Chapter 1: Linear Programming

Math 368

(c) Copyright 2013 R Clark Robinson

May 22, 2013

Max and Min

For $f: \mathscr{D} \subset \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad f(\mathscr{D})=\{f(\mathbf{x}): \mathbf{x} \in \mathscr{D}\}$ is set of attainable values of f on \mathscr{D}, or image of \mathscr{D} by f.
f has a maximum on \mathscr{D} at $\mathbf{x}_{M} \in \mathscr{D}$ provided that

$$
f\left(\mathbf{x}_{M}\right) \geq f(\mathbf{x}) \text { for all } \mathbf{x} \in \mathscr{D}
$$

$$
\max \{f(\mathbf{x}): \mathbf{x} \in \mathscr{D}\}=f\left(\mathbf{x}_{M}\right), \quad \text { maximum value of } f \text { on } \mathscr{D}
$$

\mathbf{x}_{M} is called a maximizer of f on \mathscr{D}.

$$
\arg \max \{f(\mathbf{x}): \mathbf{x} \in \mathscr{D}\}=\left\{\mathbf{x} \in \mathscr{D}: f(\mathbf{x})=f\left(\mathbf{x}_{M}\right)\right\} .
$$

f has a minimum on \mathscr{D} at $\mathbf{x}_{m} \in \mathscr{D}$ provided that

$$
\begin{aligned}
& f\left(\mathbf{x}_{m}\right) \leq f(\mathbf{x}) \text { for all } \mathbf{x} \in \mathscr{D} . \\
& \min \{f(\mathbf{x}): \mathbf{x} \in \mathscr{D}\}=f\left(\mathbf{x}_{m}\right), \quad \text { minimum of } f \text { on } \mathscr{D} \\
& \arg \min \{f(\mathbf{x}): \mathbf{x} \in \mathscr{D}\}=\left\{\mathbf{x} \in \mathscr{D}: f(\mathbf{x})=f\left(\mathbf{x}_{m}\right)\right\}
\end{aligned}
$$

set of minimizers
f has an extremum at \mathbf{x}_{0} p.t. \mathbf{x}_{0} is either a maximizer or minimizer.

Basic Optimization Problem

No maximizer or minimizer of $f(x)=x^{3}$ on $(0,1)$,

$$
\arg \max \left\{x^{3}: 0<x<1\right\}=\emptyset, \quad \& \arg \min \left\{x^{3}: 0<x<1\right\}=\emptyset,
$$

Optimization Problem:

- Does $f(\mathbf{x})$ attain a maximum (or minimum) for some $\mathbf{x} \in \mathscr{D}$?
- If so, what is the maximum value (or minimum value) on \mathscr{D} and what are the points at which $f(\mathbf{x})$ attains a maximum (or minimum) subject to $\mathrm{x} \in \mathscr{D}$?

Notations

$\mathbf{v} \geq \mathbf{w}$ in \mathbb{R}^{n} means $v_{i} \geq w_{i}$ for $1 \leq i \leq n$
$\mathbf{v} \gg \mathbf{w}$ in \mathbb{R}^{n} means $v_{i}>w_{i}$ for $1 \leq i \leq n$

$$
\begin{aligned}
& \mathbb{R}_{+}^{n}=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{x} \geq \mathbf{0}\right\}=\left\{\mathbf{x} \in \mathbb{R}^{n}: x_{i} \geq 0 \text { for } 1 \leq i \leq n\right\} \\
& \mathbb{R}_{++}^{n}=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{x} \gg \mathbf{0}\right\}=\left\{\mathbf{x} \in \mathbb{R}^{n}: x_{i}>0 \text { for } 1 \leq i \leq n\right\}
\end{aligned}
$$

Linear Programming: 1.4.1 Wheat-Corn Example

Up to 100 acres of land can be used to grow wheat and/or corn:
x_{1} acres used to grow wheat and
x_{2} acres used to grow corn: $\quad x_{1}+x_{2} \leq 100$.
Cost or capital constraint: $5 x_{1}+10 x_{2} \leq 800$.
Labor constraint: $2 x_{1}+x_{2} \leq 150$.
Profit: $f\left(x_{1}, x_{2}\right)=80 x_{1}+60 x_{2}$. Objective function

Problem:

Maximize: $80 x_{1}+60 x_{2} \quad$ (profit),
Subject to: $\quad x_{1}+x_{2} \leq 100$, (land)
$5 x_{1}+10 x_{2} \leq 800, \quad$ (capital)
$2 x_{1}+x_{2} \leq 150$, (labor)
$x_{1} \geq 0, \quad x_{2} \geq 0$.
All constraints and objective function are linear: lin. programming prob.

Example, continued

Feasible set \mathscr{F} is set of all the points satisfying all constraints

$$
\begin{array}{ll}
x_{1}+x_{2} \leq 100(\text { land }), & 5 x_{1}+10 x_{2} \leq 800 \text { (capital) }, \\
2 x_{1}+x_{2} \leq 150 \text { (labor) } & x_{1} \geq 0, x_{2} \geq 0 .
\end{array}
$$

Vertices of the feasible set: $(0,0),(75,0),(50,50),(40,60),(0,80)$.
Other points where two constraints are tight $\left(\frac{140}{3}, \frac{170}{3}\right),(100,0)$, etc lie outside the feasible set, $\frac{140}{3}+\frac{170}{3}=\frac{310}{3}>100,2(100)>150, \ldots$

Example, continued

Since $\nabla f=(80,60)^{\top} \neq(0,0)^{\top}$, maximum must be on boundary of \mathscr{F}.
$f\left(x_{1}, x_{2}\right)$ along an edge is linear combination of values at end points.
If a maximizer were in middle of an edge, then f would have the same value at two end points of this edge.

Maximizer can be found at one of vertices.
Values at vertices:

$$
\begin{aligned}
& f(0,0)=0, \quad f(75,0)=6000, \quad f(50,50)=7000 \\
& f(40,60)=6800, \quad f(0,80)=4800
\end{aligned}
$$

max value of f is 7000 , maximizer $(50,50)$.

Standard Max Linear Programming Problem (MLP)

Maximize objective function:

$$
\begin{aligned}
& f(\mathbf{x})=\mathbf{c} \cdot \mathbf{x}=c_{1} x_{1}+\cdots+c_{n} x_{n} \\
& a_{11} x_{1}+\cdots+a_{1 n} x_{n} \leq b_{1}
\end{aligned}
$$ Subject to resource constraints:

$$
\begin{aligned}
& a_{11} x_{1}+\cdots+a_{1 n} x_{n} \leq b_{1} \\
& \vdots \\
& \vdots \\
& \vdots \\
& a_{m 1} x_{1}+\cdots+a_{m n} x_{n} \leq b_{m} \\
& x_{j} \geq 0 \text { for } 1 \leq j \leq n .
\end{aligned}
$$

Given data: $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)^{\top}, \quad m \times n$ matrix $\mathbf{A}=\left(a_{i j}\right)$,

$$
\mathbf{b}=\left(b_{1}, \ldots, b_{m}\right)^{\top} \text { with all } b_{i} \geq 0
$$

Constraints using matrix notation are $\mathbf{A x} \leq \mathbf{b}$ and $\mathbf{x} \geq 0$.
Feasible set: $\mathscr{F}=\left\{\mathbf{x} \in \mathbb{R}_{+}^{n}: \mathbf{A x} \leq \mathbf{b}\right\}$.

Minimization Example

Minimize: $\quad 3 x_{1}+2 x_{2}$,
Subject to: $2 x_{1}+x_{2} \geq 4$,

$$
x_{1}+x_{2} \geq 3
$$

$$
x_{1}+2 x_{2} \geq 4, \quad x_{1} \geq 0, \quad \text { and } \quad x_{2} \geq 0
$$

\mathscr{F} is unbounded but $f(\mathbf{x}) \geq 0$ is bded below so $f(\mathbf{x})$ has a minimum. Vertices: $(4,0),(2,1),(1,2),(0,4)$ Values: $f(4,0)=12, f(2,1)=8, f(1,2)=7, f(0,4)=8$. $\min \{f(\mathbf{x}): \mathbf{x} \in \mathscr{F}\}=7 \quad \arg \min \{f(\mathbf{x}): \mathbf{x} \in \mathscr{F}\}=\{(1,2)\}$.

Geometric Method of Solving Linear Prog Problem

(1) Determine or draw the feasible set \mathscr{F}.

If $\mathscr{F}=\emptyset$, then problem has no optimal solution, problem is called infeasible
(2) Problem is called unbounded and has no solution p.t. objective function on \mathscr{F} has
a. arbitrarily large positive values for a maximization problem, or
b. arbitrarily large negative values for a minimization problem.
(3) A problem is called bounded p.t. it is not infeasible nor unbounded; an optimal solution exists.

Determine all the vertices of \mathscr{F} and values at vertices.
Choose the vertex of \mathscr{F} producing the maximum or minimum value of the objective function.

Rank of a Matrix

Rank of a matrix \mathbf{A} is dimension of column space of \mathbf{A}. i.e., largest number of linearly independent columns of \mathbf{A}.

Same as number of pivots (in row reduced echelon form of \mathbf{A}).
$\operatorname{rank}(\mathbf{A})=k$ iff $k \geq 0$ is the largest integer s.t. $\operatorname{det}\left(\mathbf{A}_{k}\right) \neq 0$, where \mathbf{A}_{k} is any $k \times k$ submatrix of \mathbf{A} formed by selecting any k columns and any k rows.
\mathbf{A}_{k} is submatrix of pivot columns and rows.
Sketch: Let \mathbf{A}^{\prime} be submatrix with k linearly independent columns that span column space; $\quad \operatorname{rank}\left(\mathbf{A}^{\prime}\right)=k$ $\operatorname{dim}\left(\right.$ row space of $\left.\mathbf{A}^{\prime}\right)=k$, so k rows of \mathbf{A}^{\prime} to get $k \times k \mathbf{A}_{k}$ with $\operatorname{rank}\left(\mathbf{A}_{k}\right)=k$, so $\operatorname{det}\left(\mathbf{A}_{k}\right) \neq 0$.

Slack Variables

For large number of variables, need a practical algorithm.
Simplex method uses row reduction as solution method.
First step: make all the inequalities of type $x_{i} \geq 0$.
Inequality of the form $a_{i 1} x_{1}+\cdots+a_{i n} x_{n} \leq b_{i}$ for $b_{i} \geq 0$ is called resource constraint.

