
SUPPLEMENTAL PROBLEMS AND HINTS FOR MATH 368

Chapter 3: Linear Programming

SP3.1 For this problem, mark each statement True or False and justify each answer. The statements relate to a
standard maximum linear program with the objective function f (x) = c · x the constraint inequality Ax ≤ b
for an m × n coefficient matrix A and constant vector b ∈ Rm

+, and 0 ≤ x.
a. If a standard maximization linear program does not have an optimal solution, then either the objective

function is unbounded on the feasible set F or F is the empty set.
b. If x̄ is an optimal solution of a standard maximization linear program, then x̄ is an extreme point of the

feasible set.
c. A slack variable is used to change an equality into an inequality.
d. A solution is called a basic solution if exactly m of the variables are nonzero.
e. The basic feasible solutions correspond to the extreme points of the feasible region.
f. The bottom entry in the right column of a simplex tableau gives the maximum value of the objective

function.
g. For a tableau for a maximization linear program, if there is a column with all negative entries including the

one in the row for the objective function, then the linear programming problem has no feasible solution.
h. The value of the objective function for a MLP at any basic feasible solution is always greater than the value

at any non-basic feasible solution.
i. If a standard maximization linear program MLP has nonempty feasible set, then it has an optimal basic

solution.
j. In the two-phase simplex method, if an artificial variable is positive for the optimal solution for the artificial

objective function, then there is no feasible solution to the original linear program.

SP3.2 Show that the following problem permits the objective function to assume arbitrarily large values:
Maximize 2x + y
Subject to: x − y ≤ 3

−3x + y ≤ 1
0 ≤ x , 0 ≤ y.

3.3:3 Hint: The problem become degenerate in the sense that the constant on the right side become zero. That is
OK. 0 ≤ 0/3 < 1 so that is a good place to pivot.

Do not pivot on a location with 0 or a negative entry in that location in the new pivot column.
The entries in the right hand column should keep ≥ 0 during the row reduction. These are the values of the

basic variables, and we want all values ≥ 0.

3.4:5 Hint: This corresponds to Case 1 in the proof of Theorem 3.4.2.

3.4:6 Hint: This corresponds to Case 2 in the proof of Theorem 3.4.2. You need to find a vector y such that Ay = 0
(i.e. in the null space), c · y > 0, and all yi ≥ 0. For such a y, A(x + ty) = Ax = b, xi + t yi ≥ 0 for t ≥ 0 so
it is feasible, and f (x + ty) = f (x) + t c · y goes to infinity as t goes to infinity.

To find this y, apply the simplex method to equations as given (ignoring the given xT
= (0, 12, 0, 16, 0, 2)).

You should come to a situation where an entry in the objective function row is negative and all the entries above
it are negative (you only need nonpositive). This is the situation of Rule 4 on page 91 of Walker and my 3′ on
page 6 of my lecture notes. To find y, keep all the free (nonbasic) variables except the one xk for the column
found. Write down the general solution of the equation Ax = b taking all the terms involving this one free
variable to the right side of the equation. The constants give the basic solution and the coefficients of this one
free variable will be all nonnegative and will give the y desired.

Date: April 22, 2013.
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Chapter 4: Linear Programming Duality

SP4.1 For this problem, mark each statement true or false and justify each answer. The statements relate to a
standard maximum linear program MLP with the objective function f (x) = c · x and the constraint inequality
Ax ≤ b for an m × n coefficient matrix A and constant vector b ∈ Rm

+, and x ≥ 0.
a. The dual mLP problem is to minimize y in Rm subject to Ay ≥ c and y ≥ 0.
b. If x̄ is an optimal solution to the primal MLP and ŷ is a feasible solution to the dual mLP, then

f (x̄) = g(ŷ).
c. If a slack variable is s̄i > 0 in an optimal solution, then the addition to the objective function that would be

realized by one more unit of the resource corresponding to its inequality is positive.
d. If a maximization linear program MLP and its dual minimization linear problem mLP each have nonempty

feasible sets (some feasible point), then each problem has an optimal solution.
e. If the optimal solution of a standard MLP has a slack variable si = 0, then the i th resource has zero marginal

value, i.e., one unit of the i th resource would add nothing to the value of the objective function.

