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Definition 1. A n×n matrix M with real entries mij , is called a stochastic matrix provided
(i) all the entries mij satisfy 0 ≤ mij ≤ 1, (ii) each of the columns sum to one,

∑
i mij = 1

for all j, (iii) each row has some nonzero entry (it is possible to make a transition to each
of the ith-states from some other state), and (iv) some column has more than one nonzero
entry (from one of the jth-states there are two possible following states). The entry mij is
the probability that something taken from the jth-state is returned to the ith-state.

In probability, usually the rows are assumed to sum to one rather than the columns.
However, in that situation, the columns are written as rows and the matrix is multiplied on
the right of the vector. We retain column vectors which are multiplied on the left by the
matrix.

A stochastic matrix M is called regular or eventually positive provided there is a q0 > 0
such that M q0 has all positive entries. This means that for this iterate, it is possible to
make a transition from any state to any other state. It then follows that M q has all positive
entries for q ≥ q0. A regular stochastic matrix automatically satisfies conditions (iii) and
(iv) in the definition of a stochastic matrix.

Let x
(0)
j ≥ 0 is the amount of the material at the jth-location at time 0. Then mijx

(0)
j is

the amount of material from the jth-location that is returned to the ith-location at time 1.
The total amount at the ith-location at time 1 is the sum of the material from all the sites,

x
(1)
i =

∑
j

mijx
(0)
j .

Let

x(q) =

x
(q)
1
...

x
(q)
n


be the vector of the amount of material at all the sites. By the above formula,

x(1) = Mx(0)

and more generally

x(q+1) = Mx(q).
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Notice that the total amount of material at time 1 is the same as at time 0:∑
i

x
(1)
i =

∑
i

∑
j

mijx
(0)
j


=
∑

j

(∑
i

mij

)
x

(0)
j

=
∑

j

x
(0)
j .

Call this amount X. Then,

p
(q)
j =

x
(q)
j

X

is the proportion of the material at the jth-site at time q. Letting

p(q) =
(
p
(q)
j

)
=

1
X

x(q)

be the vector of these proportions,

Mp(q) = M
x(q)

X

=
1
X

Mx(q)

=
1
X

x(q+1)

= p(q+1)

also transforms by multiplication by the matrix M .
For a stochastic matrix M , 1 is always an eigenvalue of the the transpose of M , MT ,

with eigenvector

1
...
1

:

MT

1
...
1



∑

i mi11
...∑

i min1

 =

1
...
1

 .

Since MT and M have the same eigenvalues, M always has 1 as an eigenvalue.
Before stating the general result, we give some examples.

Example 1. Let

M =

0.5 0.2 0.3
0.3 0.8 0.3
0.2 0 0.4

 .

This has eigenvalues 1, 0.5, and 0.2. (We do not give the characteristic polynomial, but do
derive an eigenvector for each of these values.)
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For λ = 1,

M − I =

−0.5 0.2 0.3
0.3 −0.2 0.3
0.2 0 −0.6


∼

1 −0.4 −0.6
0 −0.08 0.48
0 0.08 −0.48


∼

1 0 −3
0 1 −6
0 0 0

 .

Thus, v1 = 3v3 and v2 = 6v3. Since we want 1 = v1 + v2 + v3 = (3 + 6 + 1)v3 = 10v3,
v3 = 0.1, and

v1 =

0.3
0.6
0.1

 .

For λ2 = 0.5,

M − 0.5 I =

 0 0.2 0.3
0.3 0.3 0.3
0.2 0 −0.1


∼

2 0 −1
0 2 3
1 1 1


∼

2 0 −1
0 2 3
0 1 1.5


∼

2 0 −1
0 2 3
0 0 0


Thus, 2v1 = v3 and 2v2 = 3v3, and

v2 =

 1
−3
2

 .

Notice that v2
1 + v2

2 + v2
3 = 1− 3 + 2 = 0. This is always the case for the eigenvectors of the

other eigenvalues.
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For λ3 = 0.2,

M − 0.2 I =

0.3 0.2 0.3
0.3 0.6 0.3
0.2 0 0.2


∼

1 0 1
3 6 3
3 2 3


∼

1 0 1
0 6 0
0 2 0


∼

1 0 1
0 1 0
0 0 0


Thus, v1 = −v3 and v2 = 0, and

v3 =

 1
0
−1

 .

Notice that v3
1 + v3

2 + v3
3 = 1 + 0− 1 = 0 is true in this case as well.

If the original distribution is given by

p(0) =

0.45
0.45
0.1

 =

0.3
0.6
0.1

+
1
20

 1
−3
2

+
1
10

 1
0
−1

 ,

then

M qp(0) =

0.3
0.6
0.1

+
1
20

(
1
2

)q
 1
−3
2

+
1
10

(
1
5

)q
 1

0
−1


which converges to the distribution

v1 =

0.3
0.6
0.1


Take any initial distribution p(0) with

∑
i p

(0)
i = 1. Writing p(0) = y1v1 + y2v2 + y3v3,

1 =
∑

i

p
(0)
i

= y1

(∑
i

v1
i

)
+ y2

(∑
i

v2
i

)
+ y3

(∑
i

v3
i

)
= y1(1) + y2(0) + y3(0)
= y1.