For resource constraint, introduce slack variable s_{i} by

$$
a_{i 1} x_{1}+\cdots+a_{i n} x_{n}+s_{i}=b_{i} \text { with } s_{i} \geq 0
$$

s_{i} represents unused resource.

Introduction of a slack variable changes a resource constraint into equality constraint and $s_{i} \geq 0$.

Introducing Slack Variables into Wheat-Corn Example

$$
\begin{aligned}
& x_{1}+x_{2}+s_{1}=100 \\
& 5 x_{1}+10 x_{2}+s_{2}=800, \\
& 2 x_{1}+x_{2}+s_{3}=150, \quad s_{1}, s_{2}, s_{3} \geq 0
\end{aligned}
$$

In matrix form,
Maximize: $(80,60,0,0,0) \cdot\left(x_{1}, x_{2}, s_{1}, s_{2}, s_{3}\right)=80 x_{1}+60 x_{2}$
Subj. to: $\left[\begin{array}{ccccc}1 & 1 & 1 & 0 & 0 \\ 5 & 10 & 0 & 1 & 0 \\ 2 & 1 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ s_{1} \\ s_{2} \\ s_{3}\end{array}\right]=\left[\begin{array}{l}100 \\ 800 \\ 150\end{array}\right] \quad$ and $\begin{aligned} & x_{1} \geq 0, \\ & x_{2} \geq 0 \\ & s_{1} \geq 0 \\ & s_{2} \geq 0, \\ & s_{3} \geq 0\end{aligned}$
Because of 1 's and 0 's in last 3 columns of matrix, rank is 3 .
Initial feasible solution $x_{1}=0=x_{2}, s_{1}=100, s_{2}=800, s_{3}=150$

Wheat-Corn Example, continued

$\left[\begin{array}{ccccc}1 & 1 & 1 & 0 & 0 \\ 5 & 10 & 0 & 1 & 0 \\ 2 & 1 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ s_{1} \\ s_{2} \\ s_{3}\end{array}\right]=\left[\begin{array}{l}100 \\ 800 \\ 150\end{array}\right] \quad$ with $x_{i} \geq 0$, and $s_{i} \geq 0$.
Initial feasible sol'n: $\mathbf{p}_{0}=(0,0,100,800,150)^{\top}$ with $f\left(\mathbf{p}_{0}\right)=0$.
Rank is 3 , so $5-3=2$ free variables. x_{1}, x_{2}.
\mathbf{p}_{0} obtained by setting free variables $x_{1}=x_{2}=0$ and solving for dependent variables, which are 3 slack variables.
"Pivot" to make a different pair the free variables equal to zero and a different triple of positive variables.

Wheat-Corn Example, continued

If leave the vertex $\left(x_{1}, x_{2}\right)=(0,0)$, or $\mathbf{p}_{0}=(0,0,100,800,150)$, making $x_{1}>0$ entering variable while keeping $x_{2}=0$; first slack variable to become zero is s_{3} when $x_{1}=75$.

Arrive at the vertex $\left(x_{1}, x_{2}\right)=(75,0)$, or $\mathbf{p}_{1}=(75,0,25,425,0)$.
New sol'n has two zero variables and three positive variables.
Move along one edge from \mathbf{p}_{0} to \mathbf{p}_{1}.
$f\left(\mathbf{p}_{1}\right)=80(75)=6000>0=f\left(\mathbf{p}_{0}\right)$.
\mathbf{p}_{1} is a better feasible sol' n than \mathbf{p}_{0}.

Wheat-Corn Example, continued

$$
\mathbf{p}_{1}=(75,0,25,425,0)
$$

Repeat, leaving \mathbf{p}_{1} by making $x_{2}>0$ entering variable while keeping $s_{3}=0$. First other variable to become zero is s_{1}.

Arrive $\mathbf{p}_{2}=(50,50,0,50,0)$

$$
f\left(\mathbf{p}_{2}\right)=80(50)+60(50)=7000>6000=f\left(\mathbf{p}_{1}\right) .
$$

\mathbf{p}_{2} is a better feasible solution than \mathbf{p}_{1}.
Have moved along another edge of the feasible set from

$$
\left(x_{1}, x_{2}\right)=(75,0) \text { and arrived at }\left(x_{1}, x_{2}\right)=(50,50) .
$$

Wheat-Corn Example, continued

If leave \mathbf{p}_{2} by making $s_{3}>0$ entering variable while keeping $s_{1}=0$, first variable to become zero is s_{2}, arrive at $\mathbf{p}_{3}=(40,60,0,0,10)$.

$$
f\left(\mathbf{p}_{3}\right)=80(40)+60(60)=6800<7000=f\left(\mathbf{p}_{2}\right)
$$

\mathbf{p}_{3} is worse feasible solution than \mathbf{p}_{2}.
Let $\mathbf{z} \in \mathscr{F} \backslash\left\{\mathbf{p}_{2}\right\} . \quad \mathbf{v}=\mathbf{z}-\mathbf{p}_{2}, \quad \mathbf{v}_{j}=\mathbf{p}_{j}-\mathbf{p}_{2}$.

$$
f\left(\mathbf{v}_{1}\right)=f\left(\mathbf{p}_{1}\right)-f\left(\mathbf{p}_{2}\right)<0, \quad f\left(\mathbf{v}_{3}\right)=f\left(\mathbf{p}_{3}\right)-f\left(\mathbf{p}_{2}\right)<0
$$

$\mathbf{v}_{1} \& \mathbf{v}_{3}$ are basis of \mathbb{R}^{2}, so $\mathbf{v}=y_{1} \mathbf{v}_{1}+y_{3} \mathbf{v}_{3}$ with $y_{1}, y_{3} \geq 0$.
$\mathbf{v} \neq \mathbf{0}$ points into \mathscr{F}, so (i) $y_{1}, y_{3} \geq 0$ and (ii) $y_{1}>0$ or $y_{3}>0$.

$$
f(\mathbf{z})=f\left(\mathbf{p}_{2}\right)+f(\mathbf{v})=f\left(\mathbf{p}_{2}\right)+y_{1} f\left(\mathbf{v}_{1}\right)+y_{3} f\left(\mathbf{v}_{3}\right)<f\left(\mathbf{p}_{2}\right)
$$

Since cannot increase f by moving along either edge going out from \mathbf{p}_{2}, \mathbf{p}_{2} is an optimal feasible solution.

Wheat-Corn Example, continued

In this example,

$$
\begin{aligned}
& \mathbf{p}_{0}=(0,0,100,800,150), \quad \mathbf{p}_{1}=(75,0,25,425,0), \\
& \mathbf{p}_{2}=(50,50,0,50,0), \quad \mathbf{p}_{3}=(40,60,0,0,10), \\
& \mathbf{p}_{4}=(0,80,20,0,70)
\end{aligned}
$$

are called basic solutions
since at most 3 variables are positive,
where 3 is the rank (and number of constraints).
End of Example

Slack Variables added to a Standard Lin Prog Prob, MLP

All resource constraints
Given $\mathbf{b}=\left(b_{1}, \ldots, b_{m}\right)^{\top} \in \mathbb{R}_{+}^{m}, \quad \mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)^{\top} \in \mathbb{R}^{n}$, $m \times n$ matrix $\mathbf{A}=\left(a_{i j}\right)$.

Find $\mathbf{x} \in \mathbb{R}_{+}^{n}$ and $\mathbf{s} \in \mathbb{R}_{+}^{m}$ that
maximize: $\quad f(\mathbf{x})=\mathbf{c} \cdot \mathbf{x}$
subject to:

$$
a_{11} x_{1}+\cdots+a_{1 n} x_{n}+s_{1} \quad=b_{1}
$$

$$
\begin{array}{ll}
a_{m 1} x_{1}+\cdots+a_{m n} x_{n}+s_{m} & =b_{m} \\
x_{i} \geq 0, s_{j} \geq 0 & \text { for } 1 \leq i \leq n, \\
1 \leq j \leq m .
\end{array}
$$

Using matrix notation with I $m \times m$ identity matrix,

$$
\text { maximize } f(\mathbf{x}) \text { subject to }[\mathbf{A}, \mathbf{I}]\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{s}
\end{array}\right]=\mathbf{b} \text { with } \mathbf{x} \geq 0, \mathbf{s} \geq \mathbf{0}
$$

Indicate partition of augmented matrix by extra vertical lines

Basic Solutions

Assume $\overline{\mathbf{A}} m \times(n+m)$ matrix with rank m (like $\overline{\mathbf{A}}=[\mathbf{A}, \mathbf{l}])$
m dependent variables are called basic variables. (var of pivot col'ns)
n free variables are called non-basic variables. (var of non-pivot col'ns)
A basic solution is a solution \mathbf{p} satisfying $\overline{\mathbf{A}} \mathbf{p}=\mathbf{b}$ such that columns corresponding to $p_{i} \neq 0$ are linearly indep.

$$
\leq \operatorname{rank}(\mathbf{A})=m
$$

If \mathbf{p} is also feasible with $\mathbf{p} \geq 0$, then called a basic feasible solution.
Obtain by setting n free variables $=0$, and get basic variables ≥ 0, allow possibly some basic variables $=0$

Linear Algebra Solution of Wheat-Corn Problem

Augmented matrix for the original wheat-corn problem is

$$
\left[\begin{array}{rr|rrr|r}
x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & \\
\hline 1 & 1 & 1 & 0 & 0 & 100 \\
5 & 10 & 0 & 1 & 0 & 800 \\
2 & 1 & 0 & 0 & 1 & 150
\end{array}\right]
$$

with free variables x_{1} and x_{2} and basic variables s_{1}, s_{2}, and s_{3}.
If make $x_{1}>0$ while keeping $x_{2}=0, x_{1}$ becomes a new basic variable (for new pivot coln) called entering variable.
(i) s_{1} will become zero when $x_{1}=\frac{100}{1}=100$,
(ii) s_{2} will become zero when $x_{1}=\frac{800}{5}=160$, and
(iii) s_{3} will become zero when $x_{1}=\frac{150}{2}=75$.

