of this foliation, which we still denote by W̃s, project diffeomorphically onto M̃ ; and

hence, for any (x, p) with H(x, p) = 1/2, W̃s(x, p) is the graph of a 1-form ω. On the
other hand it is well known that the weak stable leaves are Lagrangian submanifolds
and hence ω must be closed. Since any closed 1-form in the universal covering must

be exact, it follows that each leaf W̃s(x, p) is the graph of an exact 1-form. This

means that there exists a smooth function u : M̃ → R such that H(x, dxu) = 1/2.
Finally by structural stability, if the magnetic flow is Anosov, there exists ε > 0 such
that the restriction of the Hamiltonian flow of E with respect to ω1 to the energy
level E−1(k) is Anosov for any k ∈ (1/2− ε, 1/2 + ε). The previous argument can be

reproduced to obtain a smooth function u : M̃ → R such that H(x, dxu) = k for all

x ∈ M̃ and all k ∈ (1/2− ε, 1/2 + ε) as desired.
¤

By Lemma 3.3 there exist ε > 0 and a smooth function u : M̃ → R such that dxu

is in the level set H = 1/2− ε/2 for all x ∈ M̃ . That is, for all x ∈ M̃ ,

|dxu + Θx|2 = 1− ε.

Recall that

c(g, Ω) = inf
u∈C∞(M̃,R)

sup
x∈M̃

H(x, dxu)

= inf
u∈C∞(M̃,R)

sup
x∈M̃

1

2
|dxu + Θx|2.

It follows that

c(g, Ω) ≤ 1/2− ε/2 < 1/2,

which proves the first claim in Theorem C.
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Given (x, v) ∈ M̃ , let Es(x, v) ⊂ T(x,v)SM̃ be the weak stable subspace at (x, v) and
let Ess(x, v) be the strong stable subspace at (x, v). Let X(x, v) be the vector field
of the magnetic flow at (x, v). The subspace Es(x, v) is the direct sum of Ess(x, v)
and the 1-dimensional subspace spanned by X(x, v). Since M is compact and Es

is transverse to the vertical subbundle V := ker dπ̃ (cf. Proposition 3.1), the angle
between Es(x, v) and V (x, v) is uniformly bounded away from zero. Hence there

exists a positive constant R1 such that for all (x, v) ∈ SM̃ and all ξ ∈ Es(x, v) we
have

(11) |d(x,v)π̃(ξ)|M̃ ≤ |ξ|SM ≤ R1 |d(x,v)π̃(ξ)|M̃ ,

where we consider in SM̃ the Sasaki metric induced by the metric in M̃ .

Given w ∈ TxM̃ we can write in a unique way w = z+u where z ∈ d(x,v)π̃(Ess(x, v))
and u is a vector collinear with v. Since the angle between Ess(x, v) and the 1-
dimensional subspace spanned by X(x, v) is uniformly bounded away from zero there
exists another positive constant R2 such that

(12) |z| ≤ R2 |w|.
Now fix a weak stable leaf W in SM̃ . The restriction of π̃ to W gives a diffeomor-

phism between W and M̃ by Lemma 3.2. Using W we can define a smooth vector

field Z on M̃ by setting Z(x) := v = d(x,v)π̃(X(x, v)) where v is the unique unit
vector such that (x, v) ∈ W . Let τs be the flow of Z. Clearly

τs(x) = π̃ ◦ φs(x, v).

Lemma 3.4. There exist positive constants C and κ such that for all x ∈ M̃ and all
z ∈ d(x,v)π̃(Ess(x, v)) we have

|dxτs(z)| ≤ C e−κs|z|,
for all s ≥ 0.

Proof. Since the magnetic flow is Anosov, there exist positive constants C1 and κ

such that for all (x, v) ∈ SM̃ and all ξ ∈ Ess(x, v) we have

|d(x,v)φs(ξ)|SM̃ ≤ C1 e−κs|ξ|SM̃ ,

for all s ≥ 0. Combining this inequality with (11) and the definition of τs we obtain

|dxτs(z)|M̃ ≤ C1 R1 e−κs|z|M ,

for all s ≥ 0. Set C := C1 R1.
¤

Let us complete the proof of Theorem C. We follow Pansu in Proposition 7.1 of
[35]. Let τs be the flow of the vector field Z that we introduced above.

Let α be a closed bounded k-form on M̃ with k ≥ 2. To solve dβ = α we use
Poincaré’s formula

βT = −
∫ T

0

τ ∗s (iZα) ds.
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Since α is closed, Cartan’s formula LZ = iZd + diZ and the fact that d is linear and
commutes with pullbacks give us

α− τ ∗T α = −
∫ T

0

d

ds
τ ∗s α ds = −

∫ T

0

τ ∗s LZα ds = −
∫ T

0

τ ∗s diZα ds = dβT .

Take x ∈ M̃ and w1, . . . , wk−1 ∈ TxM̃ . Write

wi = zi + ui,

where zi ∈ d(x,v)π̃(Ess(x, v)) and ui is collinear with v := Z(x) for i = 1, . . . , k − 1.
Then

[τ ∗s (iZα)]x (w1, . . . , wk−1) = ατs(x)(dxτs(w1), . . . , dxτs(wk−1), dxτs(Z(x))

= ατs(x)(dxτs(z1), . . . , dxτs(zk−1), Z(τs(x))).

Hence using Lemma 3.4 and (12) we obtain

| [τ ∗s (iZα)]x (w1, . . . , wk−1) | ≤ ‖α‖∞ |dxτs(z1) ∧ · · · ∧ dxτs(zk−1)|
≤ ‖α‖∞Ck−1 e−κ(k−1)s|z1 ∧ · · · ∧ zk−1|
≤ ‖α‖∞Ck−1 Rk−1

2 e−κ(k−1)s|w1 ∧ · · · ∧ wk−1|.
Hence, the form βT converges as T → +∞ to a form β such that

|βx(w1, . . . , wk−1)| ≤ ‖α‖∞Ck−1 Rk−1
2

(k − 1)κ
|w1 ∧ · · · ∧ wk−1|,

and hence β is a bounded form. Also τ ∗T α tends to zero so dβ = α.
¤

4. Monotonicity of the volume of minimal balls

We suppose in this section that Ω̃ has a bounded primitive Θ. We begin by showing

that x 7→ Vol Bmin(x, λ, T ) is invariant under covering transformations. Let ϕ : M̃ →
M̃ be a covering transformation. Since ϕ∗Θ−Θ is closed and M̃ is simply connected,
there exists a smooth function f such that ϕ∗Θ−Θ = df . Hence

Lλ ◦ dϕ = Lλ + df,

and therefore if γ : [0, T ] → M̃ is a curve connecting x and y we have

ALλ+1/2(ϕγ) = ALλ+1/2(γ) + f(y)− f(x).

Hence ϕ takes minimizing λ-magnetic geodesics to minimizing λ-magnetic geodesics
and λ-magnetic geodesics to λ-magnetic geodesics. It follows immediately that we
have ϕBmin(x, λ, T ) = Bmin(ϕ(x), λ, T ) and ϕBmag(x, λ, T ) = Bmag(ϕ(x), λ, T ).

Lemma 4.1. Suppose 0 ≤ λ1 ≤ λ2 <
√

2c(g, Ω). Let T (λi) be the length of a
minimizing λi-magnetic geodesic γi from x to y for i = 1, 2. Then

T (λ2) ≥ T (λ1).
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Proof. Using the minimization property we get

ALλ1
+1/2(γ1) ≤ ALλ1

+1/2(γ2),

ALλ2
+1/2(γ2) ≤ ALλ2

+1/2(γ1).

