SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA

This handout presents the second derivative test for a local extrema of a Lagrange multiplier problem.
The Section 1 presents a geometric motivation for the criterion involving the second derivatives of both the
function f and the constraint functiog. The main result is given in section 3, with the special cases of one
constraint given in Sections 4 and 5 for two and three dimensions respectively. The result is given in terms
of the determinant of what is called the bordered Hessian matrix, which is defined in Section 2 using the
Lagrangian function.

1. Intuitive Reason for Terms in the Test

In order to understand why the conditions for a constrained extrema involve the second partial derivatives
of both the function maximized and the constraint functiogy, we start with an example in two dimensions.
Consider the extrema of (x, y) = x? 4 4y? on the constraint 1= x? + y> = g(x,y). The four
critical points found by Lagrange multipliers a¢e-1, 0) and (0, £1). The points(+1, 0) are minima,
f(£1, 0) = 1; the pointg0, +1) are maxima,f (0, £1) = 2. The Hessian of is the same for all points,

_ fXX fxy _ 2 0
e = (fyx ny) a (O 8> .

Therefore the fact that some of the critical points are local minima and others are local maxima cannot
depend on the second partial derivatived ailone.

The above figure displays the level curves (x, y), and f (x, y) = C for C = (0.9)?, 1, (1.1)?, (1.9),
22, and(2.1)? on one plot.

The level curvef (X, y) = 1 intersects 1= g(x, y) at (&1, 0). For nearby values of, the level curve
f(x,y) = (0.9)2 does not intersect & g(x, y), while the level curvef (x, y) = (1.1)? intersects 1=
g(x, y) in four points. Therefore, the pointst1, 0) are local minima forf. Notice that the level curve
f(x,y) = 1 bends more sharply neéi-1, 0) than the level curve fog and so the level curve fof lies
inside the level curve fog. Since it lies inside the level curve fgrand the gradient of points outward,
these points are local minima fdron the level curve of.

On the other hand, the level curMgx, y) = 4 intersects 1= g(x, y) at (0, £1), f(x,y) = (1.9
intersects in four points, anéi(x, y) = (2.1)? does not intersect. Therefore, the poif@s+1) are local
maxima for f. Notice that the level curvé (x, y) = 4 bends less sharply nedr, +1) than the level curve
for g and so the level curve fof lies outside the level curve fay. Since it lies outside the level curve fgr
and the gradient of points outward, these points are local maximafarn the level curve of.
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2 CONSTRAINED EXTREMA

Thus, the second partial derivatives bfare the same at botht1, 0) and (0, +1), but the sharpness
with which the two level curves bend determines which are local maxima and which are local minima. This
discussion motivates the fact that it is the comparison of the second partial derivativesdf which is
relevant.

2. Lagrangian Function

One way to getting the relevant matrix is to form the Lagrangian function, which is a combination of
andg. For the problem of finding the extrema (maxima or minima) af) with ik constraintgy,(x) = C,
for 1 < ¢ < k, theLagrangian functions defined to be the function

k
L) =f00 =) re[9:00—Ci.
The solution of the Lagrange multiplier problems is then a critical poirit,of

oL
8)» — A5 X)) = —-g X)) +C, =0, forl<¢ <k and
Z

* * 8f * k 3913 .
a—l(k ):a_xi(x)_zzlea x=0 forl<i <n.

The second derivative test involves the matrix of all second partial derivativiesin€luding those with
2

. . : . . 0°L
respect ta.. In dimensions greater than two, the test also involves submatrices. Notlceétﬁa@*, X*) =
2

99, 9g¢
0 and (A*, x*) = (x*) We could use—(x*) in the matrix instead of— (x*) it does not
ALLIX X 9 9

change the determlnant (both arow and a column are multiplied by minus one). The matrix of all second
partial derivatives ot is called the bordered Hessian matrix because the the second derivatlvesitbf
respect to the; variables is bordered by the first order partial derivativeg. dfhebordered Hessian matrix

is defined to be

- 0 e 0 '(gl)xl e '(gl)xn_

1 HL(A = 1 LT —

( ) ( X ) '(gl)xl Tt '(gk)xl Lxlxl e Lxlxn |:'DgT DXL:|
_'(gl)xn te '(gk)xn I—xnxl v anxn .

where all the partial derivatives are evaluated wita x* andA = A*. In the following, we use the notation
D2L* = D2L(A*, x*) = D2f(x*) — YX_ ArD?(g,)(x*) for this submatrix that appears in the bordered
Hessian.

