A FIRM MAXIMIZING PROFIT

1. Two Products

${ }^{1}$ Assume a firm makes two products with output levels of Q_{1} and Q_{2}, prices P_{1} and P_{2}, and revenue is $R=P_{1} Q_{1}+P_{2} Q_{2}$. Assume the cost of production is $C=Q_{1}^{2}+Q_{1} Q_{2}+Q_{2}^{2}$, so the profit is

$$
\pi=R-C=P_{1} Q_{1}+P_{2} Q_{2}-Q_{1}^{2}-Q_{1} Q_{2}-Q_{2}^{2} .
$$

We want to maximize the profit π under two different assumptions.
First Case: In this case, we assume there is pure competition and the prices are determined externally to the firm and are considered fixed by the firm. Taking the partial derivatives with respect to Q_{1} and Q_{2} and setting them equal to zero, we get the two equations

$$
\begin{aligned}
& 0=\frac{\partial \pi}{\partial Q_{1}}=P_{1}-2 Q_{1}-Q_{2} \quad \text { and } \\
& 0=\frac{\partial \pi}{\partial Q_{2}}=P_{2}-Q_{1}-2 Q_{2} .
\end{aligned}
$$

Solving for Q_{1} and Q_{2}, we get the critical values

$$
Q_{1}^{*}=\frac{2 P_{1}-P_{2}}{3} \quad \text { and } \quad Q_{2}^{*}=\frac{2 P_{2}-P_{1}}{3}
$$

The second partial derivatives are

$$
\begin{aligned}
\frac{\partial^{2} \pi}{\partial Q_{1}^{2}} & =-2 & \frac{\partial^{2} \pi}{\partial Q_{2} \partial Q_{1}} & =-1 \\
\frac{\partial^{2} \pi}{\partial Q_{1} \partial Q_{2}} & =-1 & \frac{\partial^{2} \pi}{\partial Q_{1}^{2}} & =-2
\end{aligned}
$$

so

$$
\begin{aligned}
& \frac{\partial^{2} \pi}{\partial Q_{1}^{2}}=-2<0 \quad \text { and } \\
& \frac{\partial^{2} \pi}{\partial Q_{1}^{2}} \frac{\partial^{2} \pi}{\partial Q_{1}^{2}}-\left(\frac{\partial^{2} \pi}{\partial Q_{2} \partial Q_{1}}\right)^{2}=(-2)(-2)-(-1)^{2}=3>0,
\end{aligned}
$$

and the quantities $\left(Q_{1}^{*}, Q_{2}^{*}\right)$ maximize profit.
Second Case: In this case, we assume that the firm has a monopoly and can set the prices of the two products. However, once the prices are fixed, the quantities purchased of the two products is determined by a demand function set by the consumers. We assume that the products are interchangeable, and the demand of each product depends on the prices of both products by the rules

$$
\begin{gathered}
Q_{1}=40-2 P_{1}+P_{2} \\
Q_{2}=15+P_{1}-P_{2} .
\end{gathered}
$$

[^0]Substituting in the quantity demanded for the prices, we get the expression for the revenue in terms of the prices,

$$
\begin{aligned}
\pi= & P_{1}\left(40-2 P_{1}+P_{2}\right)+P_{2}\left(15+P_{1}-P_{2}\right)-\left(40-2 P_{1}+P_{2}\right)^{2} \\
& -\left(40-2 P_{1}+P_{2}\right)\left(15+P_{1}-P_{2}\right)-\left(15+P_{1}-P_{2}\right)^{2} .
\end{aligned}
$$

We want to maximize the profit π as a function of the prices.
Taking the partial derivatives with respect to P_{1} and P_{2}, we get

$$
\begin{aligned}
0= & \frac{\partial \pi}{\partial P_{1}} \\
= & \left(40-2 P_{1}+P_{2}\right)-2 P_{1}+P_{2}+4\left(40-2 P_{1}+P_{2}\right) \\
& \quad+2\left(15+P_{1}-P_{2}\right)-\left(40-2 P_{1}+P_{2}\right)-2\left(15+P_{1}-P_{2}\right) \\
= & 160-10 P_{1}+5 P_{2}, \quad \text { and } \\
0= & \frac{\partial \pi}{\partial P_{2}} \\
= & P_{1}+\left(15+P_{1}-P_{2}\right)-P_{2}-2\left(40-2 P_{1}+P_{2}\right) \\
& \quad-\left(15+P_{1}-P_{2}\right)+\left(40-2 P_{1}+P_{2}\right)+2\left(15+P_{1}-P_{2}\right) \\
= & -10+5 P_{1}-4 P_{2} .
\end{aligned}
$$

Thus, we have the two equations

$$
\begin{aligned}
& 0=160-10 P_{1}+5 P_{2} \\
& 0=-10+5 P_{1}-4 P_{2} .
\end{aligned}
$$

Multiplying the second equation by 2 and adding, we get $0=140-3 P_{2}$ or $P_{2}^{*}=140 / 3=46^{2} / 3$. Then $10 P_{1}=160+5\left({ }^{140} / 3\right)$ and $P_{1}^{*}=118 / 3=39^{1} / 3$.