These are equivalent to

T (λ1)− λ1

∫
γ1

Θ ≤ T (λ2)− λ1

∫
γ2

Θ,

T (λ2)− λ2

∫
γ2

Θ ≤ T (λ1)− λ2

∫
γ1

Θ.

Hence

(λ2 − λ1)

(∫
γ1

Θ−
∫

γ2

Θ

)
≤ 0.

It follows that

T (λ1) ≤ T (λ2) + λ1

(∫
γ1

Θ−
∫

γ2

Θ

)
≤ T (λ2).

¤
Proposition 4.2. If 0 ≤ λ1 ≤ λ2 < 1/

√
2c(g, Ω), then

Bmin(x, λ2, T ) ⊆ Bmin(x, λ1, T ).

Proof. Take y ∈ Bmin(x, λ2, T ). By definition, there exists a minimizing λ2-magnetic
geodesic from x to y with length T (λ2) ≤ T . A theorem due to Mañé [29, 12] ensures
that there exists a minimizing λ1-magnetic geodesic from x to y with length T (λ1).
By Lemma 4.1 T (λ1) ≤ T (λ2) ≤ T , and hence y ∈ Bmin(x, λ1, T ).

¤
Remark 4.3. It might seem more natural to consider the balls

{y ∈ M̃ : Φ1/2(x, y) < T},
where Φ1/2 is the action potential for the Lagrangian Lλ as defined in Appendix A. But
it is not clear how to relate the growth rate of volume of these balls to the entropy of
the magnetic flow because there is no simple relationship beween time and the action
potential. Peyerimhoff and Siburg [44] have shown that the ratio between the metric
dλ

mag(x, y) = Φ1/2(x, y) + Φ1/2(y, x), which is defined by the action potential when

λ < 1/
√

2c(g, Ω), and the Riemannian distance approaches 1 as the distance from
x to y approaches 0. An immediate consequence is that dλ

mag and the Riemannian
metric define the same inner metric.

Since it is the action rather than the length that is minimized along a mini-
mizing magnetic geodesic, it is possible that Bmin(x, λ, T ) is strictly contained in
Bmag(x, λ, T ). Note that we have Proposition 4.2 only for minimal balls, because
Lemma 4.1 applies to minimizing magnetic geodesics.

In the case of the geodesic flow Manning [27] showed that

lim
T→∞

1

T
log VolB(x, 0, T ) = hv(0)
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for all x ∈ M̃ . The proof is based on the fact that if d is the distance between x and
y, then

B(x, 0, T ) ⊂ B(y, 0, T + d),

which in turn comes from the triangle inequality. Since the triangle inequality applies
only to geodesic triangles, it is not clear that Manning’s result extends to the case
when λ 6= 0.

5. Proof of Theorem D

To simplify the notation we omit the dependence on λ from the notation.
We use the following theorem, which is a variant of a theorem due to C. Niche

[34]. A proof is sketched in Appendix B for the sake of completeness. The theorem
generalizes Mañé’s formula for geodesic flows [30]. Given θ = (x, v) ∈ SM , let X(θ)
be the vector field of the magnetic flow of the pair (g, Ω) and let

α(θ) = ker dθπ ⊕ R X(θ),

where π : SM → M is the canonical projection and dθ denotes the derivative at θ.
Let htop be the topological entropy of the magnetic flow.

Theorem 5.1. Let (g, Ω) be a C∞ pair. Then we always have:

htop ≥ lim sup
T→∞

1

T
log

∫ T

0

dt

∫
SM

∣∣det dθ(π ◦ φt)|α(θ)

∣∣ dθ.

Suppose in addition that the magnetic flow φ admits a continuous invariant distribu-
tion of codimension one transversal to X. Then

htop = lim
T→∞

1

T
log

∫ T

0

dt

∫
SM

∣∣det dθ(π ◦ φt)|α(θ)

∣∣ dθ.

We remark that in this theorem it is not important which metrics we choose in M
and in SM to measure the absolute value of the determinant. Also note that when
the magnetic flow is Anosov, the sum of the strong stable and strong unstable bundles
provides a continuous invariant distribution of codimension one transversal to X.

Given x ∈ M̃ , we define the exponential map

expx : TxM̃ → M̃

of the magnetic flow as follows. If v ∈ TxM̃ − {0}, then expx(v) = π̃(φt(x, u)) where
t = |v| and u = v/|v|, and expx(0) = x. This map is smooth [13].

Proposition 5.2. If the magnetic flow is Anosov on SM , then the exponential map

expx is a diffeomorphism for all x ∈ M̃ .

Proof. As we already mentioned in the introduction, the results in [40, 36] ensure

that there are no conjugate points. Since SM̃ is a regular level set for the energy,
Theorem F of [13] tells us that expx is a diffeomorphism provided

inf
(x,v)∈SM̃

Θcan(dL(X(x, v))) > 0,
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where Θcan is the canonical 1-form on T ∗M̃ and X is the vector field on TM̃ that
generates the magnetic flow, which is Euler-Lagrange flow for the Lagrangian

L(x, v) =
1

2
|v|2x −Θx(v).

Since the projection of X(x, v) to M̃ is v, we see that

Θcan(dL(X(x, v))) = L(x, v)(dπT ∗M̃(dL(X(x, v))))

=
∂L

∂v
(x, v)v

= L(x, v) + E(x, v)

= L(x, v) + 1/2

on SM̃ = E−1(1/2). Since the magnetic flow is Anosov on SM , it follows from
Theorem C that 1/2 > c(g, Ω). As we explained in the introduction, there must be

a smooth function u : TM̃ → R such that the Lagrangian L(x, v) = L(x, v)− dxu(v)
satisfies

inf
(x,v)∈TM̃

L(x, v) + 1/2 > 0.

The Lagrangians L and L have the same Euler-Lagrange equation, the same energy
function and the same minimal trajectories, so we may replace L by L.

¤

We now show:

Lemma 5.3. For a suitably chosen Riemannian metric on SM and for all T > 0 we
have ∫

M

Vol Bmag(x, T ) dx ≤
∫ T

0

dt

∫
SM

∣∣det dθ(π ◦ φt)|α(θ)

∣∣ dθ

and equality holds if the magnetic flow is Anosov.

Proof. Take x ∈ M̃ . Let B(0, T ) be the ball of radius T in TxM̃ . By the definition of
Bmag(x, T ) it is clear that

Bmag(x, T ) = π̃
(
φ[0,T )(Sx)

)
= expx(B(0, T )),

where Sx is the unit sphere in TxM̃ . Endow SM with a Riemannian metric g0 defined
as follows:

(1) on the subspace S(θ) given by those ξ ∈ TθSM for which 〈dθπ(ξ), v〉 = 0, we
let g0 coincide with the Sasaki metric of SM ;

(2) S(θ) is orthogonal to X(θ) for all θ;
(3) X(θ) has norm one.

Let ψ : [0, T )× Sx → M̃ be the map

ψ(t, θ) = π̃(φt(θ)).
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We endow [0, T )× Sx with the product of the canonical metrics on its factors. Since
π̃

(
φ[0,T )(Sx)

)
= ψ([0, T )× Sx) we have

Vol π̃
(
φ[0,T )(Sx)

) ≤ ∫ T

0

dt

∫
Sx

∣∣det d(t,θ)ψ
∣∣ dθ,

with equality if the magnetic flow is Anosov since in that case expx is a diffeomorphism
by Proposition 5.2. Now observe that using g on M and g0 on SM and their lifts g̃

and g̃0 to M̃ and SM̃ we have:∣∣det d(t,θ)ψ
∣∣ =

∣∣det dθ(π̃ ◦ φt)|TθSx⊕R X(θ)

∣∣ ,

hence

Vol π̃
(
φ[0,T )(Sx)

) ≤ ∫ T

0

dt

∫
Sx

∣∣det dθ(π̃ ◦ φt)|TθSx⊕R X(θ)

∣∣ dθ.