3. Derive Second Derivative Conditions

The first section gave an intuitive reason why the second derivative test should involve the second deriva-
tives of the constraint as well as the function being extremized. In this section, we derive the exact condition
which involves the bordered Hessian defined in the last section. First, we should what the second derivative
of f along a curve in the level of of the constraint functignThen, we apply the result mentioned for a
guadratic form on the null space of a linear map.

Lemma 1. Assume thax* andA* = (17, ..., A{) meet the first-order conditions of an extrema of f on the
level set g(x) = C, for 1 < £ < k. Ifr(t) is a curve in g1(C) with r (0) = x* andr’(0) = v, then

2

d f(f(t))
d2

=0

k
=T [Dz f(x*) — ZAZ ng@(x*)} v =V D2L(A*, X*)V.

=1



CONSTRAINED EXTREMA 3

Proof. Using the chain rule and product rule,

d e x- of ,
dat f(rt)) =Df(r@)r'e) = ; a_Xi(r(t))ri(t)
(by the chain rule)
and
2

dt?

" d af
= ——(rt))
Xi

f(rt)
o dtd

L of
[0+ - O)r{ (0
0 i=1

t=

(by the product rule)

2
= Z o°f (X*)I‘{(O)I’I{(O) + Df (x)r”(0
. N 0% 0X;

(by the chain rule)
k
= (r'(0)TD*f (x)I'(0) + Y 2;D(ge) (x")r"(0).
(=1

In the last equality, we used the definition®df f and the fact thaD f (x*) = Z'lf:l A5 D(ge) (X).
We can perform a similar calculation for the constraint equatiend (r (t)) whose derivatives are zero:

_ d _ age ,
0= S = Y (8_xi(r(t))) ),

i=1,...n

. d ng ,
= Y it (a_xi““))) ri ()

=0 j—1

d2
0= ng(r(t))

t=0

,,,,,

82
= > ( % (x*)> r{(O)rj(0) + D(g)(x")r"(0),  and

XX

2D (X (0) = =27 (r'(0) T D*(ge) (X")F'(0).

Substituting this equality into the expression for the second derivatifergt)),

=v' |:D2 f(x*) — Z k}szgz(X*):| v,
t=0 K

wherev = r’(0). This is what is claimed. O

2

& f(rc))
dt?

The next theorem uses the above lemma to derive conditions for local maxima and minima in terms of
the second derivative of the LagrangiﬁL* on the set of vectors NUDg(x*)).

Theorem 2. Assume fg, : R” — R are C? for 1 < ¢ < k. Assume that* € R" and* = (A}...., A})
meet the first-order conditions of the Theorem of Lagrange dii@).

. If f has alocal maximum ong(C) atx*, thenv' D2L*v < 0 for all v € Nul(Dg(x*)).

. If f has alocal minimum on g (C) atx*, thenv' DZL*v > 0 for all v € Nul(Dg(x*)).

. 1f vID2L*v < Ofor all v € Nul(Dg(x*)) . {0}, thenx* is a strict local maximum of f ong(C).

. IfvTD2L*v > Ofor all v e Nul(Dg(x*)) . {0}, thenx* is a strict local minimum of f ong}(C).

. If vT D2L*v is positive for some vectar € Nul(Dg(x*)) and negative for another such vector, then
x* is neither a local maximum nor a local minimum of f on‘¢C).

D0



4 CONSTRAINED EXTREMA

Proof. (b) We consider the case of minima. (The case of maximum just reverses the direction of the in-
equality.) Lemma 1 shows that
d2 T2
— f(r(t =v' DiL*v,
rraUCl 2
wherev = r’(0). If x* is a local minimum org~*(C) then

2

d f(rt
% (r(t))
for any curves (t) in g=1(C) with r (0) = x*. Thus,v" DZL*v > 0 for any vectow tangent to a curve in
g~1(C). But the implicit function theorem implies that these are the same as the vector in the null space
Nul(Dg(x*)).

(d) If vT D2L*v > O for all vectorsv # 0in Nul(Dg(x*)), then

>0
t=0

2
d—f(r(t)) =1'(0)" DZL*r'(0) > 0
dt? t=0
for any curves (t) in g~1(C) with r(0) = x* andr’(0) # 0. This latter condition implies that* is a strict
local minimum ong~1(C).
For part €), if v DZL*v is both positive and negative, then there are some curves where the vdlue of
is greater than at* and others on which the value is less. O

If we combine this result with the conditions we gave for the maximum of a quadratic form on the null
space of a linear map, we get the theorem given in the book.