Since s_{3} becomes zero for the smallest value of x_{1},
s_{3} is the departing variable and new pivot is 1st column (for x_{1}) and 3rd row (old pivot for s_{3})

First Pivot

Row reducing to make a pivot in first column third row,

$$
\left[\begin{array}{rr|rrr|r}
x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & \\
\hline 1 & 1 & 1 & 0 & 0 & 100 \\
5 & 10 & 0 & 1 & 0 & 800 \\
2 & 1 & 0 & 0 & 1 & 150
\end{array}\right] \sim\left[\begin{array}{rr|rrr|r}
x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & \\
\hline 0 & .5 & 1 & 0 & -.5 & 25 \\
0 & 7.5 & 0 & 1 & -2.5 & 425 \\
1 & .5 & 0 & 0 & .5 & 75
\end{array}\right]
$$

Setting free variables $x_{2}=s_{3}=0$, new basic solution $\mathbf{p}_{1}=(75,0,25,425,0)^{\top}$.

Entries in the right (augmented) column give values of the new basic variables that are >0.

Including Objective Function in Matrix

Objective function (or variable) is

$$
f=80 x_{1}+60 x_{2}, \quad \text { or } \quad-80 x_{1}-60 x_{2}+f=0 .
$$

Adding a row for this equation and a column for variable f keeps track of the value of f during row reduction.

$$
\left[\begin{array}{rr|rrr|r|r}
x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & f & \\
\hline 1 & 1 & 1 & 0 & 0 & 0 & 100 \\
5 & 10 & 0 & 1 & 0 & 0 & 800 \\
2 & 1 & 0 & 0 & 1 & 0 & 150 \\
\hline-80 & -60 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

This matrix including objective function row is called tableau.
Entries in column for f are 1 in objective function row and 0 elsewhere. In objection function row of this tableau, entries for x_{i} are negative.

First Pivot, continued

Row reducing tableau by making
first column and third row a new pivot,

$$
\begin{aligned}
& {\left[\begin{array}{rr|rrr|r|r}
x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & f & \\
\hline 1 & 1 & 1 & 0 & 0 & 0 & 100 \\
5 & 10 & 0 & 1 & 0 & 0 & 800 \\
2 & 1 & 0 & 0 & 1 & 0 & 150 \\
\hline-80 & -60 & 0 & 0 & 0 & 1 & 0
\end{array}\right]} \\
& \sim\left[\begin{array}{rr|rrr|r|r}
x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & f & \\
\hline 0 & .5 & 1 & 0 & -.5 & 0 & 25 \\
0 & 7.5 & 0 & 1 & -2.5 & 0 & 425 \\
1 & .5 & 0 & 0 & .5 & 0 & 75 \\
\hline 0 & -20 & 0 & 0 & 40 & 1 & 6000
\end{array}\right]
\end{aligned}
$$

For $x_{2}=s_{3}=0, x_{1}=75>0, s_{1}=25>0, s_{2}=425>0$,
Bottom right entry of 6000 is new value of f

Second Pivot

$\left[\begin{array}{rr|rrr|r|r}x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & f & \\ \hline 0 & .5 & 1 & 0 & -.5 & 0 & 25 \\ 0 & 7.5 & 0 & 1 & -2.5 & 0 & 425 \\ 1 & .5 & 0 & 0 & .5 & 0 & 75 \\ \hline 0 & -20 & 0 & 0 & 40 & 1 & 6000\end{array}\right]$
$x_{2} \& s_{3}$ free (non-basic) variables
If pivot back to make $s_{3}>0$, the value of f becomes smaller, so select x_{2} as the next entering variable, keeping $s_{3}=0$.
(i) s_{1} becomes zero when $x_{2}=\frac{25}{5}=50$, and
(ii) s_{2} becomes zero when $x_{2}=\frac{425}{7.5}=56.67$.
(iii) x_{1} becomes zero when $x_{2}=\frac{75}{.5}=150$,

Since the smallest positive value of x_{1} comes from s_{1}, s_{1} is the departing variable and pivot on 1st row 2 nd column.

Second Pivot, contin.

Pivot on 1st row 2nd column,
$\left[\begin{array}{rr|rrr|r|r}x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & f & \\ \hline 0 & .5 & 1 & 0 & -.5 & 0 & 25 \\ 0 & 7.5 & 0 & 1 & -2.5 & 0 & 425 \\ 1 & .5 & 0 & 0 & .5 & 0 & 75 \\ \hline 0 & -20 & 0 & 0 & 40 & 1 & 6000\end{array}\right] \sim$
$\left[\begin{array}{rr|rrr|r|r}x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & f & \\ \hline 0 & 1 & 2 & 0 & -1 & 0 & 50 \\ 0 & 0 & -15 & 1 & 5 & 0 & 50 \\ 1 & 0 & -1 & 0 & 1 & 0 & 50 \\ \hline 0 & 0 & 40 & 0 & 20 & 1 & 7000\end{array}\right]$

Entries in column for f don't change.

$$
f=7000 \text { objective function }
$$

Third Pivot

Why does the objective function decrease when moving along the edge making $s_{3}>0$ an entering variable, keeping $s_{1}=0$?
(i) x_{1} becomes zero when $s_{3}=\frac{50}{1}=50$,
(ii) x_{2} becomes zero when $s_{3}=\frac{50}{-1}=-50$, and
(iii) s_{2} becomes zero when $s_{3}=\frac{50}{5}=10$.

Smallest positive value of s_{3} comes from s_{2},
and pivot on the 2nd row 5th column.
$\left[\begin{array}{rr|rrr|r|r}x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & f & \\ \hline 0 & 1 & 2 & 0 & -1 & 0 & 50 \\ 0 & 0 & -15 & 1 & 5 & 0 & 50 \\ 1 & 0 & -1 & 0 & 1 & 0 & 50 \\ \hline 0 & 0 & 40 & 0 & 20 & 1 & 7000\end{array}\right] \sim\left[\begin{array}{rr|rrr|r|r}x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & f & \\ \hline 0 & 1 & -1 & 0 & 0 & 0 & 60 \\ 0 & 0 & -3 & .2 & 1 & 0 & 10 \\ 1 & 0 & 2 & -2 & 0 & 0 & 40 \\ \hline 0 & 0 & 100 & -4 & 0 & 1 & 6800\end{array}\right]$

Value of objective function decreases since the entry is already positive before pivot in column for s_{3} of the objective function row

Tableau

Drop the column for the variable f from augmented matrix since it does not play a role in the row reduction.
(entry in last row stays $=1$ and others stay $=0$)
Augmented matrix with objective function row
but without column for objective function variable is called the tableau.

Steps in the Simplex Method for Stand MLP

(1) Set up the tableau so that all $b_{i} \geq 0$. An initial feasible basic solution is determined by setting $x_{i}=0$ and solving for s_{i}.
(2) Choose as entering variable any free variable with a negative entry in objection function row. (often most negative)
(3) From column selected in previous step, select row for which ratio of entry in augmented column divided by entry in column selected is smallest value ≥ 0; departing variable is basic variable for this row.
Row reduce the matrix using selected new pivot position.
(9) Objective function has no upper bound and no optimal solution when one column has only nonpositive coefficients above a negative coefficient in objective function row.
(0) Solution is optimal when all entries in objective function row are nonnegative.
(0) If optimal tableau has zero entry in objective row for nonbasic variable and all basic variables are positive, then nonunique solution.

General Constraints: Requirement Constraints

All $b_{i} \geq 0 \quad$ (by multiplying inequalities by -1 if necessary.)
Requirement constraint is given by
$a_{i 1} x_{1}+\cdots+a_{i n} x_{n} \geq b_{i} \quad$ (occur especially for a min problem.)
Require to have at least a minimum amount to quantity.
Can have a surplus of quantity,
so subtract off a surplus variable to get equality

$$
a_{i 1} x_{1}+\cdots+a_{i n} x_{n}-s_{i}=b_{i} \quad \text { with } s_{i} \geq 0
$$

To solve equation initially, also add an artificial variable $r_{i} \geq 0$,

$$
a_{i 1} x_{1}+\cdots+a_{i n} x_{n}-s_{i}+r_{i}=b_{i} .
$$

(Walker uses a_{i}, but we use r_{i} to distinguish from matrix $a_{i j}$.) Initial sol'n sets the artificial variable $r_{i}=b_{i}$ while $s_{i}=0=x_{j} \forall j$.

Equality Constraints

For an equality constraint $a_{i 1} x_{1}+\cdots+a_{i n} x_{n}=b_{i}$, add one artificial variable

$$
a_{i 1} x_{1}+\cdots+a_{i n} x_{n}+r_{i}=b_{i}
$$

with an initial solution $r_{i}=b_{i} \geq 0$ while the $x_{j}=0$.

For general constraints (with either requirement or equality constraint) initial solution has all $x_{i}=0$ and all surplus variables zero, while slack variables and artificial variables ≥ 0.

This sol' n is not feasible if any artificial variables is positive for a requirement constraint or an equality constraint

Minimization Example

Assume two foods are consumed in amounts x_{1} and x_{2} with costs per unit of 15 and 7 respectively, and yield $(5,3,5)$ and $(2,2,1)$ units of three vitamins respectively.

Problem is to minimize cost $15 x_{1}+7 x_{2}$ or
Maximize: $\quad-15 x_{1}-7 x_{2}$
Subject to: $\quad 5 x_{1}+2 x_{2} \geq 60$

$$
3 x_{1}+2 x_{2} \geq 40, \text { and }
$$

$$
5 x_{1}+1 x_{2} \geq 35
$$

$\mathbf{x}=\mathbf{0}$ not a feasible sol' n, initial sol' n involves the artificial variables

Minimization Example, continued

The tableau is

$$
\left[\begin{array}{rr|rrr|rrr|r}
x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & r_{1} & r_{2} & r_{3} & \\
\hline 5 & 2 & -1 & 0 & 0 & 1 & 0 & 0 & 60 \\
3 & 2 & 0 & -1 & 0 & 0 & 1 & 0 & 40 \\
5 & 1 & 0 & 0 & -1 & 0 & 0 & 1 & 35 \\
\hline 15 & 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

To eliminate artificial variables, preliminary steps
to force all artificial variables to be zero.
Use artificial objective function that is
negative sum of equations that contain artificial variables,

$$
\begin{aligned}
& \quad-13 x_{1}-5 x_{2}+s_{1}+s_{2}+s_{3}+\left(-r_{1}-r_{2}-r_{3}\right)=-135 . \\
& \quad-13 x_{1}-5 x_{2}+s_{1}+s_{2}+s_{3}+R=-135 \\
& R=-r_{1}-r_{2}-r_{3} \leq 0 \text { new variable, with max of } 0 .
\end{aligned}
$$

Minimization Example, continued

Tableau with the artificial objective function included (but not a column for the variable R) is
$\left[\begin{array}{rr|rrr|rrr|r}x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & r_{1} & r_{2} & r_{3} & \\ \hline 5 & 2 & -1 & 0 & 0 & 1 & 0 & 0 & 60 \\ 3 & 2 & 0 & -1 & 0 & 0 & 1 & 0 & 40 \\ 5 & 1 & 0 & 0 & -1 & 0 & 0 & 1 & 35 \\ \hline 15 & 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -13 & -5 & 1 & 1 & 1 & 0 & 0 & 0 & -135\end{array}\right]$

If artificial objective function can be made equal zero, then this gives an initial feasible basic solution with $r_{i}=0$ and only original and slack variables positive.