Using that the maps p : (M̃, g̃) → (M, g) and dp : (SM̃, g̃0) → (SM, g0) are local
isometries and Fubini’s theorem the lemma follows.

¤
Let us complete the proof of Theorem D. By the previous lemma and Theorem 5.1

we have:

hv = lim sup
T→∞

1

T
log

∫
M

Vol Bmag(x, T ) dx

≤ lim sup
T→∞

1

T
log

∫ T

0

dt

∫
SM

∣∣det dθ(π ◦ φt)|α(θ)

∣∣ dθ

≤ htop.

Suppose now that the magnetic flow is Anosov. Then by the previous lemma and
Theorem 5.1 we have:

htop = lim inf
T→∞

1

T
log

∫ T

0

dt

∫
SM

∣∣det dθ(π ◦ φt)|α(θ)

∣∣ dθ

= lim inf
T→∞

1

T
log

∫
M

Vol Bmag(x, T ) dx

≤ hv.

¤
We conclude this section with a discussion about the relation of hv with π1(M). Let

(g, Ω) be a pair with Ω̃ = dΘ and Θ a bounded 1-form. Suppose that 1/2 > c(g, Ω).

Proposition 5.4. Suppose that 1/2 > c(g, Ω). Then hv is positive if and only if
π1(M) has exponential growth.

Proof. Since 1/2 > c(g, Ω), the discussion in the introduction tells us that given a

sufficiently small κ > 0 there exists a smooth function u : M̃ → R such that

L + 1/2− du > κ.
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Replacing Θ by Θ + du gives another bounded form and a new Lagrangian with the
same orbits as L and the same energy function. The balls Bmag(x, T ) are the same
as before, so we might as well assume that L satisfies:

L + 1/2 > κ.

Let d be the distance function on M̃ induced by the Riemannian metric and let Bgeo

denote a ball in this metric. Obviously given y ∈ Bmag(x, T ) we have d(x, y) ≤ T and
hence Bmag(x, T ) ⊆ Bgeo(x, T ).

On the other hand, suppose that y ∈ Bgeo(x, T ) and let γ : [0, L] → M̃ be a d-

minimizing geodesic connecting x to y with length L ≤ T . Let γm : [0, R] → M̃ be
a minimizing magnetic geodesic connecting x to y; such a minimizing geodesic exists
by Mañé’s theorem since 1/2 is bigger than the critical value. Hence:

κR < AL+1/2(γm) ≤ AL+1/2(γ) ≤ KL ≤ KT,

where

K := max
(x,v)∈SM̃

(L(x, v) + 1/2) .

It follows that Bgeo(x, T ) ⊆ Bmin(x,KT/κ) ⊆ Bmag(x,KT/κ). This implies

Vol Bmag(x, T ) ≤ Vol Bgeo(x, T ) ≤ Vol Bmag(x,KT/κ),

and therefore

hv ≤ lim sup
T→∞

1

T
log

∫
M

Vol Bgeo(x, T ) dx ≤ K

κ
hv.

But

lim sup
T→∞

1

T
log

∫
M

Vol Bgeo(x, T ) dx

is the volume entropy of the Riemannian metric and it is well known that this quantity
is positive if and only if π1(M) grows exponentially.

¤

Corollary 5.5. Suppose that the 1-parameter family of magnetic flows φλ exits the
set of Anosov magnetic flows at λ = λc and htop(λc) = 0. Then

λ2
c =

1

2 c(g, Ω)
.

Proof. This follows from Theorems C, D, Proposition 5.4 and the fact that Anosov
flows have positive topological entropy. ¤

6. Magnetic flows on surfaces

Let M be an oriented surface endowed with a Riemannian metric g. Given (x, v) ∈
TM , let iv be the unique vector in TxM such that {v, iv} is a positively oriented
orthonormal basis of TxM . The area form Ωg is given by

Ωg(u, v) = g(iu, v).
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Any closed 2-form Ω can be written as Ω = f Ωg for some smooth function f : M → R.
The Lorentz force Y associated with Ω is given by

Yx(v) = f(x) iv,

where π : TM → M is the canonical projection. It follows from equation (1) that
t 7→ γ(t) is a λ-magnetic geodesic if and only if:

Dγ̇

dt
= λ f(γ) iγ̇.

Note that if f ≡ 1, then γ is a λ-magnetic geodesic if and only if γ has constant
geodesic curvature λ.

Given (x, v) ∈ SM and ξ ∈ T(x,v)TM , let

Jξ(t) = d(x,v)(π ◦ φλ
t )(ξ).

We call Jξ a λ-magnetic Jacobi field with initial condition ξ. It was shown in [41]
that Jξ satisfies the following Jacobi equation:

(13) J̈ξ + R(γ̇, Jξ)γ̇ − λ[Y (J̇ξ) + (∇Jξ
Y )(γ̇)] = 0,

where γ(t) = π ◦φλ
t (x, v) and R is the curvature tensor of g with sign convention used

by Milnor in [33].
Let us express Jξ as follows:

Jξ(t) = x(t)γ̇(t) + y(t)iγ̇(t),

and suppose in addition that ξ ∈ T(x,v)SM , which implies

(14) gγ(J̇ξ, γ̇) = 0.

A straightforward computation using (13) and (14) shows that x and y must satisfy
the scalar equations:

ẋ = λ f(γ) y(15)

ÿ +
[
K(γ)− λ 〈∇f(γ), iγ̇〉+ λ2 f 2(γ)

]
y = 0.(16)

We call the last equation the scalar Jacobi equation of γ and we define the magnetic
curvature as

Kλ
mag(x, v) = K(x)− λ 〈∇f(x), i v〉+ λ2 f 2(x).

We say that equation (16) has an exponential dichotomy if there exist constants
C, µ > 0, and solutions ys, yu of the scalar Jacobi equation (16) along each λ-magnetic
geoedesic such that

|ys(t)| ≤ C e−µt, for all t ≥ 0,

|yu(t)| ≤ C eµt, for all t ≤ 0.
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It is easily seen that the magnetic flow is Anosov if such an exponential dichotomy
holds. Since f is uniformly bounded, we can associate to each pair of solutions ys, yu

as above, a pair of solutions xs, xu of equation (15) by setting

xs(t) = −
∫ ∞

t

λf(γ(τ))ys(τ) dτ,

xu(t) =

∫ t

−∞
λf(γ(τ))yu(τ) dτ.

Then xs(t) and xu(−t) converge exponentially fast to 0 as t →∞. Let Js denote the
unique Jacobi field determined by the initial conditions

(xs(0), ys(0), f(π(x, v))ys(0), ẏs(0))

and let Ju denote the unique Jacobi field determined by the initial conditions

(xu(0), yu(0), f(π(x, v))yu(0), ẏu(0)).

Then
Ess(v) = R(Js(0), J̇s(0)),

Esu(v) = R(Ju(0), J̇u(0))

are clearly the strong stable and unstable spaces.
The existence of an exponential dichotomy can be verified using the cone method

pioneered by Alexeev and Lewowicz and refined by Wojtkowski. In our context it
involves studying the magnetic Riccati equation

(17) u̇mag(t) + u2
mag(t) + Kλ

mag(γ̇(t)) = 0

along a λ-magnetic geodesic γ(t).