Combining with the earlier theorem on constrained quadratic forms, we get the following theorem given
in the book.

Theorem 3. Assume that,fg, : R" — R are C?>for 1 < £ < k and that\* = (A%, ..., A andx* satisfied
the first order conditions for a extrema of f on'gC). Assume that the k k submatrix of Dgx*) formed

by the first k columns has nonzero determindet,(?%(x*)) # 0. LetH; be the upper left jx j
J 1<i,j<k
submatrix of H L(A*, x*). ==

(@ If (-1)k det(Hj) > Ofor 2k + 1 < j < n+Kk, the the function f has a local minimumxiton the
level set g1(C). (Notice that the sign given liy-1)% depends on the rank k and not j.)

(b) If (-1))~kdet(H;) > 0for 2k + 1 < j < n +Kk, the the function f has a local maximumxiton
the level set g*(C). Notice that the sign given hy-1)! % depends on j and alternates sign. The
condition on the signs of the determinants can be expregslasdet Ha 1) < 0, and the rest of
the sequence 1)k det(H;) alternate signs with j.

(c) If these determinant&1)X det(H;) # Ofor 2k + 1 < j < n+ k but fall into a different pattern of
signs than the above two cases, then the critical point is some type of saddle.

Remarkl. Notice that the null space NUDg(x*)) had dimensiom — k, so we neeah — k conditions. The
range ofj in the assumptions of the theorem contains k values.

In the case of negative definite, the first casejfer 2k+1, (-1) detH;) < Oandthe termé1)k det(H;) <
0 alternate sign.

4. One Constraint in Two Dimensions

Now we turn to the case of two variables and one constraint, and consider a extrema of a flisctipn
on a constrainC = g(x, y). Assume thatx*, y*) andA* satisfy the equations for a critical point of the
Lagrangian equations

(2) \Y% f(X*,y*) = )\,* Vg(x*’y*) and C — g(X*’ y*)
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Let
L()"v X, y) = f(X, y) —A [g(Xv y) - C]
be the Lagrangian function for the problem. Form lwedered Hessian matrix

0 -ox -9y
(3 HL=1{-0« Lxx Lxy]|.
Oy Lyx Lyy

where the partial derivatives are evaluateddt y*) andi*.
The following theorem then contains the statement of the result for local extrema.

Theorem 4. Let f and g be real valued functions @®?. Let (x*, y*) € R? and A* be a solution of the
Lagrange multiplier problenV f« y« = A* Vg y+) and C = g(x*, y*). Define the bordered matrix HL
by equation(3).

(a) The point(x*, y*) is a local minimum of f on G= g(x, y), if —dettHL(*, x*, y*)) > 0.

(b) The point(x*, y*) is a local maximum of f on G= g(Xx, y), if —dettHL(A*, x*, y*)) <O.

The minus one before the determinant comes from the fact that there is one constraint.
Example 1. Consider the example
f(x,y) =x>+4y> and
g, y) =x*+y* =1
The equations to solve for Lagrange multipliers are

2X = A2X,
8y = 12y, and
1=x2+y2

Solving these yields (ix = 0,y = 41, andx = 4, and (i)x = £1,y = 0, andx = 1.
The Lagrangian function is

L(x, X, y) = X% 4+ 4y? — A(X% + y?) + A.
The bordered Hessian matrix is
0 -2X -2y
HL=|-2x 2-2A 0 .
-2y 0 8— 2\
(i) At the first pair of pointsx = 0,y = +1, andx = 4,
0 0 =2
HL4,0,+)=| 0 -6 O0].

2 0 0

So,—detHL) = —(—1)(—6)(+2)?> = —24 < 0, and these points are local maxima.
(ii) At the second pair of pointgs = +1,y =0, andx = 1,

0 F2 0
HL(L,+1L0=|F2 0 o,

0O O 6

So,—detHL) = —(—1)(6)(£2)? = 24 > 0, and these points are local minima.
These results agree with the answers found by taking the values at the phoifit$,0) = 1 and
f(0, £1) = 4.
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5. One Constraint in Three Dimensions

Now consider the extrema of a functidn(x, y, z) with one constrainC = g(x, y, z). Assume that
y ax,y
(x*, y*, z¥) andA* satisfy the equations for a critical point of the Lagrangian equations

4 V fxrynz) = A VO yr 7 and C =gXx*, y*, z%.
Let
LA, X, y,20=f(X,y,2 — X1 [9(X, Y, 2) —C]

be the Lagrangian function for the problem. The corresponbdardered Hessian matris