Then, artificial variables can be dropped and proceed as before.

Minimization Example, continued

$$
\begin{aligned}
& -13<-5 \\
& {\left[\begin{array}{rr|rrr|rrr|r}
x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & r_{1} & r_{2} & r_{3} & \\
\hline 5 & 2 & -1 & 0 & 0 & 1 & 0 & 0 & 60 \\
3 & 2 & 0 & -1 & 0 & 0 & 1 & 0 & 40 \\
5 & 1 & 0 & 0 & -1 & 0 & 0 & 1 & 35 \\
\hline 15 & 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-13 & -5 & 1 & 1 & 1 & 0 & 0 & 0 & -135
\end{array}\right]}
\end{aligned}
$$

$\frac{35}{5}=7<\frac{40}{3} \approx 13.3, \frac{60}{5}=12$: Pivoting on a_{31} (making into a pivot)

$$
\sim\left[\begin{array}{rr|rrr|rrr|r}
x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & r_{1} & r_{2} & r_{3} & \\
\hline 0 & 1 & -1 & 0 & 1 & 1 & 0 & -1 & 25 \\
0 & \frac{7}{5} & 0 & -1 & \frac{3}{5} & 0 & 1 & -\frac{3}{5} & 19 \\
1 & \frac{1}{5} & 0 & 0 & -\frac{1}{5} & 0 & 0 & \frac{1}{5} & 7 \\
\hline 0 & 4 & 0 & 0 & 3 & 0 & 0 & -3 & -105 \\
0 & -\frac{12}{5} & 1 & 1 & -\frac{8}{5} & 0 & 0 & \frac{13}{5} & -44
\end{array}\right]
$$

Minimization Example, continued

Pivoting on $a_{22}\left(19 \times \frac{5}{7} \approx 13.57<25<7 \times 5\right)$

$$
\begin{aligned}
& {\left[\begin{array}{rr|rrr|rrr|r}
x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & r_{1} & r_{2} & r_{3} & \\
\hline 0 & 1 & -1 & 0 & 1 & 1 & 0 & -1 & 25 \\
0 & \frac{7}{5} & 0 & -1 & \frac{3}{5} & 0 & 1 & -\frac{3}{5} & 19 \\
1 & \frac{1}{5} & 0 & 0 & -\frac{1}{5} & 0 & 0 & \frac{1}{5} & 7 \\
\hline 0 & 4 & 0 & 0 & 3 & 0 & 0 & -3 & -105 \\
0 & -\frac{12}{5} & 1 & 1 & -\frac{8}{5} & 0 & 0 & \frac{13}{5} & -44
\end{array}\right]} \\
& \\
& \sim\left[\begin{array}{rr|rrr|rrr|r}
x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & r_{1} & r_{2} & r_{3} & \\
\hline 0 & 0 & -1 & \frac{5}{7} & \frac{4}{7} & 1 & -\frac{5}{7} & -\frac{4}{7} & \frac{80}{7} \\
0 & 1 & 0 & -\frac{5}{7} & \frac{3}{7} & 0 & \frac{5}{7} & -\frac{3}{7} & \frac{95}{7} \\
1 & 0 & 0 & \frac{1}{7} & -\frac{2}{7} & 0 & -\frac{1}{7} & \frac{2}{7} & \frac{30}{7} \\
\hline 0 & 0 & 0 & \frac{20}{7} & \frac{9}{7} & 0 & -\frac{20}{7} & -\frac{9}{7} & -\frac{1115}{7} \\
0 & 0 & 1 & -\frac{5}{7} & -\frac{4}{7} & 0 & \frac{12}{7} & \frac{11}{7} & -\frac{80}{7}
\end{array}\right]
\end{aligned}
$$

Minimization Example, continued

Pivoting on a_{14} yields an initial feasible basic solution:

Minimization Example, continued

After these two steps, $(2,25,0,16,0)$ is an initial feasible basic solution and artificial variables can be dropped.

Pivoting on a_{15} yields final solution:
$\left[\begin{array}{rr|rrr|r}x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & \\ \hline 0 & 0 & -\frac{7}{5} & 1 & \frac{4}{5} & 16 \\ 0 & 1 & -1 & 0 & 1 & 25 \\ 1 & 0 & \frac{1}{5} & 0 & -\frac{2}{5} & 2 \\ \hline 0 & 0 & 4 & 0 & -1 & -205\end{array}\right] \sim\left[\begin{array}{rr|rrr|r}x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & \\ \hline 0 & 0 & -\frac{7}{4} & \frac{5}{4} & 1 & 20 \\ 0 & 1 & \frac{3}{4} & -\frac{5}{4} & 0 & 5 \\ 1 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 10 \\ \hline 0 & 0 & \frac{9}{4} & \frac{5}{4} & 0 & -185\end{array}\right]$

All entries in the obj fn are positive, so maximal solution:

$$
(10,5,0,0,20) \text { with an value of }-185
$$

For original problem, minimal sol'n has value of 185 .
End of Example

Steps in Simplex Method w/ General Constraints

(1) Make all $b_{i} \geq 0$ of constraints by multiplying by -1 if necessary.
(2) Add a slack variable for each resource inequality, add a surplus variable and an artificial variable for each requirement constraint, and add an artificial variable for each equality constraint.
(3) If either requirement constraints or equality constraints are present, then form artificial objective function by taking negative sum of all equations that contain artificial variables, dropping terms involving artificial variables.

Set up tableau matrix. (The row for artificial objective function has zeroes in the columns of the artificial variables.)
An initial solution of equations including artificial variables is determined by setting all original variables $x_{j}=0$, all slack variables $s_{i}=b_{i}$, all the surplus variables $s_{i}=0$, and all artificial variables $r_{i}=b_{i}$.

Steps for General Constraints, continued

(9) Apply simplex algorithm using artificial objective function.
a. If it is not possible to make artificial objective function equal to zero, then there is no feasible solution.
b. If the artificial variables can be made equal to zero, then drop artificial variables and artificial objective function from tableau and continue using initial feasible basic solution constructed.
(3) Apply simplex algorithm to actual objective function. Solution is optimal when all entries in objective function row are nonnegative.

Example with Equality Constraint

Consider the problem of
Maximize: $3 x_{1}+4 x_{2}$
Subject to: $-2 x_{1}+x_{2} \leq 6$, and
$2 x_{1}+2 x_{2} \geq 24$,
$x_{1}=8$,
$x_{1} \geq 0, \quad x_{2} \geq 0$.
With slack, surplus, and artificial variables added the problem becomes
Maximize: $\quad 3 x_{1}+4 x_{2}$
Subject to: $\quad-2 x_{1}+x_{2}+s_{1}=6$
$2 x_{1}+2 x_{2}-s_{2}+r_{2}=24$
$x_{1}+r_{3}=8$.
Artificial obj fn is negative sum of the 2 nd and 3 rd rows

$$
-3 x_{1}-2 x_{2}+s_{2}+R=-32 \quad \text { where } R=-r_{2}-r_{3}
$$

Example, continued

The tableau with variables is

$$
\left[\begin{array}{rr|rr|rr|r}
x_{1} & x_{2} & s_{1} & s_{2} & r_{2} & r_{3} & \\
\hline-2 & 1 & 1 & 0 & 0 & 0 & 6 \\
2 & 2 & 0 & -1 & 1 & 0 & 24 \\
1 & 0 & 0 & 0 & 0 & 1 & 8 \\
\hline-3 & -4 & 0 & 0 & 0 & 0 & 0 \\
-3 & -2 & 0 & 1 & 0 & 0 & -32
\end{array}\right]
$$

Pivoting on a_{31} and then a_{22},
$\sim\left[\begin{array}{rr|rr|rr|r}x_{1} & x_{2} & s_{1} & s_{2} & r_{2} & r_{3} & \\ \hline 0 & 1 & 1 & 0 & 0 & 2 & 22 \\ 0 & 2 & 0 & -1 & 1 & -2 & 8 \\ 1 & 0 & 0 & 0 & 0 & 1 & 8 \\ \hline 0 & -4 & 0 & 0 & 0 & 3 & 24 \\ 0 & -2 & 0 & 1 & 0 & 3 & -8\end{array}\right] \sim\left[\begin{array}{rr|rr|rr|r}x_{1} & x_{2} & s_{1} & s_{2} & r_{2} & r_{3} & \\ \hline 0 & 0 & 1 & \frac{1}{2} & -\frac{1}{2} & 3 & 18 \\ 0 & 1 & 0 & -\frac{1}{2} & \frac{1}{2} & -1 & 4 \\ 1 & 0 & 0 & 0 & 0 & 1 & 8 \\ \hline 0 & 0 & 0 & -2 & 2 & -1 & 40 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0\end{array}\right]$

Attained a feasible solution of $\left(x_{1}, x_{2}, s_{1}, s_{2}\right)=(8,4,18,0)$.

Example, continued

Can now drop artificial objective function and artificial variables.
Pivoting on $a_{1,4}$

$$
\left[\begin{array}{rr|rr|r}
x_{1} & x_{2} & s_{1} & s_{2} & \\
\hline 0 & 0 & 1 & \frac{1}{2} & 18 \\
0 & 1 & 0 & -\frac{1}{2} & 4 \\
1 & 0 & 0 & 0 & 8 \\
\hline 0 & 0 & 0 & -2 & 40
\end{array}\right] \sim\left[\begin{array}{rr|rr|r}
x_{1} & x_{2} & s_{1} & s_{2} & \\
\hline 0 & 0 & 2 & 1 & 36 \\
0 & 1 & 1 & 0 & 22 \\
1 & 0 & 0 & 0 & 8 \\
\hline 0 & 0 & 4 & 0 & 112
\end{array}\right]
$$

Optimal solution of $f=112$ for $\left(x_{1}, x_{2}, s_{1}, s_{2}\right)=(8,22,0,36)$.