Lemma 6.1. Suppose there are constants T > 0 and H > 1 such that 1/H ≤
umag(T ) ≤ H whenever umag(t) is a solution of (17) with umag(0) ≥ 0. Then equation
(16) has an exponential dichotomy and the λ-magnetic geodesic flow is Anosov.

Proof. Consider the quadratic form Q(y, ẏ) = yẏ. The hypotheses of the lemma imply
that there is an η > 0 such that Q(y(T ), ẏ(T )) > η[y(0)2 + ẏ(0)2] whenever y(t) is
a solution of the scalar Jacobi equation (16) along a λ-magnetic geodesic γ(t) with
Q(y(0), ẏ(0)) ≥ 0. Wojtkowski [46] showed that this condition in turn implies that
there is an η′ > 0 such that

Q(y(T ), ẏ(T ))−Q(y(0), ẏ(0)) > η′[y(0)2 + ẏ(0)2]

for any solution y(t) of (16) along any λ-magnetic geodesic γ(t). It is well known that
this last condition implies the existence of an exponential dichotomy. ¤

The magnetic Riccati equation has the same geometric significance as the Riccati
equation for the geodesic flow. Suppose that (x(t), y(t)) is the solution of the magnetic
Jacobi equations (15) and (16) along a λ-magnetic geodesic γ0 that is defined by a
1-parameter family γs(t) of λ-magnetic geodesics. Then umag(t) = ẏ(t)/y(t) is a
solution of the magnetic Riccati equation (17) and umag(t) is the geodesic curvature
at γ0(t) of the curve through γ0(t) orthogonal to the family γs.
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6.1. Rotationally symmetric surfaces. Suppose now that M = R× S1 is a rota-
tionally symmetric surface and Ω = Ωg, i.e. f ≡ 1. If (s, ϕ) are the obvious coordinates
on M , then the Riemannian metric of M in these coordinates has the expression:

g = ds2 + r(s)2dϕ2,

where r : R → (0,∞) is a smooth function. Note that r satisfies the scalar Jacobi
equation

(18) r′′(s) + K(s)r(s) = 0,

where K(s) is the Gaussian curvature on {s} × S1. The λ-magnetic curvature on
{s} × S1 is Kλ

mag(s) = K(s) + λ2.
The function u(s) = r′(s)/r(s) satisfies the Riccati equation

(19) u′(s) + u2(s) + K(s) = 0.

The geometric significance of u(s) is that the geodesic curvature of the parallel of
latitude {s} × S1 is ±u(s) depending on the direction in which we traverse it.

We orient M so that {∂/∂s, ∂/∂ϕ} is a positively oriented basis of M and the area
form Ωg is given by

Ωg(s, ϕ = r(s) ds ∧ dϕ.

We saw earlier that the λ-magnetic geodesics defined by Ωg have constant geodesic
curvature λ. This means that the parallel {s} × S1 can be the trace of a λ-magnetic
geodesic only if λ = ±u(s). More precisely we have:

Lemma 6.2. The parallel t 7→ (s, at) is a unit speed λ-magnetic geodesic if and only if

|a| = r(s)−1 and u(s) = ±λ,

where the positive sign holds if a > 0 and the negative sign holds if a < 0. If t 7→ (s, at)
is a λ-magnetic geodesic, then Kλ

mag(s) = −u′(s).

Before proving this lemma, we introduce the Clairaut integral for the magnetic
flow. Define

R(s) :=

∫ s

0

r(σ) dσ.

Proposition 6.3 (Clairaut integral). If t 7→ (s(t), ϕ(t)) is a λ-magnetic geodesic,
then

t 7→ r2(s(t))ϕ̇(t)− λR(s(t))

is constant.

The proposition is an easy consequence of the following:

Lemma 6.4. A curve t 7→ (s(t), ϕ(t)) is a λ-magnetic geodesic if and only if

s̈(t) = r(s(t))ϕ̇(t) [r′(s(t))ϕ̇(t)− λ] and
d

dt

(
r2(s(t))ϕ̇(t)− λR(s(t))

)
= 0,

where dot indicates derivative with respect to t and prime indicates derivative with
respect to the s-parameter.
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Proof. Note that R ◦ s dϕ is a primitive of Ω, since d(R ◦ s dϕ) = r ◦ s ds ∧ dϕ = Ω.
This means that the λ-magnetic geodesics are extremals for the Lagrangian

L(x, v) =
1

2
|v|2x −R(s(x)) dϕ(v).

In terms of our local coordinates,

L(s, ϕ, ṡ, ϕ̇) =
1

2

(
ṡ2 + r(s)2ϕ̇2

)− λR(s) ϕ̇.

The two equations in the lemma are just the Euler-Lagrange equations for L,

d

dt

(
∂L

∂ṡ

)
− ∂L

∂s
= 0 and

d

dt

(
∂L

∂ϕ̇

)
− ∂L

∂ϕ
= 0.

¤
Proof of Lemma 6.2. The parallel has unit speed if and only if r2(s) a2 = 1, which is
equivalent to |a| = r(s)−1. Using Lemma 6.4, we see that the parallel is a λ-magnetic
geodesic if and only if r′(s0) a = λ. When λ = ±u(s), we have

Kλ
mag(s) = K(s) + λ2 = −u′(s)− u2(s) + u2(s) = −u′(s)

by (19). ¤
The functions

r+,λ(s) = r(s)− λR(s) and r−,λ(s) = −r(s)− λR(s)

govern the behaviour of the λ-magnetic geodesics in much the same way that the
function r(s) governs the behaviour of the geodesics. If r−,λ(s) < c < r+,λ(s), there
will be two unit vectors at each point of {s} × S1 tangent to λ-magnetic geodesics
along which the Clairaut integral is equal to c; these vectors will make equal angles
with the positive direction along the parallel. The following is an easy consequence
of Lemma 6.2:

Lemma 6.5. The parallel t 7→ (s, r(s)−1t) is a unit speed λ-magnetic geodesic if
and only if r′+,λ(s) = 0. If r′+,λ(s) = 0, the λ-magnetic curvature along {s} × S1 is
−r′′+,λ(s)/r(s).

Proof. Since r′+,λ(s) = r′(s)− λr(s) = r(s)[u(s)− λ], we have r′+,λ(s) = 0 if and only
if u(s) = λ. Differentiating again gives

−r′′+,λ(s)

r(s)
= −r′′(s)

r(s)
+ λ

r′(s)
r(s)

= K(s) + λ2 = Kλ
mag(s)

when λ = u(s). ¤
In particular, if r′+,λ(s) = 0 and r′′+,λ(s) > 0, then t 7→ (s, r(s)−1t) is a closed

λ-magnetic geodesic along which the λ-magnetic curvature is negative; the corre-
sponding periodic orbit of the λ-magnetic flow is hyperbolic. Suppose now that we
have s′ < s′′ and c with the following properties, which are indicated in Figure 2:

(1) r+,λ(s
′) = r+,λ(s

′′) = c;
(2) r−,λ(s) < c < r+,λ(s) for s′ < s < s′′;
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Figure 2. Properties of a homoclinic interval.

(3) r′+,λ(s
′) = 0 and r′+,λ(s

′′) < 0;
(4) r′′+,λ(s

′) > 0.

