
SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA

This handout presents the second derivative test for a local extrema of a Lagrange multiplier problem.
The Section 1 presents a geometric motivation for the criterion involving the second derivatives of both the
function f and the constraint functiong. The main result is given in section 3, with the special cases of one
constraint given in Sections 4 and 5 for two and three dimensions respectively. The result is given in terms
of the determinant of what is called the bordered Hessian matrix, which is defined in Section 2 using the
Lagrangian function.

1. Intuitive Reason for Terms in the Test

In order to understand why the conditions for a constrained extrema involve the second partial derivatives
of both the function maximizedf and the constraint functiong, we start with an example in two dimensions.

Consider the extrema off (x, y) = x2
+ 4y2 on the constraint 1= x2

+ y2
= g(x, y). The four

critical points found by Lagrange multipliers are(±1, 0) and (0, ±1). The points(±1, 0) are minima,
f (±1, 0) = 1; the points(0, ±1) are maxima,f (0, ±1) = 2. The Hessian off is the same for all points,

H f (x, y) =

(
fxx fxy

fyx fyy

)
=

(
2 0
0 8

)
.

Therefore the fact that some of the critical points are local minima and others are local maxima cannot
depend on the second partial derivatives off alone.

The above figure displays the level curves 1= g(x, y), and f (x, y) = C for C = (0.9)2, 1, (1.1)2, (1.9),
22, and(2.1)2 on one plot.

The level curvef (x, y) = 1 intersects 1= g(x, y) at (±1, 0). For nearby values off , the level curve
f (x, y) = (0.9)2 does not intersect 1= g(x, y), while the level curvef (x, y) = (1.1)2 intersects 1=
g(x, y) in four points. Therefore, the points(±1, 0) are local minima forf . Notice that the level curve
f (x, y) = 1 bends more sharply near(±1, 0) than the level curve forg and so the level curve forf lies
inside the level curve forg. Since it lies inside the level curve forg and the gradient off points outward,
these points are local minima forf on the level curve ofg.

On the other hand, the level curvef (x, y) = 4 intersects 1= g(x, y) at (0, ±1), f (x, y) = (1.9)

intersects in four points, andf (x, y) = (2.1)2 does not intersect. Therefore, the points(0, ±1) are local
maxima for f . Notice that the level curvef (x, y) = 4 bends less sharply near(0, ±1) than the level curve
for g and so the level curve forf lies outside the level curve forg. Since it lies outside the level curve forg
and the gradient off points outward, these points are local maxima forf on the level curve ofg.
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2 CONSTRAINED EXTREMA

Thus, the second partial derivatives off are the same at both(±1, 0) and (0, ±1), but the sharpness
with which the two level curves bend determines which are local maxima and which are local minima. This
discussion motivates the fact that it is the comparison of the second partial derivatives off andg which is
relevant.

2. Lagrangian Function

One way to getting the relevant matrix is to form the Lagrangian function, which is a combination off
andg. For the problem of finding the extrema (maxima or minima) off (x) with ik constraintsg`(x) = C`

for 1 ≤ ` ≤ k , theLagrangian functionis defined to be the function

L(λ, x) = f (x) −

∑k

`=1
λ` [g`(x) − C`] .

The solution of the Lagrange multiplier problems is then a critical point ofL,

∂L

∂λ`

(λ∗, x∗) = −g`(x∗) + C` = 0, for 1 ≤ ` ≤ k and

∂L

∂xi
(λ∗, x∗) =

∂ f

∂xi
(x∗) −

∑k

`=1
λ∗

`

∂g`

∂xi
(x∗) = 0 for 1 ≤ i ≤ n.

The second derivative test involves the matrix of all second partial derivatives ofL, including those with

respect toλ. In dimensionsn greater than two, the test also involves submatrices. Notice that
∂2L

∂λ2
(λ∗, x∗) =

0 and
∂2L

∂λ`∂xi
(λ∗, x∗) = −

∂g`

∂xi
(x∗). We could use

∂g`

∂xi
(x∗) in the matrix instead of−

∂g`

∂xi
(x∗) it does not

change the determinant (both a row and a column are multiplied by minus one). The matrix of all second
partial derivatives ofL is called the bordered Hessian matrix because the the second derivatives ofL with
respect to thexi variables is bordered by the first order partial derivatives ofg. Thebordered Hessian matrix
is defined to be

(1) H L(λ∗, x∗) =



0 · · · 0 -(g1)x1 . . . -(g1)xn
...

