FUNCTIONS IN ECONOMICS

Cost Function

Assume that a firm must pay P_{E} for each unit of equipment and P_{L} for each unit of labor. If E units of equipment and L units of labor are used, then the cost is $C=P_{E} E+P_{L} L$. The cost can be thought of as a (linear) function of E and L.

In general, if the prices are p_{i} for $i=1, \ldots, n$ with price vector $\mathbf{p}=\left\langle p_{1}, \ldots, p_{n}\right\rangle$, and $\mathbf{q}=$ $\left\langle q_{1}, \ldots, q_{n}\right\rangle$ is the commodity bundle of the quantities of the goods, then the cost of the commodity bundle is $C=\mathbf{p} \cdot \mathbf{q}=p_{1} q_{1}+\cdots+p_{n} q_{n}$.

Revenue

The revenue is the total amount of money earned by selling a commodity or commodities. If a firm produces one commodity in a quantity q and can sell it for a price p, then the revenue is $r=p q$. If a firm produces two commodities in quantities q_{1} and q_{2} respectively and can sell them for prices p_{1} and p_{2} respectively, then the revenue is $r=p_{1} q_{1}+p_{2} q_{2}$.

Profit

A firm's profit π is the amount earned as revenue minus the cost of producing the goods, $\pi=$ $r-C$. Assume the there are two goods which are sold in quantities q_{1} and q_{2} for prices p_{1} and p_{2} respectively. For the costs, assume there is a fixed cost of C_{0} and the items cost p_{1}^{\prime} and p_{2}^{\prime} per unit. The cost of producing them is then $C=C_{0}+p_{1}^{\prime} q_{1}+p_{2}^{\prime} q_{2}$. Thus, the profit is $\pi=p_{1} q_{1}+p_{2} q_{2}-\left(C_{0}+p_{1}^{\prime} q_{1}+p_{2}^{\prime} q_{2}\right)=\left(p_{1}-p_{1}^{\prime}\right) q_{1}+\left(p_{2}-p_{2}^{\prime}\right) q_{2}-C_{0}$.

Utility function

A fundamental problem in consumer theory deals with a single agent who consumes n commodities. Assume $q_{i} \geq 0$ is the amount of the $i^{\text {th }}$ commodity. The utility function is then a real valued function $U\left(q_{1}, \ldots, q_{n}\right)$ which depends on the amounts of the commodities held. It indicates the preferences for the agent. Thus, if $U\left(q_{1}, \ldots, q_{n}\right)>U\left(q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right)$ then the agent prefers to have the amounts $\left(q_{1}, \ldots, q_{n}\right)$ of the commodities to the amounts $\left(q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right)$. If $U\left(q_{1}, \ldots, q_{n}\right)=$ $U\left(q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right)$, then the agent likes the two holdings equally well, i.e., the agent is indifferent to the two holdings. The set of all the points where $U\left(q_{1}, \ldots, q_{n}\right)=C$ corresponds to all holdings that the person values equally. This latter set is the indifference set that we call level sets (level curves or level surfaces).

For two commodities, a typical function is $U\left(q_{1}, q_{2}\right)=q_{1} q_{2}$. A person with this utility function values holding some of each good more than a lot of the first and little of the second good. The indifference set is just $q_{1} q_{2}=C$ or $q_{2}=C / q_{1}$, which is a "hyperbola". (Draw the level curves for $C=0.5,1$, and 2.)

A more general form of the utility function is $U\left(q_{1}, q_{2}\right)=q_{1}^{a_{1}} q_{2}^{a_{2}}$, where $a_{1}, a_{2}>0$ are fixed constants. For more commodities, this generalized form would be $U\left(q_{1}, \ldots, q_{m}\right)=q_{1}^{a_{1}} q_{2}^{a_{2}} \cdots q_{n}^{a_{n}}$.

Production Function

Another situation where a real valued function of several variable arises in economics is the production function from the theory of a firm. Assume that $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is the bundle of goods used to produce a single product. Let q be the amount of the output product and $q=f\left(x_{1}, \ldots, x_{n}\right)$ the function that gives the amount produced in terms of the amount of the input goods. This function is called the production function.

There are various forms of the production function that have been used.

$$
\text { Linear: } q=a_{1} x_{1}+a_{2} x_{2} .
$$

Input-output:

$$
q=\min \left\{x_{1} / c_{1}, x_{2} / c_{2}\right\} .
$$

This means the producer needs $x_{i} \geq c_{i} q$ for each i to produce q amount of the output.
Cobb-Douglas:

$$
q=f\left(x_{1}, x_{2}\right)=A x_{1}^{a} x_{2}^{b}
$$

where $A>0, a>0$, and $b>0$ are constants We discuss below how this function scales with increasing amounts of inputs.

Constant elasticity of substitution:

$$
q=k\left[c_{1} x_{1}^{-a}+c_{2} x_{2}^{-a}\right]^{-b / a} .
$$

Cobb-Douglas Production Function

If the two inputs are labor and capital then the quantities are often designed by L for labor and K for capital. In this case, the production function is

$$
q=f(L, K)=A L^{a} K^{b}
$$

where A is a constant. If both labor and capital are scaled by a factor of s, then

$$
\begin{aligned}
f(s L, s K) & =A(s L)^{a}(s K)^{b} \\
& =s^{a+b} A L^{a} K^{b} \\
& =s^{a+b} f(L, K)
\end{aligned}
$$

and the production increases by a factor of s^{a+b}.
Case 1: $a+b=1$. Often, $0<a<1$ and $0<b=1-a<1$; for example,

$$
q=f(L, K)=A L^{1 / 3} K^{2 / 3}
$$

In this case, if both labor and capital are doubled, then $f(2 L, 2 K)=2 f(L, K)$ and the production is doubled. In fact, if both labor and capital are scaled by a factor of s, then $f(s L, s K)=s f(L, K)$, and the production is scaled by the same factor of s. Thus, for this case, the function is said to have constant returns to scale.

Case 2: $a+b>1$. For an increase in inputs by $s>1, f(s L, s K)=s^{a+b} f(L, K)>s f(L, K)$, and the production is increased by a greater factor than the inputs; the function is said to have increasing returns to scale.

Case 3: $a+b<1$. For an increase in inputs by $s>1, f(s L, s K)=s^{a+b} f(L, K)<s f(L, K)$, and the production is increased by a smaller factor than the inputs; function is said to have decreasing returns to scale.

Level sets (equal production): If the amount of production q_{0} is fixed, then the level set $q_{0}=f(L, K)$ is the set of all combinations of labor and capital which produce this amount, and is called the isoquant. For the general Cobb-Douglas production function with $a>0$ and $b>0$, these points satisfy

$$
\begin{aligned}
q_{0} & =A L^{a} K^{b} \\
K^{b} & =\frac{q_{0}}{A L^{a}} \\
K & =\left(\frac{q_{0}}{A}\right)^{1 / b} \frac{1}{L^{a / b}} .
\end{aligned}
$$

Because $a / b>0, K$ goes to zero as L goes to infinity, and K goes to infinity as L goes to zero. Thus, the general shape of the level set is like $x y=1$.