There will be two unit vectors at each point of (s′, s′′) × S1 that are tangent to
λ-magnetic geodesics with Clairaut integral c. These geodesics will be tangent to
the parallel {s′′}× S1 and both forward and backward asymptotic to the λ-magnetic
geodesic t 7→ (s′, r(s′)−1t). This situation is analogous to what happens for the
geodesic flow. The hyperbolic closed orbit of the λ-magnetic flow corresponding to
t 7→ (s′, r(s′)−1t) has a homoclinic connection.

We say that [s′, s′′] is a homoclinic interval for the λ-magnetic flow on M if prop-
erties 1–4 hold.

7. Examples with Anosov intervals that do not contain 0

Let M be an oriented surface and let Ωg be the area form of the Riemannian
metric g. At the level of the differential of the magnetic flow φλ, increasing the
intensity λ of the field amounts to increasing the curvature like term Kλ

mag = K + λ2

in the corresponding Jacobi equation. This effect is obviously monotonic as λ increases
and works to make the magnetic flow non Anosov. It can be overcome, however, by
a second effect: the geodesic curvature of the λ-magnetic geodesics increases as λ
increases and consequently the location of the λ-magnetic geodesics changes.

This possibility can be realized in the following way. Consider a rotationally sym-
metric surface as shown in Figure 3.

The Gaussian curvature of the surface is everywhere negative. It is less strongly
negative in the annulus indicated in the figure and, as the intensity λ increases, Kλ

mag

becomes positive in this annulus, but stays negative elsewhere. The figure shows how
the shape of a λ-magnetic geodesic changes as λ increases and the geodesic curvature
of the λ-magnetic geodesics increases. When λ = λ1, the magnetic curvature in the
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λ=0

λ=λ1

λ=λ2

Figure 3. Magnetic geodesics move as intensity increases.

annulus has become positive and one of the parallels of latitude in the annulus is
a closed λ-magnetic geodesic along which the λ-magnetic curvature is constant and
positive. This ensures that the magnetic flow is not Anosov. When λ = λ2, the
magnetic curvature in this annulus has become more positive, but the λ2-magnetic
geodesics have stronger geodesic curvature than the parallels of latitude in the annu-
lus, and so the λ2-magnetic geodesics only stay in the annulus for a short time. The
negative magnetic curvature outside the annulus is then able to overcome the effects
of the positive magnetic curvature and the magnetic flow is again Anosov.

It is also possible to start with positive Gaussian curvature everywhere along a
closed geodesic and make the magnetic flow become Anosov as the magnetic intensity
increases. Of course in both examples the magnetic flow will eventually be non Anosov
if the magnetic intensity is increased enough.

We now describe these examples in detail. Given a smooth function u : R → R
and a constant r0 > 0, we define the function r : R → R+ to be the solution of
r′(s) = u(s)r(s) with r(0) = r0. In other words,

r(s) = r0 exp

(∫ s

0

u(t) dt

)
.

Let M = R×S1 be the rotationally symmetric surface determined by r. As we saw in
Section 6.1, M has Gaussian curvature K(s) = −u′(s)−u2(s) on the parallel {s}×S1

and this parallel has geodesic curvature ±u(s) depending on the direction in which
it is traversed.
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We choose u(s) = tanh(s) except for a C0 small perturbation in a very short
interval [s1, s2] ⊂ [−1/8, 1/8]. We require that |u(s)| < tanh(1/4) and K(s) =
−u′(s)−u2(s) < 1/4 when s1 ≤ s ≤ s2. These properties ensure that the λ-magnetic
geodesic flow is Anosov for λ = 1/2. In order to prove this, we check that the
hypothesis of Lemma 6.1 holds. It suffices to show that there is a T > 0 such
that every 1/2-magnetic geodesic segment with length T has the property that the
magnetic curvature is at most −3/4 except for a sufficiently short subset where the
magnetic curvature is at most 1/2.

When λ = 1/2, we have Kλ
mag = K + 1/4. Hence the λ-magnetic curvature

is at most −3/4 outside A = [s1, s2] × S1 and is at most 1/2 in A. Let B =
[−1/4, 1/4]×S1. Since the geodesic curvatures of the parallels in B lie in the interval
[− tanh(1/4), tanh(1/4)] ⊂ [−1/4, 1/4] and the λ-magnetic geodesics have geodesic
curvature 1/2 when λ = 1/2, we see that a 1/2-magnetic geodesic segment in B
can be tangent to the s-direction at most once and cannot be asymptotic to the s-
direction. A maximal 1/2-magnetic geodesic segment in B must begin and end with
a segment that crosses one of the two components of B \ A and can contain at most
two connected subsegments that lie in A.

Any curve that crosses a component of B \ A has length at least 1/8. We now
choose T = 1/8. Let tA be the length of the longest magnetic geodesic segment in
A. A 1/2-magnetic geodesic with length 1/8 must have magnetic curvature at most
−3/4 everywhere except for a subset with length at most 2tA in which the curvature
is at most 1/2. It follows easily from the next lemma, with λ = 1/2 and δ = 1/4, that
we can make tA as small as we wish by making s2 − s1 small enough. Thus T = 1/8
has the desired property described above.

Lemma 7.1. There is a constant C > 0 with the following property. Suppose that
for some λ and δ > 0 the geodesic curvature of the parallel of latitude {s} × S1 lies
in the interval [−λ + δ, λ − δ] for s1 ≤ s ≤ s2. Let γ be a connected λ-magnetic
geodesic segment that lies in the region [s2− s1]×S1. Then the length of γ is at most

C
√

(s2 − s1)/δ.

Proof. Let ψ(t) be the angle between γ̇(t) and the unit vector field U := ∂/∂s. It will

suffice to show that |ψ̇(t)| > δ when γ(t) lies in the region s1 < s < s2. But

|ψ̇(t)| ≥
∣∣∣∣∣∣∣Dγ̇

dt

∣∣∣− ∣∣∣DU

dt

∣∣∣∣∣∣∣ ,

and |Dγ̇
dt
| = λ because λ is the geodesic curvature of γ. Since the vector field U is

tangent to the meridian geodesics, ∇UU = 0 and

DU

dt
= ∇sin ψ(t)V (t)U,

where V (t) is a unit vector orthogonal to U(t) and therefore tangent to the parallel
through γ(t). The latter means that |∇V (t)U | is the absolute value of the geodesic
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curvature of the parallel through γ(t). Hence∣∣∣∣∣∣∣Dγ̇

dt

∣∣∣− ∣∣∣DU

dt

∣∣∣∣∣∣∣ ≥ λ− | sin ψ(t)|(λ− δ) ≥ δ

in the region [s1, s2]× S1.
¤

We now choose the interval [s1, s2] and the behaviour of the function u in this
interval.

For the first example, in which the geodesic flow is Anosov and the magnetic flow
becomes non Anosov and switches back to Anosov as the intensity increases, we choose
[s1, s2] to be a small neighbourhood of 1/16 and arrange that u′(1/16) < 0 but that
−u′(s) < u2(s) for all s ∈ [s1, s2]. Since K(s) = −u′(s)−u2(s) by the Riccati equation
(19), we have K(s) < 0 for all s ∈ [s1, s2]. Outside of [s1, s2] we have u(s) = tanh(s)
and (19) gives K(s) = −1. When λ = u(1/16) the parallel t 7→ (1/16, r(1/16)−1t) is
a magnetic geodesic along which the magnetic curvature is identically

K(1/16) + λ2 = −u′(1/16)− u2(1/16) + λ2 = −u′(1/16) > 0.

The existence of a closed magnetic geodesic along which the magnetic curvature is
constant and positive means that the u(1/16)-magnetic geodesic flow is not Anosov.