...
...

. . .
...

0 · · · 0 -(gk)x1 . . . -(gk)xn

-(g1)x1 · · · -(gk)x1 Lx1x1 . . . Lx1xn
...

...
...

-(g1)xn · · · -(gk)xn Lxnx1 . . . Lxnxn


=

[
0 -Dg

-DgT DxL

]

where all the partial derivatives are evaluated withx = x∗ andλ = λ∗. In the following, we use the notation
D2

x L∗
= D2

x L(λ∗, x∗) = D2 f (x∗) −
∑k

`=1 λ∗

` D2(g`)(x∗) for this submatrix that appears in the bordered
Hessian.

3. Derive Second Derivative Conditions

The first section gave an intuitive reason why the second derivative test should involve the second deriva-
tives of the constraint as well as the function being extremized. In this section, we derive the exact condition
which involves the bordered Hessian defined in the last section. First, we should what the second derivative
of f along a curve in the level of of the constraint functiong. Then, we apply the result mentioned for a
quadratic form on the null space of a linear map.

Lemma 1. Assume thatx∗ andλ∗
= (λ∗

1, . . . , λ
∗

k) meet the first-order conditions of an extrema of f on the
level set g̀(x) = C` for 1 ≤ ` ≤ k. If r(t) is a curve in g−1(C) with r(0) = x∗ andr ′(0) = v, then

d2

dt2
f (r(t))

∣∣∣∣
t=0

= vT

[
D2 f (x∗) −

k∑
`=1

λ∗

` D2g`(x∗)

]
v = vT D2

x L(λ∗, x∗)v.
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Proof. Using the chain rule and product rule,

d

dt
f (r(t)) = D f (r(t))r ′(t) =

n∑
i =1

∂ f

∂xi
(r(t))r ′

i (t)

(by the chain rule)

and

d2

dt2
f (r(t))

∣∣∣∣
t=0

=

n∑
i =1

d

dt

∂ f

∂xi
(r(t))

∣∣∣∣
t=0

r ′

i (0) +

n∑
i =1

∂ f

∂xi
(r(0))r ′′

i (0)

(by the product rule)

=

∑
i =1,...,n
j =1,...,n

∂2 f

∂xi ∂x j
(x∗)r ′

i (0)r ′

j (0) + D f (x∗)r ′′(0)

(by the chain rule)

= (r ′(0))T D2 f (x∗)r ′(0) +

k∑
`=1

λ∗

` D(g`)(x∗)r ′′(0).

In the last equality, we used the definition ofD2 f and the fact thatD f (x∗) =
∑k

`=1 λ∗

` D(g`)(x∗).
We can perform a similar calculation for the constraint equation 0= g`(r(t)) whose derivatives are zero:

0 =
d

dt
g`(r(t)) =

∑
i =1,...,n

(
∂g`

∂xi
(r(t))

)
r ′

i (t),

0 =
d2

dt2
g`(r(t))

∣∣∣∣
t=0

=

∑
i =1,...,n

d

dt

(
∂g`

∂xi
(r(t))

)
r ′

i (t)

∣∣∣∣
t=0

=

∑
i =1,...,n
j =1,...,n

(
∂2g`

∂x j ∂xi
(x∗)

)
r ′

i (0)r ′

j (0) + D(g`)(x∗)r ′′(0), and

λ∗

` D(g`)(x∗)r ′′(0) = −λ∗

` (r ′(0))T D2(g`)(x∗)r ′(0).

Substituting this equality into the expression for the second derivative off (r(t)),

d2

dt2
f (r(t))

∣∣∣∣
t=0

= vT

[
D2 f (x∗) −

∑
`=1,...,k

λ∗

` D2g`(x∗)

]
v,

wherev = r ′(0). This is what is claimed. �

The next theorem uses the above lemma to derive conditions for local maxima and minima in terms of
the second derivative of the LagrangianD2

x L∗ on the set of vectors Nul(Dg(x∗)).