Duality: Introductory Example

Return to wheat-corn problem (MLP).
Maximize: $\quad z=80 x_{1}+60 x_{2}$
subject to: $x_{1}+x_{2} \leq 100$, (land)

$$
\begin{aligned}
& 5 x_{1}+10 x_{2} \leq 800, \quad \text { (capital) } \\
& \left.2 x_{1}+x_{2} \leq 150, \quad \text { (labor }\right), \quad x_{1}, x_{2} \geq 0
\end{aligned}
$$

Assume excess resources can be rented out or shortfalls rented for prices of y_{1}, y_{2}, and y_{3}. (Shadow prices of inputs.)
Profit $P=80 x_{1}+60 x_{2}+\left(100-x_{1}-x_{2}\right) y_{1}$

$$
+\left(800-5 x_{1}-10 x_{2}\right) y_{2}+\left(150-2 x_{1}-x_{2}\right) y_{3}
$$

If profit by renting outside land, then competitors raise price of land force farmer $100-x_{1}-x_{2} \geq 0$.

If $100-x_{1}-x_{2}>0$, then market sets $y_{1}=0$.
$\left(100-x_{1}-x_{2}\right) y_{1}=0$ at optimal
Similar other constraints, Farmer's perspective yields original MLP

Duality: Introductory Example, contin.

$P=80 x_{1}+60 x_{2}+\left(100-x_{1}-x_{2}\right) y_{1}+\left(800-5 x_{1}-10 x_{2}\right) y_{2}+\left(150-2 x_{1}-x_{2}\right) y_{3}$ If a resource is slack, $100-x_{1}-x_{2}>0$, then market sets $y_{1}=0$. Market is minimizing P as function of $\left(y_{1}, y_{2}, y_{3}\right)$

Rearranging profit function from markets perspective yields
$P=\left(80-y_{1}-5 y_{2}-2 y_{3}\right) x_{1}+\left(60-y_{1}-10 y_{2}-y_{3}\right) x_{2}+100 y_{1}+800 y_{2}+150 y_{3}$
Coefficients of x_{i} represents net profit after costs of unit of $i^{\text {th }}$-good If net profit >0, the competitors grow wheat/corn. Force ≤ 0,

$$
\begin{array}{lll}
80-y_{1}-5 y_{2}-2 y_{3} \leq 0 & \text { or } & 80 \leq y_{1}+5 y_{2}+2 y_{3} \\
60-y_{1}-10 y_{2}-y_{3} \leq 0 & \text { or } & 60 \leq y_{1}+10 y_{2}+y_{3}
\end{array}
$$

If a resource is slack, $100-x_{1}-x_{2}>0$, then market sets $y_{1}=0$.

$$
\begin{aligned}
& 0=\left(100-x_{1}-x_{2}\right) y_{1} \quad 0=\left(800-5 x_{1}-10 x_{2}\right) y_{2} \\
& 0=\left(150-2 x_{1}-x_{2}\right) y_{3}
\end{aligned}
$$

Market is minimizing $P=100 y_{1}+800 y_{2}+150 y_{3}$

Duality: Introductory Example, contin.

Market's perspective results in dual minimization problem:
Minimize: $\quad w=100 y_{1}+800 y_{2}+150 y_{3}$
Subject to: $\quad y_{1}+5 y_{2}+2 y_{3} \geq 80$, (wheat)

$$
\left.y_{1}+10 y_{2}+y_{3} \geq 60, \quad \text { (corn }\right)
$$

$$
y_{1}, y_{2}, y_{3} \geq 0
$$

MLP: Maximize: $\quad z=80 x_{1}+60 x_{2}$
Subject to: $x_{1}+x_{2} \leq 100$,

$$
5 x_{1}+10 x_{2} \leq 800
$$

$$
2 x_{1}+x_{2} \leq 150, \quad x_{1}, x_{2} \geq 0
$$

1. Coefficient matrices of x_{i} and y_{i} are transposes of each other.
2. Coefficients for objective function of MLP become constants for inequalities of dual mLP.
3. Constants for inequalities of MLP become coefficients for objective function of dual mLP.

Duality: Introductory Example, contin.

For the wheat-corn MLP problem, final tableau
$\left[\begin{array}{rr|rrr|r}x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & \\ \hline 1 & 1 & 1 & 0 & 0 & 100 \\ 5 & 10 & 0 & 1 & 0 & 800 \\ 2 & 1 & 0 & 0 & 1 & 150 \\ \hline-80 & -60 & 0 & 0 & 0 & 0\end{array}\right] \sim\left[\begin{array}{rr|rrr|r}x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & \\ \hline 0 & 1 & 2 & 0 & -1 & 50 \\ 0 & 0 & -15 & 1 & 5 & 50 \\ 1 & 0 & -1 & 0 & 1 & 50 \\ \hline 0 & 0 & 40 & 0 & 20 & 7000\end{array}\right]$

Optimal sol'n MLP is

$$
x_{1}=50 \text { and } x_{2}=50 \text { with a payoff of } 7000 .
$$

Optimal sol' n dual mLP is (by theorem given later)

$$
y_{1}=40, y_{2}=0, \text { and } y_{3}=20 \text { with the same payoff, }
$$

where 40,0 , and 20 are entries in bottom row of final tableau in columns associated with slack variables.

End of Example

Example, Bicycle Manufacturing

A bicycle manufacturer manufactures $x_{1} 3$-speeds and $x_{2} 5$-speeds.
Maximize profits given by $z=12 x_{1}+15 x_{2}$.
Constraints are

$$
\begin{array}{ll}
20 x_{1}+30 x_{2} \leq 2400 & \text { finishing time in minutes } \\
15 x_{1}+40 x_{2} \leq 3000 & \text { assembly time in minutes } \\
x_{1}+x_{2} \leq 100 & \text { frames used for assembly } \\
x_{1} \geq 0 \quad x_{2} \geq 0
\end{array}
$$

Dual problem is
Minimize: $\quad w=2400 y_{1}+3000 y_{2}+100 y_{3}$,
Subject to: $20 y_{1}+15 y_{2}+y_{3} \geq 12$,
$30 y_{1}+40 y_{2}+y_{3} \geq 15$,
$y_{1} \geq 0, \quad y_{2} \geq 0, \quad y_{3} \geq 0$.

Bicycle Manufacturing, contin.

MLP
$\left[\begin{array}{rr|rrr|r}x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & \\ \hline 20 & 30 & 1 & 0 & 0 & 2400 \\ 15 & 40 & 0 & 1 & 0 & 3000 \\ 1 & 1 & 0 & 0 & 1 & 100 \\ \hline-12 & -15 & 0 & 0 & 0 & 0\end{array}\right] \sim\left[\begin{array}{rr|rrr|r}x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & \\ \hline 0 & 10 & 1 & 0 & -20 & 400 \\ 0 & 25 & 0 & 1 & -15 & 1500 \\ 1 & 1 & 0 & 0 & 1 & 100 \\ \hline 0 & -3 & 0 & 0 & 12 & 1200\end{array}\right]$
$\sim\left[\begin{array}{rr|rrr|r}x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & \\ \hline 0 & 1 & \frac{1}{10} & 0 & -2 & 40 \\ 0 & 0 & -\frac{5}{2} & 1 & 35 & 500 \\ 1 & 0 & -\frac{1}{10} & 0 & 3 & 60 \\ \hline 0 & 0 & \frac{3}{10} & 0 & 6 & 1320\end{array}\right]$

Optimal sol'n has $x_{1}=603$-speeds, $x_{2}=405$-speeds, with a profit of $\$ 1320$.

Bicycle Manufacturing, continued

$\left[\begin{array}{rr|rrr|r}x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & \\ \hline 0 & 1 & \frac{1}{10} & 0 & -2 & 40 \\ 0 & 0 & -\frac{5}{2} & 1 & 35 & 500 \\ 1 & 0 & -\frac{1}{10} & 0 & 3 & 60 \\ \hline 0 & 0 & \frac{3}{10} & 0 & 6 & 1320\end{array}\right]$
y_{i} are marginal values of corresponding constraint.
Dual problem has a solution of
$y_{1}=\frac{3}{10}$ profit per finishing minute,
$y_{2}=0$ profit per assembly minute
$y_{3}=6$ profit per frame.
Additional units of the exhausted resources, finishing time and frames, contribute to the profit but not assembly time.

Rules for Forming Dual LP

Maximization Problem, MLP	Minimization Problem, mLP
$i^{\text {th }}$ constraint $\sum_{j} a_{i j} x_{j} \leq b_{i}$	$i^{\text {th }}$ variable $0 \leq y_{i}$
$i^{\text {th }}$ constraint $\sum_{j} a_{i j} x_{j} \geq b_{i}$	$i^{\text {th }}$ variable $0 \geq y_{i}$
$i^{\text {th }}$ constraint $\sum_{j} a_{i j} x_{j}=b_{i}$	$i^{\text {th }}$ variable y_{i} unrestricted
$j^{\text {th }}$ variable $0 \leq x_{j}$	$j^{\text {th }}$ constraint $\sum_{i} a_{i j} y_{i} \geq c_{j}$
$j^{\text {th }}$ variable $0 \geq x_{j}$	$j^{\text {th }}$ constraint $\sum_{i} a_{i j} y_{i} \leq c_{j}$
$j^{\text {th }}$ variable x_{j} unrestricted	$j^{\text {th }}$ constraint $\sum_{i} a_{i j} y_{i}=c_{j}$

Standard conditions for MLP, $\sum_{j} a_{i j} x_{j} \leq b_{i}$ or $0 \leq x_{j}$, corresp to standard conditions for $\mathrm{mLP}, 0 \leq y_{i}$ or $\sum_{i} a_{i j} y_{i} \geq c_{j}$
Nonstandard conditions, $\geq b_{i}$ or $0 \geq x_{j}$, corresp to nonstand conditions Equality constraints correspond to unrestricted variables These rules follow from proof of Duality Theorem (given subsequently)