For the second example, in which the geodesic flow is non Anosov and the magnetic
flow is Anosov for some positive intensity, we choose [s1, s2] to be a small neighbour-
hood of 0 and arrange that u(0) = 0 and u′(0) < 0. This ensures that {0} × S1 is a
closed geodesic and K(0) = −u′(0)− u2(0) > 0, so the geodesic flow is not Anosov.

In both examples the argument given earlier in this section shows that the 1/2-
magnetic flow is Anosov.

It is possible to compactify the examples. We use the same construction as in [7]
and [8]. Let us cut off an end of M along a parallel of latitude and then slit the end
along a meridian geodesic. We obtain a fan shaped subset of the Poincaré disc. This
subset is bounded by two geodesic rays η′ and η′′ and a curve corresponding to the
parallel of latitude. For any large enough n, it is possible to draw a sequence of 4n+1
hyperbolic geodesic segments

d′n, c
′
n, d′n−1, . . . , d

′
1, c

′
1, d0, c

′′
1, d

′′
1, . . . , c

′′
n, d′′n

such that

• d′nand d′′n are orthogonal to η′ and η′′ respectively,
• adjacent geodesics in the sequence are orthogonal,
• c′i and c′′i have the same length for 1 ≤ i ≤ n.

By identifying η′ with η′′ and c′i with c′′i , 1 ≤ i ≤ n, we obtain a hyperbolic metric on
the sphere with n+2 punctures. One of the holes is bounded by a copy of the parallel
of latitude where we cut off the end and the others by closed geodesics d0, . . . , dn.
Now we can adjoin handles with curvature −1 along d0, . . . , dn.

It is easy to modify the examples so that there is an arbitrarily long finite sequence
λ1 < λ2 < · · · < λn such that the λ-magnetic flow is Anosov when λ = λk for even k
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Figure 4. Graph of G.

and is non Anosov when λ = λk for odd k. However we do not know how to arrange
for an infinite number of changes from Anosov to non Anosov and back again.

8. Increasing topological entropy between Anosov intervals

The compactified version of the first example of the previous section can be modified
so that the topological entropy for the u(1/16)-magnetic flow, which is not Anosov,
is greater than the topological entropy for the geodesic flow.

We again choose [s1, s2] to be a small neighbourhood of 1/16. Now we also choose
an even smaller neighbourhood of 1/16, [s3, s4] ⊂ (s1, s2). We want to create a
homoclinic interval [s′, s′′] as defined at the end of Section 6 inside the interval (s3, s4).
To this end we set λ1 = tanh(1/16) and consider a function w(s) such that w(s) =
tanh(s) for s /∈ [s1, s2], w(s) = λ1 for s ∈ [s3, s4], and w is monotonic in the intervals
[s1, s3] and [s2, s4]. We also ensure that −w′(s)− w2(s) < 0 for all s.

We also choose a function G(s) whose graph has the form shown in Figure 4 and
let g(s) = G′(s). The function G is constant and positive on (−∞, s3] and is constant
and negative on [s4,∞). Inside (s3, s4) are two points s′ < s′′ where G vanishes; we
have G > 0 on (s3, s

′)∪(s′, s′′) and G < 0 on (s′′, s4). Also G′′(s′) > 0 and G′(s′′) < 0.
Both G(s) and g(s) are small for all s. In particular, we ensure that G(s) ≤ r0 for all
s, where r0 is the radius for the surface at s = 0 that was chosen at the beginning of
Section 7.

We choose R(s) to be the solution of the differential equation

(20) R′′(s)− w(s)R′(s) = g(s)

with R(0) = 0 and R′(0) = r0. We set r(s) = R′(s) and consider the surface of
revolution defined by the function r(s). In terms of r, equation (20) becomes

(21) r′(s)− w(s)r(s) = g(s).
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Inside [s3, s4] we have r′(s)− λ1R
′(s) = g(s), which gives r+,λ1(s) := r(s)− λ1R(s) =

G(s)+c for some constant c. We see immediately from the graph of G that [s′, s′′] sat-
isfies all of the properties of a homoclinic interval, except for the condition r−,λ1(s) < c
for s′ < s < s′′. But it is clear from (21) that r(s) ≥ r0 for s ≥ 0 and we
have r+,λ1(s) ≤ c + r0 when s3 ≤ s ≤ s4 because G(s) ≤ r0. Hence r−,λ1(s) =
r+,λ1(s)− 2r(s) ≤ c− r0 when s3 ≤ s ≤ s4. Thus [s′, s′′] satisfies all of the conditions
to be a homoclinic interval. As explained in Section 6, the orbit of the λ1-magnetic
flow corresponding to the parallel γ0(t) = (s′, r(s′)−1t) is a hyperbolic closed orbit
with a homoclinic connection.

Both the geodesic flow and the 1/2-magnetic flow are Anosov. Recall that the
curvature is K(s) = −u′(s) − us(s) where u(s) = r′(s)/r(s). Outside [s1, s2] equa-
tion (21) is r′(s) − tanh(s)r(s) = 0 and hence K(s) = −1 for s /∈ [s1, s2], as in the
examples of the previous section. The argument used in the previous section applies
to show that the 1/2-magnetic flow is Anosov. The geodesic flow will be Anosov if
we have K(s) < 0 for s ∈ [s1, s2] also. If we had g(s) = 0 for all s, equation (21)
would give us u = w and K(s) would be everywhere negative since we chose w so
that −w′(s)− w2(s) < 0 for all s. As long as we choose g close enough to 0, we will
have K(s) < 0 for all s ∈ [s1, s2].

Now we make a small change in the magnetic field in order to break the homoclinic
connection for the λ1-magnetic flow and create a transverse homoclinic point. Let γsu

be a λ1-magnetic geodesic that is both positively and negatively asymptotic to the
hyperbolic closed geodesic γ0(t) = (s′, r(s′)−1t). Parametrize γsu so that it does not
have a self intersection at γsu(0). Then we can choose a function f on M with the
following properties:

(1) f = 1 outside a small neighbourhood of γsu(0) that does not intersect γ0;
(2) f = 1 at all points on γsu;
(3) ∇f 6= 0 at γsu(0);
(4) ∇f points to the same side of γsu at all points on γsu where ∇f 6= 0.

The new magnetic field is fΩg. Both γ0 and γsu are λ1-magnetic geodesics for the
new field because f = 1 along them. The stable and unstable manifolds for γ0 will
have a transverse intersection at γ̇su(0). The argument was given by Donnay [16] in
the context of geodesic flows and used in [9]. Let u− and u+ be the solutions to the
magnetic Riccati equation along γsu that give the geodesic curvatures of the curves
orthogonal to the λ1-geodesics that respectively forwards and backwards asymptotic
to γ0. Before the perturbation we have u−old ≡ u+

old. Let t1 be the time when γsu enters
and t2 the time when γsu leaves the support of the perturbation to the magnetic field.
Then u−new(t) = u−old(t) for t ≥ t2 and u+

new(t) = u+
old(t) for t ≤ t1. All that one needs

to arrange is that u+
new(t2) 6= u−new(t2) = u+

old(t2). It is clear from the magnetic Jacobi
equation (16) that this will be the case if f is close to 1 and property 4 above holds.