Theorem 2. Assume f, g` : Rn
→ R are C2 for 1 ≤ ` ≤ k. Assume thatx∗

∈ Rn andλ∗
= (λ∗

1. . . . , λ
∗

k)

meet the first-order conditions of the Theorem of Lagrange on g−1(C).

a. If f has a local maximum on g−1(C) at x∗, thenvT D2
x L∗v ≤ 0 for all v ∈ Nul(Dg(x∗)).

b. If f has a local minimum on g−1(C) at x∗, thenvT D2
x L∗v ≥ 0 for all v ∈ Nul(Dg(x∗)).

c. If vT D2
x L∗v < 0 for all v ∈ Nul(Dg(x∗)) r {0}, thenx∗ is a strict local maximum of f on g−1(C).

d. If vT D2
x L∗v > 0 for all v ∈ Nul(Dg(x∗)) r {0}, thenx∗ is a strict local minimum of f on g−1(C).

e. If vT D2
x L∗v is positive for some vectorv ∈ Nul(Dg(x∗)) and negative for another such vector, then

x∗ is neither a local maximum nor a local minimum of f on g−1(C).
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Proof. (b) We consider the case of minima. (The case of maximum just reverses the direction of the in-
equality.) Lemma 1 shows that

d2

dt2
f (r(t))

∣∣∣∣
t=0

= vT D2
x L∗v,

wherev = r ′(0). If x∗ is a local minimum ong−1(C) then

d2

dt2
f (r(t))

∣∣∣∣
t=0

≥ 0

for any curvesr(t) in g−1(C) with r(0) = x∗. Thus,vT D2
x L∗v ≥ 0 for any vectorv tangent to a curve in

g−1(C). But the implicit function theorem implies that these are the same as the vector in the null space
Nul(Dg(x∗)).

(d) If vT D2
x L∗v > 0 for all vectorsv 6= 0 in Nul(Dg(x∗)), then

d2

dt2
f (r(t))

∣∣∣∣
t=0

= r ′(0)T D2
x L∗ r ′(0) > 0

for any curvesr(t) in g−1(C) with r(0) = x∗ andr ′(0) 6= 0. This latter condition implies thatx∗ is a strict
local minimum ong−1(C).

For part (e), if vT D2
x L∗v is both positive and negative, then there are some curves where the value off

is greater than atx∗ and others on which the value is less. �

If we combine this result with the conditions we gave for the maximum of a quadratic form on the null
space of a linear map, we get the theorem given in the book.

Combining with the earlier theorem on constrained quadratic forms, we get the following theorem given
in the book.

Theorem 3. Assume that f, g` : Rn
→ R are C2 for 1 ≤ ` ≤ k and thatλ∗

= (λ∗

1, . . . , λ
∗

l ) andx∗ satisfied
the first order conditions for a extrema of f on g−1(C). Assume that the k× k submatrix of Dg(x∗) formed

by the first k columns has nonzero determinant,det

(
∂g`

∂x j
(x∗)

)
1≤i, j ≤k

6= 0. LetH j be the upper left j× j

submatrix of H L(λ∗, x∗).

(a) If (-1)k det(H j ) > 0 for 2k + 1 ≤ j ≤ n + k, the the function f has a local minimum atx∗ on the
level set g−1(C). (Notice that the sign given by(−1)k depends on the rank k and not j .)

(b) If (-1) j −k det(H j ) > 0 for 2k + 1 ≤ j ≤ n + k, the the function f has a local maximum atx∗ on
the level set g−1(C). Notice that the sign given by(−1) j −k depends on j and alternates sign. The
condition on the signs of the determinants can be express as(-1)k det(H2k+1) < 0, and the rest of
the sequence(-1)k det(H j ) alternate signs with j .

(c) If these determinants(-1)k det(H j ) 6= 0 for 2k + 1 ≤ j ≤ n + k but fall into a different pattern of
signs than the above two cases, then the critical point is some type of saddle.

Remark1. Notice that the null space Nul(Dg(x∗)) had dimensionn − k, so we needn − k conditions. The
range of j in the assumptions of the theorem containsn − k values.

In the case of negative definite, the first case forj = 2k+1, (-1)k det(H j ) < 0 and the terms(-1)k det(H j ) <

0 alternate sign.

4. One Constraint in Two Dimensions

Now we turn to the case of two variables and one constraint, and consider a extrema of a functionf (x, y)

on a constraintC = g(x, y). Assume that(x∗, y∗) andλ∗ satisfy the equations for a critical point of the
Lagrangian equations

(2) ∇ f(x∗,y∗) = λ∗
∇g(x∗,y∗) and C = g(x∗, y∗).
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Let
L(λ, x, y) = f (x, y) − λ [g(x, y) − C]

be the Lagrangian function for the problem. Form thebordered Hessian matrix

(3) H L =

 0 -gx -gy

-gx Lxx Lxy

-gy L yx L yy

 ,

where the partial derivatives are evaluated at(x∗, y∗) andλ∗.
The following theorem then contains the statement of the result for local extrema.