Chapter 6: Unconstrained Extrema

SP6.1 Consider the sets

S1 = { (x, y) ∈ R2 : 1 < x < 1 }

S2 = { (x, y) ∈ R2 : x ≥ 1, y ≥ 0 }.

a. For the sets S1 and S2, discuss which points are in the boundary and which points are not using the
definition of the boundary.

b. Discuss why S1 is open in two ways: (i) S1 ∩ ∂(S1) = ∅ and (ii) for every point p ∈ S1, there is an
r > 0 such that B(p, r) ⊂ S1.

c. Discuss why S2 is closed in two ways: (i) ∂(S2) ⊂ S2 and (ii) for every point p ∈ Sc
2, there is an r > 0

such that B(p, r) ⊂ Sc
2.

SP6.2 Let f : R+ → R be continuous, f (0) = 1, and limx→∞ f (x) = 0.
a. Show that there is a p > 0 such that the maximum value of f (x) on [0, p] is larger than any value of

f (x) for x > p. Hint: Take p such that f (x) < 1
2 f (0) for x ≥ p.

b. Show that f (x) has a maximum on R+.
c. Does f (x) have to have a minimum on R+? Explain why or why not.

SP6.3 Let D = { (x, y) ∈ R2
+ : xy ≥ 1 } and B = { (x, y) ∈ R2

+ : x + y ≤ 10 }. (Note that D is not compact.)
Assume that f : R2

+ → R is a continuous function with f (x, y) > f (2, 3) for x + y > 10, i.e. for
(x, y) ∈ R2

+ r B.
a. Why must f attain a minimum on D ∩ B?
b. Using reasoning like for SP6.2, explain why f attains a minimum on all of D .

SP6.4 Compute the second order Taylor polynomial (without explicit remainder) for f (x, y) = ex cos(y) around
(x0, y0) = (0, 0).
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SP6.5 Find all the critical points and classify them as local maximum, local minimum, or neither for the following
functions.
a. f (x, y, z) = x4

+ x2
− 6xy + 3y2

+ z2

b. f (x, y, z) = 3x − x3
− 2y2

+ y4
+ z3

− 3z

SP6.6 Suppose f : D ⊂ Rn
→ R is C1 and has a maximum at a point x∗ in the boundary of D , ∂(D). Does

D f (x∗) have to equal 0 at x∗? Hint: What sort of examples have we considered?

SP6.7 Find the points at which each of the following functions attains a maximum and minimum on the interval
0 ≤ x ≤ 3. For parts (a) and (b), also find the maximum and minimum values. Remember to consider the end
points of the interval [0, 3].
a. f (x) = x2

− 2x + 2.
b. g(x) = −x2

+ 2x + 4.
c. The function h(x) satisfies h′(x) > 0 for all 0 ≤ x ≤ 3.
d. The function k(x) satisfies k′(x) < 0 for all 0 ≤ x ≤ 3.
e. The function u(x) satisfies u′(x) = 0 for all 0 ≤ x ≤ 3.

Chapter 7: Constrained Extrema

SP7.1 (Implicit Function Theorem) A firm uses two inputs, q1 and q2 to produce a single output Q, given by the

production function Q = kq
2/5
1 q

1/5
2 . Let P be the price of the output Q, p1 be the price of q1, and p2 be the

price of q2. The profit is given by π = Pkq
2/5
1 q

1/5
2 − p1q1 − p2q2. The inputs that maximize profits satisfy

0 =
2Pk

5
q−

3/5
1 q

1/5
2 − p1 and

0 =
Pk
5

q
2/5
1 q−

4/5
2 − p2.

a. Show that this two equations can be used to determine the amounts of inputs q1 and q2 in terms of the
prices p1, p2, and P . Show that the relevant matrix has nonzero determinant.

b. Write the matrix equation for the partial derivatives of q1 and q2 with respect to p1, p2 and P in terms of
the variables.

c. Solve for the matrix of partial derivatives of q1 and q2 in terms of p1, p2 and P .