By Smale’s theorem, the existence of a transverse homoclinic orbit means that
there is a horseshoe in the λ1-magnetic geodesic flow. Let h be the entropy of this
horseshoe.
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We now compactify the example in such a way that the geodesic flow has topological
entropy less than h and it is still true that the geodesic and 1/2-magnetic flows
are Anosov. Let u(s) = r′(s)/r(s) where r(s) is the function chosen above. Then
u(s) = tanh(s) if |s| ≥ 1. We choose a large constant R. We change u(s) for |s| > 2R
in such a way that K(s) = −u′(s) − u2(s) < 0 for all s and u(s) ≡ h/2 if |s| ≥ 3R.
We also change the function f in the region where |s| > R in such a way that f is
constant on the parallels of latitude and f decreases slowly from 1 to a very small
positive value f0 as |s| increases from R to 2R and f ≡ f0 when |s| ≥ 2R. If we make
R large enough, f0 small enough, and |∇f | small enough, both the geodesic flow and
the 1/2-magnetic flow will still be Anosov.

We now use the procedure explained in the previous section to compactify the ends
(−∞,−3R]×S1 and [3R,∞)×S1 by adding handles with constant curvature −h2/4
to obtain a compact Riemannian surface with everywhere negative curvature. The
geodesic flow of this surface is Anosov. If R is large enough, most of the surface will
have curvature −h2/4 and the average value of the square root of minus the curvature
will be less than 3h/4 and, by a result of Manning [28], the topological entropy of the
geodesic flow will be less than 3h/4. It follows from Theorem E in the introduction
that the λ-magnetic flow also has topological entropy less than 3h/4 for all λ ≥ 0
such that the λ-magnetic flow is Anosov. In particular the 1/2-magnetic flow has
topological entropy less than 3h/4.

9. Appendix A

Let (g, Ω) be a pair with Ω̃ = dΘ with Θ a smooth 1-form not necessarily bounded.
Recall that

L(x, v) =
1

2
|v|2x −Θx(v),

and

H(x, p) =
1

2
|p + Θx|2.

We also recall the two definitions of critical value:

c(L) := inf{k ∈ R : AL+k(γ) ≥ 0 for any absolutely continuous closed curve γ}
and

c(g, Ω) := inf
u∈C∞(M̃,R)

max
x∈M̃

H(x, dxu).

Proposition 9.1. c(L) = c(g, Ω).

Proof. We begin by showing that c(L) ≤ c(g, Ω). This is obvious if c(g, Ω) = ∞. It

therefore suffices to show that c(L) ≤ k if there exists a smooth function u : M̃ → R
such that H(x, dxu) ≤ k < ∞ for all x ∈ M̃ . Observe that

H(x, p) = max
v∈TxM̃

{p(v)− L(x, v)}.

Since H(x, dxu) ≤ k for all x ∈ M̃ it follows that for all (x, v) ∈ TM̃ ,

dxu(v)− L(x, v) ≤ k.
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Therefore, along any absolutely continuous closed curve γ : [0, T ] → M̃ , we have

AL+k(γ) =

∫ T

0

(L(γ, γ̇) + k) dt =

∫ T

0

(L(γ, γ̇) + k − dγu(γ̇)) dt ≥ 0,

and thus k ≥ c(L) as desired.
We now turn to proving the reverse inequality c(L) ≥ c(g, Ω). Since this is obvious

if c(L) = ∞, we may assume that c(L) is finite. For each k ∈ R we define the action

potential Φk : M̃ × M̃ → R by

Φk(x, y) = inf{AL+k(γ) : γ is an absolutely continuous curve x to y}.
It is obvious from its definition that

Φk(x1, x3) ≤ Φk(x1, x2) + Φk(x2, x3)

for all x1, x2, x3 ∈ M̃ . When k ≥ c(L), we have Φk(x, y) > −∞ for all x and y and
the function Φk is locally Lipschitz. This is proved in the case of a Lagrangian on a
closed manifold in [29, 12, 14]. The only difference in our situation is that we cannot
claim that Φk is uniformly Lipschitz since we are not assuming that Θ is bounded.

Lemma 9.2. Suppose that c(L) is finite and k ≥ c(L). If u : M̃ → R is differentiable

at x ∈ M̃ and satisfies
u(y)− u(x) ≤ Φk(x, y)

for all y in a neighbourhood of x, then H(x, dxu) ≤ k.

Proof. Let γ(t) be a differentiable curve on M̃ with (γ(0), γ̇(0)) = (x, v). Then

lim sup
t→0+

u(γ(t))− u(x)

t
≤ lim sup

t→0+

Φk(γ(0), γ(t))

t
= lim sup

t→0+

1

t

∫ t

0

[
L(γ, γ̇) + k

]
ds.

Since the integral on the right is a differentiable function of t, we obtain

dxu(v) ≤ L(x, v) + k.

Since v was an arbitrary vector in TxM̃ , it follows that

H(x, dxu) = max
v∈TxM̃

{dxu(v)− L(x, v)} ≤ k.

¤
We now complete the proof that c(L) ≥ c(g, Ω). Fix a point x0 ∈ M̃ and define a

function u : M̃ → R by u(x) = Φc(L)(x0, x). By the previous lemma, H(x, dxu) ≤ c(L)

at every point x ∈ M̃ where u(x) is differentiable. Since u is locally Lipschitz, u is
differentiable almost everywhere by Rademacher’s theorem. We now need to show

that for any k > c(L) there is a smooth function û : M̃ → R that approximates

u well enough so that H(x, dxû) ≤ k for all x ∈ M̃ . The necessary approximation
argument is presented in detail in Section 6 of [18]. The first step is to choose a

locally finite Ui covering of M̃ by relatively compact open sets that are the domains
of charts. Next one uses a convolution argument to create a smooth approximation
ûi to ui on each Ui. The convexity of the Hamiltonian H(x, p) in the second variable
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and Jensen’s inequality allow one to show that for any given εi > 0 we can choose ûi

so that H(x, dxûi) ≤ c(L) + εi for all x ∈ Ui. Then these local approximations are
combined using a partition of unity subordinate to the cover to form û. The convexity
of H(x, p) as a function of p is used again in showing that if the εi are chosen small

enough, then one can obtain H(x, dxû) ≤ k for all x ∈ M̃ .
¤

10. Appendix B

In this appendix we sketch a proof of the following theorem which is a variation of
a theorem in [34]. This theorem was used for the proof of Theorem D and generalizes
Mañé’s formula for geodesic flows [30].

Given θ = (x, v) ∈ SM , let X(θ) be the vector field of the magnetic flow φt of the
pair (g, Ω) and let

α(θ) = ker dθπ ⊕ R X(θ),

where π : SM → M is the canonical projection. Let htop be the topological entropy
of the magnetic flow.

Theorem 10.1. Let (g, Ω) be a C∞ pair. Then we always have:

htop ≥ lim sup
T→∞

1

T
log

∫ T

0

dt

∫
SM

∣∣det dθ(π ◦ φt)|α(θ)

∣∣ dθ.

Suppose in addition that the magnetic flow φ admits a continuous invariant distribu-
tion of codimension one transversal to X. Then

htop = lim
T→∞

1

T
log

∫ T

0

dt

∫
SM

∣∣det dθ(π ◦ φt)|α(θ)

∣∣ dθ.

A crucial ingredient in the proof of Theorem 10.1 is Kozlovski’s formula which we
now recall. Given a linear map L : E → F between finite dimensional vector spaces
with inner products, we define its expansion ex(L) by

ex(L) = max
S
| det(L|S)|,

where the maximum is taken over all subspaces S ⊂ E.

Theorem 10.2 ([25]). Let X be a closed Riemannian manifold and let φt : X → X
be a flow of class C∞. Then

htop = lim
T→∞

1

T
log

∫
X

ex(dxφT ) dx,

where htop is the topological entropy of the flow φ.