Theorem 4. Let f and g be real valued functions onR2. Let (x∗, y∗) ∈ R2 and λ∗ be a solution of the
Lagrange multiplier problem∇ f(x∗,y∗) = λ∗

∇g(x∗,y∗) and C = g(x∗, y∗). Define the bordered matrix H L
by equation(3).

(a) The point(x∗, y∗) is a local minimum of f on C= g(x, y), if − det(H L(λ∗, x∗, y∗)) > 0.
(b) The point(x∗, y∗) is a local maximum of f on C= g(x, y), if − det(H L(λ∗, x∗, y∗)) < 0.

The minus one before the determinant comes from the fact that there is one constraint.

Example 1. Consider the example

f (x, y) = x2
+ 4y2 and

g(x, y) = x2
+ y2

= 1.

The equations to solve for Lagrange multipliers are

2x = λ2x,

8y = λ2y, and

1 = x2
+ y2.

Solving these yields (i)x = 0, y = ±1, andλ = 4, and (ii)x = ±1, y = 0, andλ = 1.
The Lagrangian function is

L(λ, x, y) = x2
+ 4y2

− λ(x2
+ y2) + λ.

The bordered Hessian matrix is

H L =

 0 -2x -2y
-2x 2 − 2λ 0
-2y 0 8− 2λ

 .

(i) At the first pair of points,x = 0, y = ±1, andλ = 4,

H L(4, 0, ±1) =

 0 0 ∓2
0 −6 0

∓2 0 0

 .

So,− det(H L) = −(−1)(−6)(±2)2
= −24 < 0, and these points are local maxima.

(ii) At the second pair of pointsx = ±1, y = 0, andλ = 1,

H L(1, ±1, 0) =

 0 ∓2 0
∓2 0 0
0 0 6

 ,

So,− det(H L) = −(−1)(6)(±2)2
= 24 > 0, and these points are local minima.

These results agree with the answers found by taking the values at the points,f (±1, 0) = 1 and
f (0, ±1) = 4.
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5. One Constraint in Three Dimensions

Now consider the extrema of a functionf (x, y, z) with one constraintC = g(x, y, z). Assume that
(x∗, y∗, z∗) andλ∗ satisfy the equations for a critical point of the Lagrangian equations

(4) ∇ f(x∗,y∗,z∗) = λ∗
∇g(x∗,y∗,z∗) and C = g(x∗, y∗, z∗).

Let

L(λ, x, y, z) = f (x, y, z) − λ [g(x, y, z) − C]

be the Lagrangian function for the problem. The correspondingbordered Hessian matrixis

(5) H4 = H L(λ∗, x∗, y∗, z∗) =


0 -gx -gy -gz

-gx Lxx Lxy Lxz

-gy L yx L yy L yz

-gz Lzx Lzy Lzz

 ,

where the partial derivatives are evaluated at(x∗, y∗, z∗) andλ∗. In three dimensions, there are two directions
in which we can move in the level surface, and we need two numbers to determine whether the solution of
the Lagrange multiplier problem is a local maximum or local minimum. Therefore, we need to consider not
only the four-by-four bordered matrixH4, but also a three-by-three submatrix; the submatrix is

(6) H3 =



 0 -gx -gy

-gx Lxx Lxy

-gy L yx L yy

 if gx(x∗, y∗, z∗) 6= 0 or gy(x∗, y∗, z∗) 6= 0

 0 -gy -gz

-gy L yy L yz

-gz Lzy Lzz

 if gx(x∗, y∗, z∗) = 0 andgy(x∗, y∗, z∗) = 0,

where the partial derivatives are evaluated at(x∗, y∗, z∗) and λ∗. Then, we have the following second
derivative test.

Theorem 5. Let f and g be real valued functions onR3. Let (x∗, y∗, z∗) ∈ R3 andλ∗ be a solution of the
Lagrange multiplier problem∇ f(x∗,y∗,z∗) = λ∗

∇g(x∗,y∗,z∗) and C= g(x∗, y∗, z∗). Assume that∇g(x∗,y∗,z∗) 6=

0. Define the bordered Hessian matricesH4 andH3 by equations(5) and (6).

(a) The point(x∗, y∗, z∗) is a local minimum of f on c= g(x∗, y∗, z∗) if − det(H3) > 0 and
− det(H4) > 0.