0 -0« -9y -G
R -Ox LXX ny LXZ

5 Hs=HLQO, X, vy, 2% = ,

( ) 4 ( y ) _gy I—yx Lyy Lyz

-0z I—ZX Lzy I—ZZ

where the partial derivatives are evaluatetkat y*, z*) andr*. In three dimensions, there are two directions

in which we can move in the level surface, and we need two numbers to determine whether the solution of
the Lagrange multiplier problem is a local maximum or local minimum. Therefore, we need to consider not
only the four-by-four bordered matrid,, but also a three-by-three submatrix; the submatrix is

0 -0« -9y
-Ox  Lxx I—xy if ox(X*, y*,z") 20 or gy(X*, y*,2) #0
Oy Lyx Lyy
(6) Hs =

0 Oy -0
-0y Lyy Ly | if g«(X*,y%, %) = 0andgy(x*, y*,z*) =0,
-0z I—zy I—zz

where the partial derivatives are evaluated»dt, y*, z*) and A*. Then, we have the following second
derivative test.

Theorem 5. Let f and g be real valued functions &%. Let (x*, y*, z*) € R® andA* be a solution of the
Lagrange multiplier probleny f- y+ » = A*V Q= y+ - and C= g(x*, y*, z*). Assume thal g y+ »+) #
0. Define the bordered Hessian matridds andH3 by equationg5) and (6).

() The point(x*, y*, z*) is a local minimum of f on c= g(x*, y*, z*) if —detHs) > 0 and
—det(Hy) > 0.

(b) The point(x*, y*, z*) is a local maximum of f on = g(x*, y* z*) if —detH3) < 0 and
— det(H4) > 0.

(c) If —det(Hs) < O, then the pointx*, y*, z*) is a type of saddle and is neither a local minimum nor
a local maximum.

Remark2. Again, the factor—1 in front of the determinants comes from the fact that we are considering
one constraint.

Remark3. The theorem in this case involves the determinant of a four-by-four matrix. In the cases we
evaluate one of these, we expand on a row to find the answer or use the many zeroes in the matrix to get the
answer in terms of the product of determinants of two submatrices. The general treatment of determinants
is beyond this course and is treated in a course on linear algebra.
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A way to see that the conditions on ddt) and deftHs) are right is to take thepecial casevhere
g(X, Y, 2) = X, Lyy(X*) = 0 Lx,(Xx*) = 0, andL ,(x*) = 0. In this case,

10, 0 o o190

H4: O SX L O and H3: '1 LXX O .
7 0 0 L

0O O 0 Ly vy

Then,—det(Hz) = Ly, and expanding détl4) in the fourth row,— det(Hs) = —L,, det(H3) = LyyL,,

At a local minimumLyy > 0 andL,, > 0, so—detH3) > 0 and—det(H4) > 0. Similarly, at a local
maximum, Ly, < 0 andL,, < 0, so—detH3) < 0 and—det(Hs) > 0. The general case takes into
consideration the cross partial derivatived odnd allows the constraint function to be nonlinear. However,
an argument using linear algebra reduces the result to this special case.

Example 2. Consider the problem of finding the extreme poinffgk, y, z) = X2+ y?>+2z? on 2= z— xy.
The method of Lagrange multipliers finds the points

(A", x*, y*, 7)) =(4,0,0,2),
=(2,1,-1,1), and
=(2,-1,11).

The Lagrangian function is
LA, X, Y,2) = X2+ Y2 + 22 — AZ+ AXY + A2

with Hessian matrix

0O v x -1

_ _ly 2 » 0
Ha=HL = X »2 2 0
-1 0 0 2

At the point(A*, x*, y*, z*, A*) = (4, 0, 0, 2), expanding on the first row,

AR NEE
—det(Hy) = —det =—det|0 4 2] =-12<0,

0 4 2 0 100

-1 0 0 2

so the point is not a local extremum.
The calculation at the other two points is similar, so we consider the gdink*, y*, z*) = (2, 1, -1, 1).
The partial derivativa, (1, -1, 1) = —(-1) # 0, so

0y x 0 -1
Hz3=|y 2 A]=1[-1 2

X A 2

[
N
NN P

Expanding dgiH3) on the first row,

0 -1 1
—det(H3) = —det|-1 2 2

1 2 2

12

nf} o1 9

=44+4=8>0.