SP7.2 (Implicit Function Theorem) A nonlinear Keynesian IS-LM model for national income involves the following
quantities:

Y Gross domestic product (GDP)
G Government spending
r Interest rate

M Money supply

In addition, there are three quantities which are functions of the other variables (intermediate variables). In-

vestment expenditure I is a function of the interest rate given by I (r) =
I0

r + 1
. The consumption is a function

of Y given by C(Y ) = C0 +
5
6 Y +

1
6 e -Y with C0 a constant. The gross domestic product is the sum of con-

sumption, investment expenditure, and government spending, Y = C+ I +G = C0+
5
6 Y +

1
6 e -Y

+
I0

r + 1
+G.

The money supply equals the liquidity function, M =
Y

r + 1
. With these assumptions, the model yields the

following two equations:

0 = C0 −
1
6

Y +
1
6

e -Y
+

I0

r + 1
+ G and

0 =
Y

r + 1
− M.
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a. Using the Implicit Function Theorem, show that these two equations define Y and r as dependent variables
which are determined by the independent variables G and M , i.e., these equations define Y and r as
functions of G and M .

b. Write the matrix equation that the partial derivatives of Y and r with respect to G and M must satisfy.
c. Solve for the matrix equation for the partial derivatives of Y and r with respect to G and M .

SP7.3 Find the points satisfying the first order conditions for a constrained extrema and then apply the second order
test to determine whether they are local maximum or local minimum.
a. f (x, y, z) = xyz and g(x, y, z) = 2x + 3y + z = 6.
b. f (x, y, z) = 2x + y2

− z2, g1(x, y, z) = x − 2y = 0, and g2(x, y, z) = x + z = 0.

SP7.4 For each of the following objective and constraint functions, find the maximizer and minimizers.
a. f (x, y, z) = x2

+ y2
+ z2, subject to g(x, y, z) = x + y + z = 12 and h(x, y, z) = x2

+ y2
− z = 0.

b. f (x, y, z) = x + y + z, subject to g(x, y, z) = x2
+ y2

= 2 and h(x, y, z) = x + z = 1.
c. Minimize f (x, y, z) = x2

+ y2
+ z2, subject to g(x, y, z) = x +2y +3z = 6 and h(x, y, z) = y + z = 0.

SP7.5 (cf 7.4:3) Consider the problem
Maximize: f (x, y) = 2 − 2 y
Subject to g1(x, y) = y + (x − 1)3

≤ 0
g2(x, y) = x ≤ 0,
g3(x, y) = y ≤ 0.

Carry out the following steps to show that the maximizer is a point at which the constrain qualification fails.
a. By drawing a figure, show that the feasible set is a three sided (nonlinear) region with vertices at (0, 0),

(1, 0), and (0, 1).
b. Plot several level curves f -1(C) of the objective function to your figure from part (a) and conclude geo-

metrically that (0, 1) is a maximizer and (1, 0) is a minimizer of f (x, y) on the feasible set.
c. Show that the constraint qualification fails at (0, 1). Also, show that D f (0, 1) cannot be written as a linear

combination of the derivatives Dgi (0, 1) of the effective constraints.

SP7.6 Maximize the revenue
π = p1 y1 + p2 y2 = p1x1/2

1 + p2x1/2
1 x1/3

2
subject to a wealth constraint on the inputs

w1x1 + w2x2 ≤ C > 0, x1 ≥ 0 x2 ≥ 0.

a. Write down the constraint functions and the equations that must be satisfied for Theorem 7.4.1.
b. Take w1 = w2 = 2, p1 = p2 = 1, and C = 8, and find explicit values of x1 and x2 that attains the

maximum.

SP7.7 A firm produces a single output q with two inputs x and y, with production function q = xy. The output must
be at least q0 units, xy ≥ q0 > 0. The firm is obligated to use at least one unit of x , x ≥ 1. The prices of x and
y are w and 1 respectively. Assume that the firm wants to minimize the cost of the inputs f (x, y) = wx + y.
a. Is the feasible set closed? Compact? Convex?
b. Write down the first order KKT conditions.
c. Find the minimizer by solving the KKT-1,2 equations.