The second partial derivatives are

$$
\begin{aligned}
\frac{\partial^{2} \pi}{\partial P_{1}^{2}} & =-10 & \frac{\partial^{2} \pi}{\partial P_{2} \partial P_{1}} & =5 \\
\frac{\partial^{2} \pi}{\partial P_{1} \partial P_{2}} & =5 & \frac{\partial^{2} \pi}{\partial P_{1}^{2}} & =-4,
\end{aligned}
$$

so

$$
\begin{aligned}
& \frac{\partial^{2} \pi}{\partial P_{1}^{2}}=-10<0 \quad \text { and } \\
& \frac{\partial^{2} \pi}{\partial P_{1}^{2}} \frac{\partial^{2} \pi}{\partial P_{1}^{2}}-\left(\frac{\partial^{2} \pi}{\partial P_{2} \partial P_{1}}\right)^{2}=(-10)(-4)-(5)^{2}=15>0
\end{aligned}
$$

and the prices $\left(P_{1}^{*}, P_{2}^{*}\right)$ maximize profit.

2. Multiple inputs and one product

Assume a firm makes one product from n inputs. Let p be the price of the output, x_{j} be the amount of the $j^{\text {th }}$ input used, and p_{j} be the price of the $j^{\text {th }}$ input. Let $G\left(x_{1}, \ldots, x_{n}\right)$ be the production function, which gives the amount of output in terms of the inputs. The profits is

$$
\pi=p G\left(x_{1}, \ldots, x_{n}\right)-p_{1} x_{1}-\cdots-p_{n} x_{n}
$$

Assuming the prices are fixed, the inputs which maximize profit satisfy

$$
\begin{aligned}
0 & =\frac{\partial \pi}{\partial x_{i}}=p \frac{\partial G}{\partial x_{i}}-p_{i} \quad \text { or } \\
\frac{\partial G}{\partial x_{i}} & =\frac{p_{i}}{p} .
\end{aligned}
$$

Thus, at the critical point, the marginal product of each input equals the price of the input relative to the price of the output.

The matrix of second partial derivatives is

$$
\left(\frac{\partial^{2} \pi}{\partial x_{i} \partial x_{j}}\right)=\left(p \frac{\partial^{2} G}{\partial x_{i} \partial x_{j}}\right) .
$$

Thus, for the critical point to be a maximum it is necessary that not only $p \frac{\partial^{2} G}{\partial x_{i}^{2}}<0$, but also that the principal determinants have the correct signs,

$$
(-1)^{k} \operatorname{det}\left(p \frac{\partial^{2} G}{\partial x_{i} \partial x_{j}}\right)_{1 \leq i, j \leq k}>0
$$

for each $1 \leq k \leq n$. The requirement that $p \frac{\partial^{2} G}{\partial x_{i}^{2}}<0$ could be viewed as saying that a small change in the input x_{i} makes more difference for small values of x_{i} than for large input: diminishing returns.

For two inputs, we need

$$
\begin{gathered}
p \frac{\partial^{2} G}{\partial x_{1}^{2}}<0 \quad \text { and } \\
p^{2} \frac{\partial^{2} G}{\partial x_{1}^{2}} \frac{\partial^{2} G}{\partial x_{2}^{2}}-p^{2}\left(\frac{\partial^{2} G}{\partial x_{1} \partial x_{2}}\right)>0
\end{gathered}
$$

If we have a Cobb-Douglas production function for two inputs, $Q=k x_{1}^{\alpha} x_{2}^{\beta}$, then

$$
\begin{aligned}
\frac{\partial^{2} Q}{\partial x_{1}^{2}} & =\alpha(\alpha-1) k x_{1}^{\alpha-2} x_{2}^{\beta} \quad \frac{\partial^{2} Q}{\partial x_{2}^{2}}=\beta(\beta-1) k x_{1}^{\alpha} x_{2}^{\beta-2} \\
\frac{\partial^{2} Q}{\partial x_{1} \partial x_{2}} & =\alpha \beta k x_{1}^{\alpha-1} x_{2}^{\beta-1} \\
p^{2} \frac{\partial^{2} G}{\partial x_{1}^{2}} \frac{\partial^{2} G}{\partial x_{2}^{2}}-p^{2}\left(\frac{\partial^{2} G}{\partial x_{1} \partial x_{2}}\right) & =p^{2} k^{2} x_{1}^{2 \alpha-2} x_{2}^{2 \beta-2}\left(\alpha(\alpha-1) \beta(\beta-1)-\alpha^{2} \beta^{2}\right) \\
& =p^{2} k^{2} x_{1}^{2 \alpha-2} x_{2}^{2 \beta-2} \alpha \beta(1-\alpha-\beta) .
\end{aligned}
$$

To make the critical point a maximum, we need $0<\alpha<1,0<\beta<1$, and $\alpha+\beta<1$, i.e., we need a production function with diminishing return to scale.

[^0]: ${ }^{1}$ Based on the treatment in "Fundamental Methods of Mathematical Economics" by Alpha Chiang, McGraw Hill, Inc., 1984