[EEN
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Expanding deH ) on the fourth row,

1
(MY

—det(Hy) = —det

ODNDNPEF
N OO

()

N =

-1
2
2
-1 0
1
=—det] 2 2
2

|

Thus, this point is a local minimum. A similar calculation(&t y, z, ) = (-1, 1, 1, 2) shows that it is also
a local minimum. When working the problem originally, we found these two points as the minima.

0 -1
—(2)det|-1 2
1 2

= —(0)—2(-8) = 16> 0.

o o
N

6. An Example with two Constraints

Example 3. Find the highest point on the set given by y + z = 12 andz = x2 + y?.
The function to be maximized i§(x, y, z) = z. The two constraint functions are
Q(X,Y,2) =X+y+z=12andg(X,y,2) =x2+y>—z=0.
The first order conditions are

f, = Ag; + nh; 1=x—p.

From the third equation, we gét= 1+ u. So we can eliminate this variable from the equations. They
become

0=1+ p+ p2x
0=1+ pu+ pn2y.

Subtracting the second from the first, we get @u(x — y), sou =0o0rx =y.

Consider the first case @f = 0. This implies that. = 1. But then, 0= A + 2xu = 1, which is a
contradiction. Therefore, there is no solution with= 0.

Next, assumg = x. Then, from the constraints becorme= 2x? and 12= 2x + z = 2x + 2x2, sO
O0=X>4+Xx—-6=X+3)(x—2),andx =2o0r-3. Ifx =2,theny = 2,z =2x> =8,0= 1+ u(5),
n="Y andr =1+ pu = .

If x =y =-3,thenz=2x? =18, 0= 1+ u(-5), uls, andr = 1+ p = 5.

We have found two critical points.*, uu*, x*, y*, z*) = (¥, Y5, 2, 2,8, ) and(8s, Y5, -3, -3, 18).

For this examplen = 3 andk = 2, son — k = 1. The bordered Hessian is

0 0 -1 -1 -I
0 0 -x -2y 1
He=HL=|-1 % -u2 0 O
1 -2y 0 -2 O
1 1 0 0 0
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At (M, w*, x*, v, 2 = (46, V5,2, 2,8,),

[0 0 -1 -1 -I -1 1 0 0 O
0 0 -4 -4 1 0 0 -4 -4 1
(-1)?detHL) =det|{-1 -4 %5 0 O|=—det|-1 -4 2% 0 O
-1 -4 0 2 0 -1 -4 0 25 0
-1 1.0 0 O 0 0 -1 -1 -1
1 -1 0 0 O 1 -1 0 0 O
0 0 4 -4 1 0 -5 0 2 0
—det|0 -5 %% 0 O0|=—det|0 -5 25 0 O
0 -5 0 2 0 0 0 4 -4 1
0 0 -1 -1 -1 00 -1 -1 -1
1 -1 0 0 O 1 -1 0 0 O
050 % 0 050 % 0
=—det{0 0 % 25 0|=-det|0 0 25 25 O
0 0 -4 4 1 00 0 -8 1
0 0 -1 -1 -1 00 0 -2 -1
1 -1 0 0 O
050 2 0
=—det|0 0 % 25 0 |=20>0.
00 0 -8 1
(0 0 0 0 3
Therefore, this point is a local minimum.
At (0, wt, x5, y*, 29 = (%5, s, -3, -3, 18),
0 0 -1 -1 -1 -1 1 0 0 O]
00 6 6 1 00 6 6 1
(-1)?detHL) =det|-1 6 %% 0 O|=—det|-1 6 25 0 O
-1 6 0 25 0 -1 6 0 25 0
-1 1 0 0 O] (0 0 -1 -1 -1
1 -1 0 0 O] 1 -1 0 0 O]
00 6 6 1 0 5 0 2 0
—det|0 5 25 0 O|=—det|j0 5 25 0 O
05 0 2% 0 00 6 6 1
0 0 -1 -1 -1 0 0 -1 -1 -1
1 -1 0 0 O 1 -1 0 0 O
05 0 2% 0 05 0 2 0
=—det|0 0 25 25 0|=-det|{0 0 2% % O
00 6 6 1 0 0 0 12 1
0 0 -1 -1 -1 00 0 -2 -1
1 -1 0 0 O
05 0 2% O
=—detf0 0 % 25 0 |=-20<0.
00 0 12 1
0 0 0 0 5%

Therefore, this point is a local maximum.
These answers are compatible with the value$ @, y, z) at the two critical point: The first is a global
minimum on the constraint set, and the second is a global maximum on the constraint set.



