
SUPPLEMENT ON EIGENVALUES AND EIGENVECTORS

We give some extra material on repeated eigenvalues and complex eigenvalues.

1. REPEATEDEIGENVALUES AND GENERALIZED EIGENVECTORS

For repeated eigenvalues, it is not always the case that there are enough eigenvectors.
Let A be ann × n real matrix, with characteristic polynomial

pA(λ) = (λ1 − λ)m1 · · · (λk − λ)mk

with λ j 6= λ` for j 6= `. Use the following notation for the eigenspace,

E(λ j ) = {v : (A − λ j I)v = 0}.

We also define thegeneralized eigenspacefor the eigenvalueλ j by

Egen(λ j ) = {w : (A − λ j I)m j w = 0},

wherem j is the multiplicity of the eigenvalue. A vector inE(λ j ) is called ageneralized eigenvector.
The following is a extension of theorem 7 in the book.

Theorem (7′). LetA be an n× n matrix with characteristic polynomial pA(λ) = (λ1 − λ)m1 · · · (λk − λ)mk ,
whereλ j 6= λ` for j 6= `. Then, the following hold.

(a) dim(E(λ j )) ≤ m j and dim(Egen(λ j )) = m j for 1 ≤ j ≤ k. If λ j is complex, then these dimensions
are as subspaces ofCn.

(b) If B j is a basis forEgen(λ j ) for 1 ≤ j ≤ k, thenB1 ∪ · · · ∪ Bk is a basis ofCn, i.e., there is always
a basis of generalized eigenvectors for all the eigenvalues. If the eigenvalues are all real all the vectors are
real, then this gives a basis ofRn.

(c) AssumeA is a real matrix and all its eigenvalues are real. Then, the matrixA is diagonalizable iff
dim(E(λ j )) = m j for all 1 ≤ j ≤ k.

Notice that ifv is an eigenvector forλ j and

(A − λ j I)w = v,

then

(A − λ j I)2w = (A − λ j I)v = 0.

For such a generalized eigenvector,Aw = λ j w + v, soAw is a scalar multiple ofw plus the eigenvectorv.
If there are not enough eigenvectors, then once we have solved for the eigenvectorv, then we can solve for
a generalized eigenvector by solving the nonhomogeneous equation(A − λ j I)w = v.

Example1. Let A =

0 -1 1
2 -3 1
1 -1 -1

. The eigenvalues are -1, -1, and -2. Forλ = -2, an eigenvector is

(0, 1, 1)T .
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Now takeλ = -1.

(A + I) =

1 -1 1
2 -2 1
1 -1 0


∼

1 -1 1
0 0 -1
0 0 -1


∼

1 -1 0
0 0 1
0 0 0

 .

Thus, there is only one independent eigenvector, which can be take to be(1, 1, 0)T .
To find another generalized eigenvector forλ = -1, we solve the following nonhomogeneous equation

(A + I)w = v by considering the following augmented matrix:1 -1 1
2 -2 1
1 -1 0

∣∣∣∣∣∣
1
1
0

 ∼

1 -1 1
0 0 -1
0 0 -1

∣∣∣∣∣∣
1
-1
-1


∼

1 -1 0
0 0 1
0 0 0

∣∣∣∣∣∣
0
1
0

 .

Thus, the solution isw1 = w2 andw3 = 1, or w = w2(1, 1, 0)T
+ (0, 0, 1)T

= w2v + (0, 0, 1)T . Notice
that the solution involves an arbitrary multiple of the eigenvectorv: this is always the case. We takew2 = 0
and getw = (0, 0, 1)T as the generalized eigenvector.

There is not a basis of just eigenvectors, but we have a basis forR3 of eigenvectors and generalized
eigenvectors:(0, 1, 1)T for λ = -2, and(1, 1, 0)T and (0, 0, 1)T for λ = -1. If we let the matrixP =0 1 0

1 1 0
1 0 1

, then

AP =

0 -1 1
2 -3 1
1 -1 -1

 0 1 0
1 1 0
1 0 1

 =

 0 -1 1
-2 -1 1
-2 0 -1

 =

0 1 0
1 1 0
1 0 1

 -2 0 0
0 -1 1
0 0 -1

 = PB.

Thus, conjugation byP changesA to B =

-2 0 0
0 -1 1
0 0 -1

, which is an upper triangular matrix in a very

simple form, but not a diagonal matrix.