(b) The point(x∗, y∗, z∗) is a local maximum of f on c= g(x∗, y∗, z∗) if − det(H3) < 0 and
− det(H4) > 0.

(c) If − det(H4) < 0, then the point(x∗, y∗, z∗) is a type of saddle and is neither a local minimum nor
a local maximum.

Remark2. Again, the factor−1 in front of the determinants comes from the fact that we are considering
one constraint.

Remark3. The theorem in this case involves the determinant of a four-by-four matrix. In the cases we
evaluate one of these, we expand on a row to find the answer or use the many zeroes in the matrix to get the
answer in terms of the product of determinants of two submatrices. The general treatment of determinants
is beyond this course and is treated in a course on linear algebra.
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A way to see that the conditions on det(H4) and det(H3) are right is to take thespecial casewhere
g(x, y, z) = x, Lxy(x∗) = 0 Lxz(x∗) = 0, andL yz(x∗) = 0. In this case,

H4 =


0 -1 0 0
-1 Lxx 0 0
0 0 L yy 0
0 0 0 Lzz

 and H3 =

 0 -1 0
-1 Lxx 0
0 0 L yy

 .

Then,− det(H3) = L yy, and expanding det(H4) in the fourth row,− det(H4) = −Lzz det(H3) = L yyLzz.
At a local minimumL yy > 0 andLzz > 0, so− det(H3) > 0 and− det(H4) > 0. Similarly, at a local
maximum,L yy < 0 andLzz < 0, so− det(H3) < 0 and− det(H4) > 0. The general case takes into
consideration the cross partial derivatives ofL and allows the constraint function to be nonlinear. However,
an argument using linear algebra reduces the result to this special case.

Example 2. Consider the problem of finding the extreme point off (x, y, z) = x2
+ y2

+ z2 on 2= z− xy.
The method of Lagrange multipliers finds the points

(λ∗, x∗, y∗, z∗) = (4, 0, 0, 2),

= (2, 1, −1, 1), and

= (2, −1, 1, 1).

The Lagrangian function is

L(λ, x, y, z) = x2
+ y2

+ z2
− λz + λxy + λ2

with Hessian matrix

H4 = H L =


0 y x -1
y 2 λ 0
x λ 2 0
-1 0 0 2

 .

At the point(λ∗, x∗, y∗, z∗, λ∗) = (4, 0, 0, 2), expanding on the first row,

− det(H4) = − det


0 0 0 -1
0 2 4 0
0 4 2 0
-1 0 0 2

 = − det

 0 2 4
0 4 2
-1 0 0

 = −12 < 0,

so the point is not a local extremum.
The calculation at the other two points is similar, so we consider the point(λ∗, x∗, y∗, z∗) = (2, 1, -1, 1).

The partial derivativegx(1, -1, 1) = −(-1) 6= 0, so

H3 =

0 y x
y 2 λ

x λ 2

 =

 0 -1 1
-1 2 2
1 2 2

 .

Expanding det(H3) on the first row,

− det(H3) = − det

 0 -1 1
-1 2 2
1 2 2


= − det

(
-1 2
1 2

)
− det

(
-1 2
1 2

)
= 4 + 4 = 8 > 0.
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Expanding det(H4) on the fourth row,

− det(H4) = − det


0 -1 1 -1
-1 2 2 0
1 2 2 0
-1 0 0 2


= − det

-1 1 -1
2 2 0
2 2 0

 − (2) det

 0 -1 1
-1 2 2
1 2 2


= −(0) − 2(−8) = 16 > 0.

Thus, this point is a local minimum. A similar calculation at(x, y, z, λ) = (−1, 1, 1, 2) shows that it is also
a local minimum. When working the problem originally, we found these two points as the minima.

6. An Example with two Constraints

Example 3. Find the highest point on the set given byx + y + z = 12 andz = x2
+ y2.

The function to be maximized isf (x, y, z) = z. The two constraint functions are
g1(x, y, z) = x + y + z = 12 andg2(x, y, z) = x2

+ y2
− z = 0.

The first order conditions are

fx = λgx + µhx 0 = λ + µ2x

fy = λgy + µhy 0 = λ + µ2y

fz = λgz + µhz 1 = λ − µ.