Hints: (i) Note that one of the equations for KKT-1 implies that the multiplier for 0 ≥ q0 − xy is nonzero
and so this constraint must be effective at a solution.
(ii) If 0 ≥ 1 − x is tight, then q ≤ w because both multiplier must be less than or equal to zero.
(iii) If the multiplier for 0 ≥ 1 − x is zero, then q ≥ w because x ≥ 1.

SP7.8 Let f : Rn
++ → R be defined by f (x1, . . . , xn) = ln(xα1

1 · · · xαn
n ), where all the αi > 0. Is f convex or

concave?

SP7.9 Assume that gi : D ⊂ Rn
→ R for 1 ≤ i ≤ k are convex and bounded on D .

a. Show that f (x) = max1≤i≤k gi (x) is convex.
Hint: maxi { ai + bi } ≤ maxi { ai } + maxi { bi }.

b. Is g(x) = min1≤i≤k gi (x) convex? Why or why not?
Hint: min{ ai + bi } ≥ min{ ai } + min{ bi }.

c. If the gi are concave, is min1≤i≤k gi (x) concave?
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SP7.10 Let I, pi > 0 for 1 ≤ i ≤ n. Show that

BBB(p, I ) = {x ∈ Rn
+ : p1x1 + · · · + pn xn ≤ I }

satisfies Slater’s condition. Hint: Split up 1
2 I evenly among the amounts spent on the various commodities.

SP7.11 Assume that f, g : Rn
→ R are C1, f is concave, and g is convex. Let DDDg = { x ∈ Rn

+ : g(x) ≤ b },
x̄ ∈ DDDg ∩ Rn

++ with g(x̄) < b, and p∗
∈ arg max{ f (x) : x ∈ DDDg } ∩ Rn

++ with D f (p∗) 6= 0 and
Dg(p∗) 6= 0. Explain why p∗ is a minimizer of g(y) on DDD f = { y ∈ Rn

+ : f (y) ≥ f (p∗) } with g(p∗) = b.

SP7.12 Give an example of a concave function f : R+ → R that is bounded above but does not attain a maximum.

SP7.13 Indicate which of the following statements are true and which are false and justify each answer. For a true
statement explain why it is true and for a false statement either indicate how to make it true or indicate why the
statement is false.
a. If DDD = { x ∈ Rn : gi (x) ≤ bi for 1 ≤ i ≤ m } is convex, then each of the gi must be convex.
b. If f : DDD ⊂ Rn is continuous and f (x) attains a maximum on DDD , then DDD is compact.
c. If f, gi : Rn

→ R are C1 for 1 ≤ i ≤ m, DDD = { x ∈ Rn : gi (x) ≤ bi for 1 ≤ i ≤ m }, f (x) satisfies
KKT-1,2,3 at x∗

∈ DDD , and the constraint qualification holds at x∗, then x∗ must be a maximizer of f (x)
on DDD .

d. If DDD = { x ∈ Rn : gi (x) ≤ bi for 1 ≤ i ≤ m } is convex, f : Rn
→ R is C1, x∗ satisfies KKT-1,2,3 and

is a maximizer of f , then f must be concave.
e. Assume that f, gi : Rn

→ R are C1 for 1 ≤ i ≤ m, DDD = { x ∈ Rn : gi (x) ≤ bi }, the constraint
qualification is satisfied at all points of DDD , and p1, . . . , pk are the set of all the points in DDD that satisfy
KKT-,1,2,3. Then, f (x) attains a maximum on DDD and max{ f (x) : x ∈ DDD } = max{ f (p j ) : 1 ≤ j ≤ k }.

f. For a C2 function f : Rn
→ R with a critical point x∗ at which the second derivative (or Hessian matrix)

D2 f (x∗) is negative definite, then x∗ is a maximizer of f on Rn .
g. Let f, g j : Rn

+ → R be C1 for 1 ≤ j ≤ m, DDD = { x : g j (x) ≤ b j for 1 ≤ j ≤ m }, and {x∗

k }
K
k=1 be the

set of points where either (i) the KKT-1,2,3 conditions hold or (ii) the constraint qualification fails. Then
f must have a maximum on DDD at one of the points {x∗

k }
K
k=1.

h. Assume that g j : Rn
+ → R are continuous and convex for 1 ≤ j ≤ m,

DDD = { x ∈ Rn
+ : g j (x) ≤ b j for 1 ≤ j ≤ m }, f : Rn

→ R is concave, and f has a local maximum on
DDD at x∗. Then x∗ is a global maximizer of f on DDD .

i. If DDD = { x ∈ Rn : gi (x) ≤ bi for 1 ≤ i ≤ m } is convex and f is concave on DDD , then f must have a
maximum on DDD .