We consider an arbitrary real generalized eigenvector. Assume thatλ j is a real eigenvalue of multiplicity
m j > 1. Assume thatv(r ) is a generalized eigenvector with

(A − λ j I)r v(r )
= 0 but

(A − λ j I)r −1v(r )
6= 0,

for some 1< r ≤ m j . Setting

v(r −`)
= (A − λ j I)`v(r ) for ` = 1, . . . , r − 1,
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we get

(A − λ j I)v(r )
= v(r −1),

(A − λ j I)v(r −1)
= v(r −2),

...
...

(A − λ j I)v(2)
= v(1), and

(A − λ j I)v(1)
= 0,

or

Av(r )
= λ j v(r )

+ v(r −1),

Av(r −1)
= λ j v(r −1)

+ v(r −2),

...
...

Av(2)
= λ j v(2)

+ v(1), and

Av(1)
= λ j v(1).

The matrixA =

a 1 0
0 a 1
0 0 a

 hasa as an eigenvalue of multiplicity 3, but only one eigenvector. The

vectore3
= (0, 0, 1)T , has(A − aI)3

= 0 but (A − aI)2
6= 0: Ae3

= ae3
+ e2, Ae2

= ae2
+ e1, and

Ae1
= ae1.

2. COMPLEX EIGENVALUES

We give an example of finding a complex eigenvector for a 3× 3 matrix by row reduction.

Example2. Let A =

-3 0 2
1 -1 0
-2 -1 0

. The characteristic equation is 0= −λ3
− 4λ2

− 7λ + 6, which has one

real eigenvalue ofλ = -2. By performing synthetic division, we get that 0= −(λ + 2)(λ2
+ 2λ + 3). Using

the quadratic formula, we get the other eigenvalues areλ = -1 ±
√

2i .
Takingλ = -1 +

√
2i , we need to row reduce the following matrix:

A − (-1 +
√

2 i ) =

-2 −
√

2 i 0 2
1 -

√
2 i 0

-2 -1 1−
√

2 i


multiplying row 1 by -2+

√
2 i

∼

 6 0 −4 + 2
√

2 i
1 -

√
2 i 0

-2 -1 1−
√

2 i


interchanging rows 1 & 2 and dividing the new row 2 by 2

∼

 1 -
√

2 i 0
3 0 −2 +

√
2 i

-2 -1 1−
√

2 i


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clearing column 1

A − (-1 +
√

2 i ) ∼

1 -
√

2 i 0
0 3

√
2 i −2 +

√
2 i

0 -1− 2
√

2 i 1 −
√

2 i


multiplying row 2 by−

√
2 i and row 3 by -1+ 2

√
2 i

∼

1 -
√

2 i 0
0 6 2+ 2

√
2 i

0 9 3+ 3
√

2 i


dividing row 2 by 2 and eliminating row 3

∼

1 -
√

2 i 0
0 3 1+

√
2 i

0 0 0

 .

These give us the equationsv1 =
√

2 i v2 and(1 +
√

2 i )v3 = -3v2, so we can get the solutionsv3 = 3,
v2 = -1 −

√
2 i , andv1 =

√
2 i (-1 −

√
2 i ) = 2 −

√
2 i :

v =

 2
-1
3

 − i

√
2

√
2

0

 .

The eigenvector forλ = -1 −
√

2i is the complex conjugate 2
-1
3

 + i

√
2

√
2

0

 .

In general, ifv = u + i w is an eigenvector for the complex eigenvalueλ = a + ib for a real matrixA,
then

A(u + i w) = Au + i Aw (by linearity of matrix multiplication)

= (a + ib)(u + i w) (because it is an eigenvector)

= (au − bw) + i (bu + aw).

Equating the real and imaginary parts,

Au = au − bw

Aw = bu + aw.

In two dimensions, we have the following theorem.

Theorem (9). LetA be a2× 2 real matrix with complex eigenvalueλ = a + ib, b 6= 0, with corresponding

eigenvectorv = u + i w. LetP be the matrix with columnsu andw. ThenP−1AP =

[
a b
-b a

]
.

If r =
√

a2 + b2, a = r cos(φ), -b = r sin(φ), then

[
a b
-b a

]
is a rotation byφ and an expansion (or

contraction) byr .