Example

Minimize: $\quad 8 y_{1}+10 y_{2}+4 y_{3}$
Subject to: $4 y_{1}+2 y_{2}-3 y_{3} \geq 20$
$2 y_{1}+3 y_{2}+5 y_{3} \leq 150$
$6 y_{1}+2 y_{2}+4 y_{3}=40$
y_{1} unrestricted, $y_{2} \geq 0, y_{3} \geq 0$
By table, dual maximization problem is
Maximize: $\quad 20 x_{1}+150 x_{2}+40 x_{3}$
Subject to: $4 x_{1}+2 x_{2}+6 x_{3}=8$

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}+2 x_{3} \leq 10 \\
& -3 x_{1}+5 x_{2}+4 x_{3} \leq 4 \\
& x_{1} \geq 0, \quad x_{2} \leq 0, \quad x_{3} \text { unrestricted }
\end{aligned}
$$

Example, continued

Maximize: $\quad 20 x_{1}+150 x_{2}+40 x_{3}$
Subject to : $4 x_{1}+2 x_{2}+6 x_{3}=8$

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}+2 x_{3} \leq 10 \\
& -3 x_{1}+5 x_{2}+4 x_{3} \leq 4 \\
& x_{1} \geq 0, x_{2} \leq 0, x_{3} \text { unrestricted }
\end{aligned}
$$

By making change of variables $x_{2}=-v_{2}$ and $x_{3}=v_{3}-w_{3}$,
all restrictions on variables are ≥ 0 :
Maximize: $\quad 20 x_{1}-150 v_{2}+40 v_{3}-40 w_{3}$
Subject to: $\quad 4 x_{1}-2 v_{2}+6 v_{3}-6 w_{3}=8$
$2 x_{1}-3 v_{2}+2 v_{3}-2 w_{3} \leq 10$
$-3 x_{1}-5 v_{2}+4 x_{3}-4 w_{3} \leq 4$
$x_{1} \geq 0, v_{2} \geq 0, v_{3} \geq 0, w_{3} \geq 0$

Example, continued

Tableau for maximization problem with variables $x_{1}, v_{2}, v_{3}, w_{3}$, with artificial variable r_{1}, and with slack variables s_{2} and s_{3} is

$$
\left[\begin{array}{rrrr|rr|r|r}
x_{1} & v_{2} & v_{3} & w_{3} & s_{2} & s_{3} & r_{1} & \\
\hline 4 & -2 & 6 & -6 & 0 & 0 & 1 & 8 \\
2 & -3 & 2 & -2 & 1 & 0 & 0 & 10 \\
-3 & -5 & 4 & -4 & 0 & 1 & 0 & 4 \\
\hline-20 & 150 & -40 & 40 & 0 & 0 & 0 & 0 \\
-4 & 2 & -6 & 6 & 0 & 0 & 0 & -8
\end{array}\right]
$$

$$
\sim\left[\begin{array}{rrrr|rr|r|r}
x_{1} & v_{2} & v_{3} & w_{3} & s_{2} & s_{3} & r_{1} & \\
\hline 1 & -\frac{1}{2} & \frac{3}{2} & -\frac{3}{2} & 0 & 0 & \frac{1}{4} & 2 \\
0 & -2 & -1 & 1 & 1 & 0 & -\frac{1}{2} & 6 \\
0 & -\frac{13}{2} & \frac{17}{2} & -\frac{17}{2} & 0 & 1 & \frac{3}{4} & 10 \\
\hline 0 & 140 & -10 & 10 & 0 & 0 & 5 & 40 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right] .
$$

Example, continued

Drop artificial objective function but keep artificial variable to determine value of its dual variable.
$\left[\begin{array}{rrrr|rr|r|r}x_{1} & v_{2} & v_{3} & w_{3} & s_{2} & s_{3} & r_{1} & \\ \hline 1 & -\frac{1}{2} & \frac{3}{2} & -\frac{3}{2} & 0 & 0 & \frac{1}{4} & 2 \\ 0 & -2 & -1 & 1 & 1 & 0 & -\frac{1}{2} & 6 \\ 0 & -\frac{13}{2} & \frac{17}{2} & -\frac{17}{2} & 0 & 1 & \frac{3}{4} & 10 \\ \hline 0 & 140 & -10 & 10 & 0 & 0 & 5 & 40\end{array}\right]$
$\sim\left[\begin{array}{rrrr|rr|r|r}x_{1} & v_{2} & v_{3} & w_{3} & s_{2} & s_{3} & r_{1} & \\ \hline 1 & \frac{11}{17} & 0 & 0 & 0 & -\frac{3}{17} & \frac{2}{17} & \frac{4}{17} \\ 0 & -\frac{47}{17} & 0 & 0 & 1 & \frac{2}{17} & -\frac{7}{17} & \frac{122}{17} \\ 0 & -\frac{13}{17} & 1 & -1 & 0 & \frac{2}{17} & \frac{3}{34} & \frac{20}{17} \\ \hline 0 & \frac{2250}{17} & 0 & 0 & 0 & \frac{20}{17} & \frac{100}{17} & \frac{880}{17}\end{array}\right]$

Example, continued

$\left[\begin{array}{rrrr|rr|r|r}x_{1} & v_{2} & v_{3} & w_{3} & s_{2} & s_{3} & r_{1} & \\ \hline 1 & \frac{11}{17} & 0 & 0 & 0 & -\frac{3}{17} & \frac{2}{17} & \frac{4}{17} \\ 0 & -\frac{47}{17} & 0 & 0 & 1 & \frac{2}{17} & -\frac{7}{17} & \frac{122}{17} \\ 0 & -\frac{13}{17} & 1 & -1 & 0 & \frac{2}{17} & \frac{3}{34} & \frac{20}{17} \\ \hline 0 & \frac{2250}{17} & 0 & 0 & 0 & \frac{20}{17} & \frac{100}{17} & \frac{880}{17}\end{array}\right]$

Optimal solution of MLP is

$$
\begin{aligned}
& x_{1}=\frac{4}{17}, \quad x_{2}=-v_{2}=0, \\
& x_{3}=v_{3}-w_{3}=\frac{20}{17}-0=\frac{20}{17}, \\
& s_{2}=\frac{122}{17}, \quad \text { and } \quad s_{3}=r_{1}=0
\end{aligned}
$$

with a maximal value $20\left(\frac{4}{17}\right)+150(0)+40\left(\frac{20}{17}\right)=\frac{880}{17}$.

Example, continued

Optimal solution for original mLP can be also read off final tableau,

$$
\begin{aligned}
& {\left[\begin{array}{rrrr|rr|r|r}
x_{1} & v_{2} & v_{3} & w_{3} & s_{2} & s_{3} & r_{1} & \\
\hline 1 & \frac{11}{17} & 0 & 0 & 0 & -\frac{3}{17} & \frac{2}{17} & \frac{4}{17} \\
0 & -\frac{47}{17} & 0 & 0 & 1 & \frac{2}{17} & -\frac{7}{17} & \frac{122}{17} \\
0 & -\frac{13}{17} & 1 & -1 & 0 & \frac{2}{17} & \frac{3}{34} & \frac{20}{17} \\
\hline 0 & \frac{2250}{17} & 0 & 0 & 0 & \frac{20}{17} & \frac{100}{17} & \frac{880}{17}
\end{array}\right]} \\
& y_{1}=\frac{100}{17}, \quad y_{2}=0, \quad y_{3}=\frac{20}{17},
\end{aligned}
$$

and minimal value

$$
8\left(\frac{100}{17}\right)+10(0)+4\left(\frac{20}{17}\right)=\frac{880}{17} .
$$

Example, continued

Alternatively method: First write minimization problem in with variables ≥ 0 by setting $y_{1}=u_{1}-z_{1}$,

Minimize:

$$
\begin{array}{ll}
\text { Minimize : } & 8 u_{1}-8 z_{1}+10 y_{2}+4 y_{3} \\
\text { Subject to : } & 4 u_{1}-4 z_{1}+2 y_{2}-3 y_{3} \geq 20 \\
& 2 u_{1}-2 z_{1}+3 y_{2}+5 y_{3} \leq 150 \\
& 6 u_{1}-6 z_{1}+2 y_{2}+4 y_{3}=40 \\
& u_{1} \geq 0, z_{1} \geq 0, y_{2} \geq 0, y_{3} \geq 0
\end{array}
$$

Dual MLP will now have a different tableau than before but the same solution.

Remark on Tableau with Surplus/Equal

After artificial objective function is zero drop this row but keep artificial variables to determine values of dual variables.

Proceed to make all the entries of row for objective function ≥ 0 in columns of x_{i}, slack and surplus variable, but allow negative values in artificial variable columns.

Dual variables are entries in row for objective function in columns of slack variables and artificial variables.

For pair of surplus and artificial variable columns, value in artificial variable column is ≤ 0 and
-1 of value in surplus variable column.

Notation for Duality Theorems

MLP: (primal) maximization linear programming problem
Maximize: $\quad f(\mathbf{x})=\mathbf{c} \cdot \mathbf{x}$
Subject to: $\quad \sum_{j} a_{i j} x_{j} \leq b_{i}, \geq b_{i}$, or $=b_{i}$ for $1 \leq i \leq m \quad$ and $x_{j} \geq 0, \leq 0$, or unrestricted for $1 \leq j \leq n$
Feasible set: $\quad \mathscr{F}_{M}$.
mLP: (dual) minimization linear programming problem
Minimize: $\quad g(\mathbf{y})=\mathbf{b} \cdot \mathbf{y}$
Subject to: $\quad \sum_{i} a_{i j} y_{i} \geq c_{j}, \leq c_{j}$, or $=c_{j} \quad$ for $1 \leq j \leq n \quad$ and $y_{i} \geq 0, \leq 0$, or unrestricted for $1 \leq i \leq m$
Feasible set: $\quad \mathscr{F}_{m}$.

Dual of the minimization problem is the maximization problem.

Weak Duality Theorem

Theorem (Weak Duality Theorem)

Let $\mathbf{x} \in \mathscr{F}_{M}$ for MLP and $\mathbf{y} \in \mathscr{F}_{m}$ for $m L P$, any feasible solutions.
a. Then, $f(\mathbf{x})=\mathbf{c} \cdot \mathbf{x} \leq \mathbf{b} \cdot \mathbf{y}=g(\mathbf{y})$.