Correspondences & Parametric Maximization

SP.PM.1 Let S = [0, 1] and S = R. For each of the following correspondences DDD : S → PPP(R), (i) draw its graph and
(ii) determine whether it is uhc, and/or continuous. Hint: By Proposition 1, the correspondence is uhc iff it is
closed-graph. (They satisfy the other assumptions of the proposition.)

a. DDD(s) =

{
[0, 2s] for s ∈

[
0, 1/2

)
,

[0, 2 − 2s] for s ∈
[
1/2, 1

]
.

b. DDD(s) =

{
[0, 1 − 2s] for s ∈

[
0, 1/2

]
,

[0, 2 − 2s] for s ∈
(

1/2, 1
]
.

c. DDD(s) =

{
[0, 1 − 2s] for s ∈

[
0, 1/2

)
,

[0, 2 − 2s] for s ∈
[
1/2, 1

]
.

d. DDD(s) = {0, s} for s ∈ [0, 1] (two points for each s).

e. DDD(s) =

{
{0} for s < 0 (one point for each s),
{ 1, 1} for s ≥ 0 (two points for each s).

.
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SP.PM.2 Let X = [0, 1] = S, and f : S × X → R be defined by f (s, x) = 3 + 2x − 3s − 5xs. Here, DDD(s) = [0, 1] for
all s. Find f ∗(s) and DDD∗(s) for each value of s. Using the f ∗ and DDD∗ you have found, discuss why f ∗(s) is a
continuous function and DDD∗(s) is a uhc correspondence. (Do not just quote a theorem.) Hint: If fx (s, x) > 0
for all x ∈ [0, 1], the then maximum occurs for x = 1. If fx (s, x) < 0 for all x ∈ [0, 1], then the maximum
occurs for x = 0.

SP.PM.3 (Sundaram 9.5:12) Let f : R+ × R+ → R be defined by

f (s, x) = (x − 1) − (x − s)2.

Define the correspondence DDD : R+ → PPP(R+) by DDD(s) = [0, 1] for s ≥ 0. Do the hypotheses of the Para-
metric Maximum Theorem 2 hold for this problem? Verify, through direct calculation whether the conclusions
of the Parametric Maximum Theorem hold for DDD∗(s) and f ∗(s).

Hint: Find the critical point, xs and verify that
∂2 f
∂x2 < 0. If xs ∈ DDD(s) then it is the maximizer.

If xs /∈ DDD(s) is
∂ f
∂x

always positive or always negative on [0, 1]? Is the maximizer the right or left end point.

SP.PM.4 Let f (s, x) = sin(x) + sx , for s ∈ S = [ 1, 1] and x ∈ DDD(s) = [0, 3 π ].
a. Discuss why the Maximum Theorem applies.
b. Without finding explicit values, sketch the graph of f ∗ and DDD∗. Discuss why these graphs look as they do

and how they satisfy the conclusion of the Maximum Theorem.
Hint: Draw the graph of f (s, x) as a function of x for three cases of s: (i) s < 0, (ii) s = 0, and
(iii) s > 0.

SP.PM.5 Let S = [0, 2], S = [0, 1], f : S × 222 → R be defined by f (s, x) = −(x + s − 1)2, and DDD(s) = [0, s]. Find
f ∗(s) and DDD∗(s) for each value of s. Draw the graphs of f ∗ and DDD∗

SP.PM.6 Let S =
[

1/2, 1/2
]

and X = [ 1, 1]. Let the correspondence DDD : S → PPP(X) and function f : S × X → R
be defined by