From the third equation, we getλ = 1 + µ. So we can eliminate this variable from the equations. They
become

0 = 1 + µ + µ2x

0 = 1 + µ + µ2y.

Subtracting the second from the first, we get 0= 2µ(x − y), soµ = 0 or x = y.
Consider the first case ofµ = 0. This implies thatλ = 1. But then, 0= λ + 2xµ = 1, which is a

contradiction. Therefore, there is no solution withµ = 0.
Next, assumey = x. Then, from the constraints becomez = 2x2 and 12= 2x + z = 2x + 2x2, so

0 = x2
+ x − 6 = (x + 3)(x − 2), andx = 2 or -3. If x = 2, theny = 2, z = 2x2

= 8, 0 = 1 + µ(5),
µ = -1/5, andλ = 1 + µ = 4/5.

If x = y = -3, thenz = 2x2
= 18, 0= 1 + µ(-5), µ1/5, andλ = 1 + µ = 6/5.

We have found two critical points(λ∗, µ∗, x∗, y∗, z∗) =
(
4/5, -1/5, 2, 2, 8,

)
and

(
6/5, 1/5, -3, -3, 18

)
.

For this example,n = 3 andk = 2, son − k = 1. The bordered Hessian is

H5 = H L =


0 0 -1 -1 -1
0 0 -2x -2y 1
-1 -2x -µ2 0 0
-1 -2y 0 -µ2 0
-1 1 0 0 0

 .



CONSTRAINED EXTREMA 9

At (λ∗, µ∗, x∗, y∗, z∗) =
(
4/5, -1/5, 2, 2, 8,

)
,

(-1)2 det(H L) = det


0 0 -1 -1 -1
0 0 -4 -4 1
-1 -4 2/5 0 0
-1 -4 0 2/5 0
-1 1 0 0 0

 = − det


-1 1 0 0 0
0 0 -4 -4 1
-1 -4 2/5 0 0
-1 -4 0 2/5 0
0 0 -1 -1 -1



= det


1 -1 0 0 0
0 0 -4 -4 1
0 -5 2/5 0 0
0 -5 0 2/5 0
0 0 -1 -1 -1

 = − det


1 -1 0 0 0
0 -5 0 2/5 0
0 -5 2/5 0 0
0 0 -4 -4 1
0 0 -1 -1 -1



= − det


1 -1 0 0 0
0 -5 0 2/5 0
0 0 2/5 -2/5 0
0 0 -4 -4 1
0 0 -1 -1 -1

 = − det


1 -1 0 0 0
0 -5 0 2/5 0
0 0 2/5 -2/5 0
0 0 0 -8 1
0 0 0 -2 -1



= − det


1 -1 0 0 0
0 -5 0 2/5 0
0 0 2/5 -2/5 0
0 0 0 -8 1
0 0 0 0 -5/4

 = 20 > 0.

Therefore, this point is a local minimum.
At (λ∗, µ∗, x∗, y∗, z∗) =

(
6/5, 1/5, -3, -3, 18

)
,

(-1)2 det(H L) = det


0 0 -1 -1 -1
0 0 6 6 1
-1 6 -2/5 0 0
-1 6 0 -2/5 0
-1 1 0 0 0

 = − det


-1 1 0 0 0
0 0 6 6 1
-1 6 -2/5 0 0
-1 6 0 -2/5 0
0 0 -1 -1 -1



= det


1 -1 0 0 0
0 0 6 6 1
0 5 -2/5 0 0
0 5 0 -2/5 0
0 0 -1 -1 -1

 = − det


1 -1 0 0 0
0 5 0 -2/5 0
0 5 -2/5 0 0
0 0 6 6 1
0 0 -1 -1 -1



= − det


1 -1 0 0 0
0 5 0 -2/5 0
0 0 -2/5 2/5 0
0 0 6 6 1
0 0 -1 -1 -1

 = − det


1 -1 0 0 0
0 5 0 -2/5 0
0 0 -2/5 2/5 0
0 0 0 12 1
0 0 0 -2 -1



= − det


1 -1 0 0 0
0 5 0 -2/5 0
0 0 -2/5 2/5 0
0 0 0 12 1
0 0 0 0 -5/6

 = -20 < 0.

Therefore, this point is a local maximum.
These answers are compatible with the values off (x, y, z) at the two critical point: The first is a global

minimum on the constraint set, and the second is a global maximum on the constraint set.