Thus, optimal value M to either problem satisfies

$$
\mathbf{c} \cdot \mathbf{x} \leq M \leq \mathbf{b} \cdot \mathbf{y} \text { for any } \mathbf{x} \in \mathscr{F}_{M} \text { and } \mathbf{y} \in \mathscr{F}_{m}
$$

b. $\mathbf{c} \cdot \mathbf{x}=\mathbf{b} \cdot \mathbf{y}$ iff \mathbf{x} \& \mathbf{y} satisfy complementary slackness

$$
\begin{array}{ll}
0=y_{j}\left(b_{j}-a_{j 1} x_{1}-\cdots-a_{j n} x_{n}\right) & \text { for } 1 \leq j \leq m, \quad \text { and } \\
0=x_{i}\left(a_{1 i} y_{1}+\cdots+a_{m i} y_{m}-c_{i}\right) \quad \text { for } 1 \leq i \leq n .
\end{array}
$$

In matrix notation,

$$
0=\mathbf{y} \cdot(\mathbf{b}-\mathbf{A} \mathbf{x}) \quad \text { and }
$$

$$
0=\mathbf{x} \cdot\left(\mathbf{A}^{\top} \mathbf{y}-\mathbf{c}\right)
$$

Complementary Slackness

For linear programming usually solve by simplex method, row reduction
In nonlinear programming with inequalities often solve
complementary slackness equations,
Karush-Kuhn-Tucker equations

Proof of Weak Duality Theorem

(1) If $\sum_{j} a_{i j} x_{j} \leq b_{i}$ then $y_{i} \geq 0$ and $y_{i}(\mathbf{A} \mathbf{x})_{i}=y_{i} \sum_{j} a_{i j} x_{j} \leq y_{i} b_{i}$.

If $\sum_{j} a_{i j} x_{j} \geq b_{i}$ then $y_{i} \leq 0$ and $y_{i}(\mathbf{A} \mathbf{x})_{i}=y_{i} \sum_{j} a_{i j} x_{j} \leq y_{i} b_{i}$. If $\sum_{j} a_{i j} x_{j}=b_{i}$ then y_{i} is arb and $y_{i}(\mathbf{A} \mathbf{x})_{i}=y_{i} \sum_{j} a_{i j} x_{j}=y_{i} b_{i}$.
Summing over i

$$
\mathbf{y} \cdot \mathbf{A} \mathbf{x}=\sum_{i} y_{i}(\mathbf{A} \mathbf{x})_{i} \leq \sum_{i} y_{i} b_{i}=\mathbf{y} \cdot \mathbf{b} \quad \text { or } \quad \mathbf{y}^{\top}(\mathbf{b}-\mathbf{A} \mathbf{x}) \geq 0 .
$$

(2) By same type of argument as (1),

$$
\begin{aligned}
& \mathbf{c} \cdot \mathbf{x} \leq \mathbf{x} \cdot\left(\mathbf{A}^{\top} \mathbf{y}\right)=\left(\mathbf{A}^{\top} \mathbf{y}\right)^{\top} \mathbf{x}=\mathbf{y}^{\top}(\mathbf{A} \mathbf{x})=\mathbf{y} \cdot \mathbf{A} \mathbf{x} \\
& \quad\left(\mathbf{A}^{\top} \mathbf{y}-\mathbf{c}\right)^{\top} \mathbf{x} \geq 0
\end{aligned}
$$

$$
\begin{equation*}
\mathbf{c} \cdot \mathbf{x} \leq \mathbf{y} \cdot \mathbf{A} \mathbf{x} \leq \mathbf{y} \cdot \mathbf{b} \tag{a}
\end{equation*}
$$

(b) $\mathbf{y} \cdot \mathbf{b}-\mathbf{c} \cdot \mathbf{x}=\mathbf{y}^{\top}(\mathbf{b}-\mathbf{A} \mathbf{x})+\left(\mathbf{A}^{\top} \mathbf{y}-\mathbf{c}\right)^{\top} \mathbf{x}=0$ iff

$$
0=\left(\mathbf{A}^{\top} \mathbf{y}-\mathbf{c}\right) \cdot \mathbf{x} \quad \text { and } \quad 0=\mathbf{y} \cdot(\mathbf{b}-\mathbf{A} \mathbf{x}) .
$$

QED

Feasibility/Boundedness

Corollary

Assume that MLP and mLP both have feasible solutions.
Then MLP is bounded above and has an optimal solution.
Also, mLP is bounded below and has an optimal solution.

Proof.

If $\mathbf{y}_{0} \in \mathscr{F}_{m}$ and $\mathbf{x} \in \mathscr{F}_{M}$, then

$$
f(\mathbf{x})=\mathbf{c} \cdot \mathbf{x} \leq \mathbf{b} \cdot \mathbf{y}_{0}
$$

so f is bounded above, and has an optimal solution.
Similarly, if $\mathbf{x}_{0} \in \mathscr{F}_{M}$, and $\mathbf{y} \in \mathscr{F}_{m}$ then

$$
g(\mathbf{y})=\mathbf{b} \cdot \mathbf{y} \geq \mathbf{c} \cdot \mathbf{x}_{0}
$$

so g is bounded below, and has an optimal solution.

Necessary Conditions for Optimal Solution

Proposition

If $\overline{\mathrm{x}}$ is an optimal solution for MLP,
then there is a feasible solution $\overline{\mathbf{y}} \in \mathscr{F}_{m}$ of the dual $m L P$ that satisfies complementary slackness equations,

$$
\begin{aligned}
& \text { 1. } \overline{\mathbf{y}} \cdot(\mathbf{b}-\mathbf{A} \overline{\mathbf{x}})=0 \\
& \text { 2. }\left(\mathbf{A}^{\top} \overline{\mathbf{y}}-\mathbf{c}\right) \cdot \overline{\mathbf{x}}=0 .
\end{aligned}
$$

Similarly, if $\overline{\mathbf{y}} \in \mathscr{F}_{m}$ is optimal solution of $m L P$, then there is a feasible solution $\overline{\mathbf{x}} \in \mathscr{F}_{M}$ that satisfy 1-2.

Proof is longest of duality arguments.
Prove similar necessary conditions for nonlinear situation.

Proof of Necessary Conditions

Let \mathbf{E} be set of i such that $b_{i}=\sum_{j} a_{i j} \bar{x}_{j}$, i.e. is tight or effective. Gradient of this constraint is transpose of $i^{\text {th }}$-row of $\mathbf{A}, \mathbf{R}_{i}^{\top}$,
Let \mathbf{E}^{\prime} be set of i such that $x_{i}=0$ is tight.
$-\mathbf{e}_{i}=(0, \ldots,-1, \ldots, 0)^{\top}$ is negative of gradient
Assume nondegenerate, so gradients of constraints
$\left\{\mathbf{R}_{i}^{T}\right\}_{i \in \mathbf{E}} \cup\left\{\mathbf{-}_{i}\right\}_{i \in \mathbf{E}^{\prime}}=\left\{\mathbf{w}_{i}\right\}_{i \in \mathbf{E}^{\prime \prime}}$ are linearly independent.
(Otherwise take an appropriate subset in following argument.)
f has a maximum at $\overline{\mathbf{x}}$ on level set for constraints $i \in \mathbf{E} \cup \mathbf{E}^{\prime}$.
By Lagrange multipliers,

$$
\nabla f(\overline{\mathbf{x}})=\mathbf{c}=\sum_{i \in \mathbf{E}} \bar{y}_{i} \mathbf{R}_{j}^{T}-\sum_{i \in \mathbf{E}^{\prime}} \bar{z}_{i} \mathbf{e}_{i}
$$

By setting $\bar{y}_{i}=0$ for $i \notin \mathbf{E}$ and $1 \leq i \leq m$ and

$$
\begin{aligned}
& \bar{z}_{i}=0 \text { for } i \notin \mathbf{E}^{\prime} \text { and } 1 \leq i \leq n, \\
& \quad \mathbf{c}=\sum_{1 \leq i \leq m} \bar{y}_{i} \mathbf{R}_{i}^{T}-\sum_{1 \leq i \leq m} \bar{z}_{i} \mathbf{e}_{i}=\mathbf{A}^{\top} \overline{\mathbf{y}}-\overline{\mathbf{z}} .\left({ }^{*}\right)
\end{aligned}
$$

Proof of Necessary Conditions, contin.

Since $\bar{y}_{i}=0$ for $b_{i}-\sum_{j} a_{i j} \bar{x}_{j} \neq 0$

$$
0=\bar{y}_{i}\left(b_{i}-\sum_{j} a_{i j} \bar{x}_{j}\right) \quad \text { for } \quad 1 \leq i \leq m
$$

Since $\bar{z}_{j}=0$ for $\bar{x}_{j} \neq 0$,

$$
0=\bar{x}_{j} \bar{z}_{j} \quad 1 \leq j \leq n .
$$

In vector-matrix form using $\left(^{*}\right)$,
(1) $0=\overline{\mathbf{y}} \cdot(\mathbf{b}-\mathbf{A} \overline{\mathbf{x}})$
(2) $0=\overline{\mathbf{x}} \cdot \overline{\mathbf{z}}=\left(\mathbf{A}^{\top} \overline{\mathbf{y}}-\mathbf{c}\right) \cdot \overline{\mathbf{x}}$

Still need (4): (i) $\bar{y}_{i} \geq 0$ for resource constraint,
(ii) $\bar{y}_{i} \leq 0$ for requirement constraint,
(iii) \bar{y}_{i} is unrestricted for equality constraint,
(iv) $\bar{z}_{j}=\sum_{i} a_{i j} \bar{y}_{i}-c_{j} \geq 0$ for $x_{j} \geq 0$, (v) $\bar{z}_{j} \leq 0$ for $x_{j} \leq 0$, and (vi) $\bar{z}_{j}=0$ for x_{j} unrestricted.

Proof of Necessary Conditions, contin.