DDD(s) =


[ 1, 1 + 4s] for s < 0,

[ 1, 1] for s = 0,

[ 1 + 4s, 1] for s > 0,

for s < 0, f (s, x) =



x + 1 for 1 ≤ x ≤ 1 − s,
x − 1 − 2s for 1 − s ≤ x ≤ 1 − 2s,

0 for 1 − 2s ≤ x ≤ 1 + 2s
x + 1 + 2s for 1 + 2s ≤ x ≤ 1 + s,

x − 1 for 1 + s ≤ x ≤ 1.

f (0, x) = 0,

for s > 0, f (s, x) =



x − 1 for 1 ≤ x ≤ 1 + s,
x + 1 − 2s for 1 + s ≤ x ≤ 1 + 2s,
0 for 1 + 2s ≤ x ≤ 1 − 2s,
x − 1 + 2s for 1 − 2s ≤ x ≤ 1 − s,

x + 1 for 1 − s ≤ x ≤ 1.

1
1 + s

1 + 2s
1 − 2s

1 − s
11

1 − s
1 − 2s

1 + 2s
1 + s

1

s > 0s < 0

a. Sketch the graph of DDD . Do f and DDD meet all the conditions of the Maximum Theorem? If yes, justify your
claim. If no, list all the conditions you believe are violated and explain why you believe each of them is
violated.
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b. For each s, determine the value of f ∗(s) and the set DDD∗(s), and sketch the graphs of f ∗ and DDD∗.
Hint: Consider s > 0, s = 0, and s < 0 separately. Also, you may have to split up 222 into subintervals
where DDD(s) contains the point that maximizes f (s, x) on [ 1, 1] and where it does not.

c. Is f ∗ continuous? Is DDD∗(s) 6= ∅ for each s? If so, determine whether DDD∗ is uhc and/or continuous on S.

SP.PM.7 (cf Sundaram 9.5:13.) Let S = [0, 1] and X = [0, 2]. Let the correspondence DDD : S → PPP(X) be defined by

DDD(s) =

{
[0, 1 − 2s] for s ∈

[
0, 1/2

)
,

[0, 2 − 2s] for s ∈
[
1/2, 1

]
.
.

Let the function f : S × X → R be defined by

f (s, x) =



0 if s = 0, x ∈ [0, 2],
x
s

if s > 0, x ∈ [0, s),

2 −

( x
s

)
if s > 0, x ∈ [s, 2s],

0 if s > 0, x ∈ (2s, 2].

.

a. Sketch the graph of f for s > 0. Sketch the graph of DDD . Do f and DDD meet all the conditions of the
Maximum Theorem? If yes, justify your claim. If no, list all the conditions you believe are violated and
explain why you believe each of them is violated. (Is f continuous at s = 0?)

b. For each s, determine the value of f ∗(s) and the set DDD∗(s), and sketch the graphs of f ∗ and DDD∗.
Hint: You may have to split up S into subintervals where DDD(s) contains the point that maximizes f (s, x)
on [0, 2] and where it does not.

c. Is f ∗ continuous? Is DDD∗(s) 6= ∅ for each s? If so, determine whether DDD∗ is uhc and/or continuous on S.

Finite Horizon Dynamic Programming, FHDP

SP.FH.1 Consider the Consumption-Savings FHDP with δ = 1, rt (w, c) = c
1
3 , transition function ft (c, w) = (w−c),

8t (wt ) = [0.wt ], and T = 2. Find the value functions and optimal strategy for each stage.

SP.FH.2 Consider the Consumption-Savings FHDP with T > 0, rt (w, c) = ln(c) (δ = 1), transition function
ft (w, c) = w − c, and 8t (w) = [0, w] for all periods. Find the value functions and optimal strategy for
each stage. Remark: The reward function equals minus infinity for c = 0, but this just means that it is very
undesirable.
Hint: Compute, VT (wT ) and VT −1(wT −1). Then guess the form of VT −t , and prove it is valid by induction.

SP.FH.3 Consider the Consumption-Savings FHDP with r(w, c)) = 1 − e -c, transition function ft (wt , c) = wt − c,
and 8t (wt ) = [0, wt ]. Find the value functions and optimal strategy for each stage.