The predecesor of this formula is Przytycki’s inequality [45]. Kozlovski’s proof in
[25] for the equality case is based on Yomdin’s work [49].
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The first inequality in Theorem 10.1 is an immediate consequence of Kozlovski’s
formula since |det dθπ|E| ≤ 1 for any subspace E ⊂ TθSM and hence

lim sup
T→∞

1

T
log

∫ T

0

dt

∫
SM

∣∣det dθ(π ◦ φt)|α(θ)

∣∣ dθ

≤ lim sup
T→∞

1

T
log

∫ T

0

dt

∫
SM

∣∣det dθφt|α(θ)

∣∣ dθ

≤ max

{
0, lim sup

T→∞

1

T
log

∫
SM

∣∣det dθφT |α(θ)

∣∣ dθ

}
≤ htop.

To prove the second statement in the theorem we certainly need more work.
Let X be a closed Riemannian manifold and let φt : X → X be a flow without

singularities of class C∞ which preserves a volume form dx. Let τ : S → X be a
symplectic vector bundle over X and let φ∗t : S → S be a symplectic cocycle over φ.
By this we mean:

(1) τ ◦ φ∗t = φt ◦ τ ;
(2) for all x ∈ X and t ∈ R, φ∗t (x) := φ∗t |S(x) : S(x) → S(φt(x)) is a symplectic

linear isomorphism;
(3) for all s and t in R we have φ∗t+s(x) = φ∗s(φt(x)) ◦ φ∗t (x).

Let Λ → X be the Grassmannian bundle of Lagrangian subspaces, i.e., for each
x ∈ X, the fibre Λ(x) consists of all Lagrangian subspaces of S(x). Suppose that the
symplectic vector bundle S is endowed with a smooth Lagrangian distribution α∗.
This means that we have a smooth map x 7→ α∗(x) which is a section of the bundle
Λ → X.

The following definitions are taken from [5]. Given a Lagrangian subspace λ ∈ Λ,
we identify TλΛ with the space S(λ) of symmetric bilinear forms in the following way.
Every curve λ(t) in Λ with λ(0) = λ can be written as λ(t) = Φtλ where Φt is a path
of linear symplectic transformations with Φ0 = Id. Then the symmetric bilinear form
corresponding to the vector λ′(0) is given by

(ξ, η) → ω ( ξ,
d

dt

∣∣∣∣
t=0

Φtη ) ,

for all ξ, η ∈ λ. One easily checks that this correspondence is well defined.
Given a pair (φ, φ∗) where φ∗ is a symplectic cocycle over φ, let us consider the

tangent vector

lx
def
=

d

dt

∣∣∣∣
t=0

φ∗t (α(φ−tx)) ∈ Tα(x)Λ.

We shall say that the pair (φ, φ∗) is α∗-optical if the bilinear form in S(α(x)) that
corresponds to lx by the identification described above is positive definite for all
x ∈ X.

Now choose an almost complex structure J : S → S which is compatible with the
symplectic structure ω, i.e., for each x ∈ X, ωx(·, Jx·) defines a Riemannian metric
on the bundle S. We shall measure the expansion of φ∗ with respect to this metric.
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The next proposition is proved exactly as Proposition 4.18 in [39]. Our framework
has been set up precisely for the proof to go through.

Proposition 10.3. Let (φ, φ∗) be an α∗-optical pair. Then there exists a constant
D > 0 such that for all t we have

D

∫
X

ex(φ∗t (x)) dx ≤
∫

X

∣∣det φ∗t (x)|α∗(x)

∣∣ dx.

Now let τ : S → SM be the symplectic vector bundle given by

S(θ) = TθSM/R X(θ),

with the symolectic structure induced by ω1 = ω0 + π∗Ω. The derivative dθφt factors
naturally to the quotient spaces and induces a symplectic cocycle φ∗ over S. If we
take the projection of α(θ) to S(θ) we obtain a smooth Lagrangian distribution that
we denote by α∗ and it is easy to check that the pair (φ, φ∗) is α∗-optical [5].

We shall also need the following proposition which is proved exactly as Lemma 4.7
in [39].

Proposition 10.4. There exists a constant C > 0 such that for all T > 0 we have:∫ T+1

0

dt

∫
SM

∣∣det dθ(π ◦ φt)|α(θ)

∣∣ dθ ≥ C

∫ T

0

dt

∫
SM

∣∣det dθφt|α(θ)

∣∣ dθ.

We now show:

Lemma 10.5. Suppose that φ admits a continuous invariant distribution of codimen-
sion one transversal to X. Then there exist positive constants A and B such that for
all θ ∈ SM and all t ∈ R we have:

ex(dθφt) ≤ A ex(φ∗t (θ))∣∣det φ∗t (θ)|α∗(θ)
∣∣ ≤ B

∣∣det dθφt|α(θ)

∣∣ .

Proof. Let θ 7→ T (θ) be the continuous invariant distribution of codimension one
transversal to X. Define a continuous Riemannian metric gT on SM as follows:

(1) on the subspace T (θ), we let gT coincide with the Sasaki metric of SM ,
(2) T (θ) is gT -orthogonal to X(θ) for all θ,
(3) X(θ) has gT -norm 1.

Let exg denote expansion measured with respect to a Riemannian metric g. We clearly
have

exgT (dθφt) = exgT (dθφt|T (θ)),

because T (θ) and X(θ) are dθφt-invariant and T (θ) is the gT -orthogonal complement
of RX(θ). Now induce a continuous Riemannian metric g̃T on S in such a way that
the restriction of the projection map to T (θ) is an isometry. Then clearly:

exgT (dθφt|T (θ)) = exg̃T (φ∗t (θ)).
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The first inequality in the lemma follows from the following easy lemma whose proof
we omit:

Lemma 10.6. Let V → X be a vector bundle over a compact manifold X. Given two
continuous Riemannian metrics g1 and g2 on V there exists a constant c > 0 such
that for any two points x and y in X and any linear map L : V (x) → V (y) we have

exg1(L) ≤ c exg2(L).

The second inequality in Lemma 10.5 is proved in a similar way.
¤

Let us complete now the proof of Theorem 10.1. Suppose that φ admits a continu-
ous invariant distribution of codimension one transversal to X. Combining Theorem
10.2, Lemma 10.5, Proposition 10.3 and Proposition 10.4 we obtain:

htop = lim
T→∞

1

T
log

∫
SM

ex(dθφT ) dθ

≤ lim inf
T→∞

1

T
log

∫ T

0

dt

∫
SM

ex(dθφt) dθ

≤ lim inf
T→∞

1

T
log

∫ T

0

dt

∫
SM

ex(φ∗t (θ)) dθ

≤ lim inf
T→∞

1

T
log

∫ T

0

dt

∫
SM

∣∣det φ∗t (θ)|α∗(θ)
∣∣ dθ

≤ lim inf
T→∞

1

T
log

∫ T

0

dt

∫
SM

∣∣det dθφt|α(θ)

∣∣ dθ.

≤ lim inf
T→∞

1

T
log

∫ T

0

dt

∫
SM

∣∣det dθ(π ◦ φt)|α(θ)

∣∣ dθ

thus concluding the proof of Theorem 10.1.
¤
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[21] S. Grognet, Flots magnétiques en courbure négative, Ergod. Th. and Dynam. Syst. 19 (1999),

413–436.
[22] S. Grognet, Entropies de flots magnétiques, Ann. Inst. H. Poincaré Phys. Théor. 71 (1999),
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