Thus,
p(0) = v1 + y2v2 + y3v3,
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and
M qp(0) = v1 + y2(0.5)qv2 + y3(0.2)qv3

converges to v1, the eigenvector for λ = 1.

Example 2 (Complex Eigenvalues). The following stochastic matrix illustrates the fact
that a regular stochastic matrix can have complex eigenvalues. Let

M =

0.6 0.3 0.1
0.1 0.6 0.3
0.3 0.1 0.6

 .

The eigenvalues are λ = 1 and 0.4± i 0.1
√

3. Notice that |0.4± i 0.1
√

3| =
√

0.16 + 0.03 =√
0.19 < 1.

Example 3 (Not Regular). An example of a stochastic matrix which is not regular (nor
transitive) is given by

M =


0.8 0.3 0 0
0.2 0.7 0 0
0 0 0.6 0.3
0 0 0.4 0.7

 ,

which has eigenvalues λ = 1, 1, 0.5, and 0.3. Notice that states 1 and 2 interchange with
each other and states 3 and 4 interchange, but there is no interchange between the pair of
sites 1 and 2 with the pair of sites 3 and 4.

An example of a stochastic matrix which is transitive but not regular is given by

M =


0 0 0.8 0.3
0 0 0.2 0.7
1 0 0 0
0 1 0 0

 ,

which has eigenvalues λ = 1, −1, and ±
√

0.5. Here is is possible to get from any site to any
other site, but starting at site one, the even iterates are always at either sites 3 or 4 and
the odd iterates are always at either sites 1 or 2. Thus there is no one power for which all
the transition probabilities are positive. Thus, M is not regular.

The following theorem summarizes some of the results about regular stochastic matrices
which the above examples illustrated.

Theorem 0.1. Let M be a regular stochastic matrix.
(a) The matrix M has 1 as a eigenvalue of multiplicity one. The eigenvector v1 can be

chosen with all positive entries and
∑

i v
1
i = 1. (It must have either all positive entries or

all negative entries.)
(b) All the other eigenvalues λj have |λj | < 1. If vj is the eigenvector for λj, then∑
i v

j
i = 0.

(c) If p is any probability distribution with
∑

i = 1, then

p = v1 +
n∑

j=2

yjvj .

Also, M qp goes to v1 as q goes to infinity.
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Sketch of the proof. We assume below that all the mij > 0, which can be done by taking a
power if necessary.

(a) The multiplicity of the eigenvalue 1 is one. We noted above MT always has 1 as an
eigenvalues so it is always an eigenvalue of M . Again, to discuss the multiplicity, we look at
MT . Assume MTv = v and not all the vj are equal. Assume that k is the index for which
|vk is largest. By scalar multiplication by −1 if necessary we can take vk positive. Thus,
vk = |vk| ≥ |vj | for all j and vk > |v`| for some `. Then,

vk =
∑

j

mjkvj

<
∑

j

mjkvk

= vk.

The second strict inequality uses the fact that all the mij > 0, i.e., that M is regular. Since
this shows vk > vk, the contradiction implies that there are no such other vectors, i.e., that
there can only be one eigenvector for the eigenvalue 1.

To complete the proof, we would have to consider the case with only one eigenvector
but an algebraic multiplicity of the characteristic equation. We leave this detail to the
references.

(b) Case (i): Assume λ is a real eigenvalue. We show that λ < 1. Again, assume that
MTv = λv. Let k be such that vk = |vk| ≥ |vj | for all j and vk > |v`| for some `. Then,

λvk =
∑

j

mjkvj

<
∑

j

mjkvk

= vk.

This shows that λvk < vk, so λ < 1.
Case (ii): Assume λ is a real eigenvalue. We show that λ > −1. Again, assume that

MTv = λv. Let k be such that vk = |vk| ≥ |vj | for all j and vk > |v`| for some `, i.e.,
vj ≥ −vk for all j and v` > −vk for some `. Then,

λvk =
∑

j

mjkvj

>
∑

j

mjk(−vk)

= −vk.

This shows that λvk > −vk, so λ > −1.
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Care (iii) Assume λ = r e2πωi is a complex eigenvalue with complex eigenvector v. Assume
the vj are chosen with vk real and vk ≥ Re(vj) for all j. Then,

Re(λqvk) = Re(rq e2πqωivk)

= Re((M qv)k)

= (M qv)Re(v)

=
∑

j

(
m

(q)
jk Re(vj)

)
<
∑

j

(
m

(q)
jk vk

)
= vk.

Therefore, rqRe(e2πqωi) < 1 for all q. Since we can find a q1 for which Re(e2πq1ωi) is very
close to 1, we need rq1 < 1 so r = |λ| < 1.

(c) Let p be a probability distribution with
∑

i pi = 1. The eigenvectors are a basis, so
there exist y1, . . . yn such that

p =
n∑

j=1

yj vj .

Then,

1 =
∑

i

pi

= y1

∑
i

v1
i +

n∑
j=2

yj

∑
i

vj
i

= y1 +
n∑

j=2

yj (0)

= y1.

Thus,

p = v1 +
n∑

j=2

yj vj

as claimed.
Writing the iteration as if all the eigenvalues are real,

M qp = M qv1 +
n∑

j=2

yj M qvj = v1 +
n∑

j=2

yj λq
jv

j

which tends to v1 because all the λq
j | < 1 for j ≥ 2. �
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