SP.FH.4 Consider the FHDP with δ = 1, rt (s, c) = 1 −
1

1 + c
, transition function ft (s, c) = (s − c), 8t (st ) = [0.st ],

and T ≥ 2.
a. Find the value function and optimal strategy for t = T and T − 1.

b. Using backward induction, verify that Vt (s) = 1 + t −
(1 + t)2

1 + t + s
. Also, determine the optimal strategy for

each t .

Stationary Dynamic Programming, SDP

SP.SD.1 Consider the SDP problem with reward function r(s, a) = u(a) = a
2/3, transition function f (s, a) = k(s−a)

with k ≥ 1, 8(s) = [0, s], and 0 < δ < 1.
a. Using the guess that V (s) = M s

2/3, find the action a = σ(s) in terms of M that maximizes the right
hand side of the Bellman equation.

b. Substitute the solution of part (b) in the Bellman equation to determine the constant M and V (s).
c. What is the optimal strategy?
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SP.SD.2 Consider the SDP problem with reward function r(s, a) = u(a) = ln(a), transition function f (s, a) =

(s − a)β with 0 < β ≤ 1 8(s) = [0, s], and 0 < δ < 1. (Note that u(a) = ln(a) is unbounded below at
0, and the choices are open at 0, but it turns out that the Bellman equation does have a solution. This SDP is
a model of Brock-Mirman for an amount st of capital at period-t , consumption at at period-t . The production
function f determines the capital at the next period, st+1 = f (st , at ).)
Start with the guess that this SDP has a value function of the form V (s) = A + B ln(s).
a. Find the action a = σ(s) in terms of A and B that maximizes the right hand side of the Bellman equation.
b. Substitute the solution of part (b) in the Bellman equation to determine the constants A and B. Hint: In the

Bellman equation, the coefficients of ln(y) on the two sides of the equation must be equal and the constants
must be equal. Solve for B first and then A.

c. What is the optimal strategy?

SP.SD.3 Consider the SDP problem with S = [0, ∞), A, 8(s) = [0, s], f (s, a) = 2s − 2a, r(s, a) = 2 − 2e -a , and
δ = 1/2. Start with the guess that this SDP has a value function of the form V (s) = A − B e -bs .
a. Find the action ā = σ(s) that maximizes the right hand side of the Bellman equation. (The answer can

contain the unspecified parameters A, B, and b.)
b. What equations must A, B, and b satisfy to be a solution of the Bellman equation?
c. Solve for A, B, and b.
d. Give the value function and the optimal strategy in terms of the original data for the problem.

SP.SD.4 Consider the SDP problem with discount 0 < δ < 1, bounded reward function r(s, a) =
a

1 + a
= 1−

1
1 + a

,

and transition function f (s, a) = k(s − a) with k > 1 and kδ = 1. Start with the guess that this SDP has a

value function of the form V (s) =
s

1 + Bs
=

1
B

[
1 −

1
1 + Bs

]
.

a. What is the Bellman equation for this problem?
b. Find the action a = σ(s) that maximizes the right hand side of the Bellman equation.
c. Substitute the solution of part (b) in the Bellman equation to determine the constant B.
d. What is the optimal strategy?

SP.SD.5 Consider the Consumption-Savings FHDP with T > 0, rt (w, c) = δt ln(c) with 0 < δ ≤ 1, transition
function ft (w, c) = A wβ

− c with A > 0 and β > 0, and 8t (w) = [0, A wβ ] for all periods. Verify that
VT −t (w) = δT −t ln(w) β(1 + βδ + · · · + β tδt ) + vT −t is the value function for correctly chosen constants
vT −t . Also find the optimal strategy for each stage.
Remark: The reward function equals minus infinity for c = 0, but this just means that it is very undesirable.

SP.SD.6 Indicate which of the following statements are always true and which are false. Also give a short reason for
you answer.
a. For a finite horizon dynamic programming problem with C1 reward functions rt (s, a) and C1 transition

functions ft (s, a) and continuous feasible action correspondences 8t (s), the optimal strategy must be a
continuous function.

b. The feasible set F for a linear program is always a convex set.
c. If f : [0, 1] × [0, 1] → R is continuous, then the point c∗

= σ ∗(s) that maximizes f (s, c) for c ∈ [0, s]
is a continuous function of s.