$\left\{\mathbf{R}_{i}^{T}\right\}_{i \in \mathbf{E}} \cup\left\{-\mathbf{e}_{i}\right\}_{i \in \mathbf{E}^{\prime}}=\left\{\mathbf{w}_{k}\right\}_{k \in \mathbf{E}^{\prime \prime}}$ are linearly independent
Complete to a basis of \mathbb{R}^{n} using vectors perp to these first vectors.
$\mathbf{W}=\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right)$ and $\mathbf{V}=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ s.t. $\mathbf{W}^{\top} \mathbf{V}=\mathbf{I}$.
Column \mathbf{v}_{k} perp to \mathbf{w}_{i} except for $i=k$.
$\mathbf{c}=\sum_{1 \leq i \leq m} \bar{y}_{i} \mathbf{R}_{i}^{T}-\sum_{1 \leq i \leq n} \bar{z}_{i} \mathbf{e}_{i}=\sum_{j} p_{j} \mathbf{w}_{j}$ where $p_{j}=\bar{y}_{i}, \bar{z}_{i}$, or 0
$\mathbf{c} \cdot \mathbf{v}_{k}=\left(\sum_{j} p_{j} \mathbf{w}_{j}\right) \cdot \mathbf{v}_{k}=p_{k}$
Take $i \in \mathbf{E}$. Gradient of this constraint is $\mathbf{R}_{i}^{\top}=\mathbf{w}_{k}$ for some $k \in \mathbf{E}^{\prime \prime}$.
Set $\delta=-1$ for resource and $\delta=+1$ for requirement constraints
$\delta \mathbf{R}_{i}^{\top}$ points into \mathscr{F}_{M} (unless $=$ constraint).
For small $t \geq 0, \quad \overline{\mathbf{x}}+t \delta \mathbf{v}_{k} \in \mathscr{F}_{M}$

$$
0 \leq f(\overline{\mathbf{x}})-f\left(\overline{\mathbf{x}}+t \delta \mathbf{v}_{k}\right)=-t \delta \mathbf{c} \cdot \mathbf{v}_{k}=-t \delta p_{k}
$$

$-\delta p_{k} \geq 0$, or $\bar{y}_{i} \geq 0$ for resource and ≤ 0 for requirement constraint
Can't move off for equality constraint, so y_{i} unrestricted

Proof of Necessary Conditions, contin.

Take $i \in \mathbf{E}^{\prime} . \quad-\mathbf{e}_{i}=\mathbf{w}_{k}$ for some $k \in \mathbf{E}^{\prime \prime}$.
Set $\delta=-1$ if $x_{i} \geq 0$ and $\delta=1$ if $x_{i} \leq 0$
$\delta \mathbf{w}_{k}=-\delta \mathbf{e}_{i}$ points into \mathscr{F}_{M} (unless x_{i} unrestricted).
By argument as before, $-\delta p_{k}=-\delta \bar{z}_{i} \geq 0$.
Therefore $\bar{z}_{i} \geq 0$ if $x_{i} \geq 0$ and $\bar{z}_{i} \leq 0$ if $x_{i} \leq 0$
If x_{i} is unrestricted, then the equation is not tight and $\bar{z}_{i}=0$.
This proves $\overline{\mathbf{y}} \in \mathscr{F}_{m}$ and satisfies complementary slackness (1) and (2)

Optimality and Complementary Slackness

Corollary

Assume that $\overline{\mathbf{x}} \in \mathscr{F}_{M}$ is a feasible solution for primal MLP and $\overline{\mathbf{y}} \in \mathscr{F}_{m}$ is a feasible solution of dual $m L P$. Then the following are equivalent.
a. $\overline{\mathbf{x}}$ is an optimal solution of MLP and $\overline{\mathbf{y}}$ is an optimal solution of $m L P$.
b. $\mathbf{c} \cdot \overline{\mathbf{x}}=\mathbf{b} \cdot \overline{\mathbf{y}}$.
c. $\mathbf{0}=\overline{\mathbf{x}} \cdot\left(\mathbf{c}-\mathbf{A}^{\top} \overline{\mathbf{y}}\right)$ and $\mathbf{0}=(\mathbf{b}-\mathbf{A} \overline{\mathbf{x}}) \cdot \overline{\mathbf{y}}$.

Proof.

($\mathbf{b} \Leftrightarrow \mathbf{c}$) Restatement of Weak Duality Theorem.
($\mathbf{a} \Rightarrow \mathbf{c}$) By proposition, $\exists \overline{\mathbf{y}}^{\prime}$ that satisfies complementary slackness
By Weak Duality Theorem, $\mathbf{c} \cdot \overline{\mathbf{x}}=\mathbf{b} \cdot \overline{\mathbf{y}}^{\prime}$.
So, $\mathbf{c} \cdot \overline{\mathbf{x}}=\mathbf{b} \cdot \overline{\mathbf{y}}^{\prime} \geq \mathbf{b} \cdot \overline{\mathbf{y}} \geq \mathbf{c} \cdot \overline{\mathbf{x}}$.
By Weak Duality Theorem, $\overline{\mathbf{y}}$ satisfies complementary slackness.

Proof of Corollary, contin.

Proof.

$(\mathbf{b} \Rightarrow \mathbf{a})$ If $\overline{\mathbf{x}}$ and $\overline{\mathbf{y}}$ satisfy $\mathbf{c} \cdot \overline{\mathbf{x}}=\mathbf{b} \cdot \overline{\mathbf{y}}$, then
for any $\mathbf{x} \in \mathscr{F}_{M} \& \mathbf{y} \in \mathscr{F}_{m}$,

$$
\mathbf{c} \cdot \mathbf{x} \leq \mathbf{b} \cdot \overline{\mathrm{y}}=\mathbf{c} \cdot \overline{\mathrm{x}} \leq \boldsymbol{b} \cdot \mathbf{y}
$$

$\overline{\mathrm{x}} \& \overline{\mathrm{y}}$ must be optimal solutions.

Duality Theorem

Theorem

Consider two dual problems MLP and mLP.
Then, MLP has an optimal sol'n iff dual mLP has an optimal sol'n.

Proof.

If MLP has an optimal sol'n $\overline{\mathbf{x}}$,
then mLP has feasible sol'n $\overline{\mathbf{y}}$ that satisfies complementary slackness.
By Corollary, $\overline{\mathbf{y}}$ is optimal sol'n of mLP.
Converse is similar

Duality and Tableau

Theorem

If either MLP or mLP is solved for an optimal sol'n by simplex method, then sol'n of its dual LP is displayed in bottom row of final optimal tableau in the columns associated with slack and artificial variables. (not surplus)

Proof:

Start with MLP. To solve by tableau, need $\mathbf{x} \geq 0$.
Group equations into resource, requirement, and equality constraints. so tableau for MLP
$\left[\begin{array}{c|cc|cc|c}\mathbf{A}_{1} & \mathbf{I}_{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{b}_{1} \\ \mathbf{A}_{2} & \mathbf{0} & -\mathbf{I}_{2} & \mathbf{I}_{2} & \mathbf{0} & \mathbf{b}_{2} \\ \mathbf{A}_{3} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{I}_{3} & \mathbf{b}_{3} \\ \hline-\mathbf{c}^{\top} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & 0\end{array}\right]$

Proof continued

Row operations to final tableau realized by by matrix multiplication

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
\mathbf{M}_{1} & \mathbf{M}_{2} & \mathbf{M}_{3} & \mathbf{0} \\
\hline \overline{\mathbf{y}}_{1}^{\top} & \overline{\mathbf{y}}_{2}^{\top} & \overline{\mathbf{y}}_{2}^{\top} & 1
\end{array}\right]\left[\begin{array}{c|cc|cc|c}
\mathbf{A}_{1} & \mathbf{I}_{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{b}_{1} \\
\mathbf{A}_{2} & \mathbf{0} & -\mathbf{I}_{2} & \mathbf{I}_{2} & \mathbf{0} & \mathbf{b}_{2} \\
\mathbf{A}_{3} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{I}_{3} & \mathbf{b}_{3} \\
\hline-\mathbf{c}^{\top} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & 0
\end{array}\right]} \\
& \quad=\left[\begin{array}{c|cc|cc|c}
\mathbf{M}_{1} \mathbf{A}_{1}+\mathbf{M}_{2} \mathbf{A}_{2}+\mathbf{M}_{3} \mathbf{A}_{3} & \mathbf{M}_{1} & -\mathbf{M}_{2} & \mathbf{M}_{2} & \mathbf{M}_{3} & \mathbf{M b} \\
\hline \overline{\mathbf{y}}_{1}^{\top} \mathbf{A}_{1}+\overline{\mathbf{y}}_{2}^{\top} \mathbf{A}_{2}+\overline{\mathbf{y}}_{3}^{\top} \mathbf{A}_{3}-\mathbf{c}^{\top} & \overline{\mathbf{y}}_{1}^{\top} & -\overline{\mathbf{y}}_{2}^{\top} & \overline{\mathbf{y}}_{2}^{\top} & \overline{\mathbf{y}}_{3}^{\top} & \overline{\mathbf{y}}^{\top} \mathbf{b}
\end{array}\right]
\end{aligned}
$$

Obj fn row is not added to the other rows so last column $=(\mathbf{0}, 1)^{\top}$, In final tableau, entries in objective function row ≥ 0,
except for artificial variable columns, so

$$
\mathbf{A}^{\top} \overline{\mathbf{y}}-\mathbf{c}=\left(\overline{\mathbf{y}}^{\top} \mathbf{A}-\mathbf{c}^{\top}\right)^{\top} \geq \mathbf{0}, \quad \overline{\mathbf{y}}_{1} \geq \mathbf{0}, \quad \overline{\mathbf{y}}_{2} \leq \mathbf{0}, \quad \text { so } \quad \overline{\mathbf{y}} \in \mathscr{F}_{m}
$$

$\mathbf{c} \cdot \mathbf{x}_{\max }=\overline{\mathbf{y}}^{\top} \mathbf{b}=\mathbf{b} \cdot \overline{\mathbf{y}}$ so $\overline{\mathbf{y}}$ is minimizer by Optimality Corollary.

Proof continued

Note: $\left(\mathbf{A}^{\top} \overline{\mathbf{y}}\right)_{i}=\mathbf{L}_{i} \cdot \overline{\mathbf{y}} \quad \mathbf{L}_{i} i^{\text {th }}$-column of \mathbf{A}
If $x_{i} \leq 0$, set $\xi_{i}=-x_{i} \geq 0$.
Column in tableau, -1 original column, and new obj fn coef $-c_{i}$.
Now have $0 \leq\left(-\mathbf{L}_{i}\right) \cdot \overline{\mathbf{y}}-\left(-c_{i}\right)$,

$$
\mathbf{L}_{i} \cdot \overline{\mathbf{y}} \leq c_{i} \quad \text { resource constraint of dual. }
$$

If x_{i} arbitrary, set $x_{i}=\xi_{i}-\eta_{i}$.
Then get both $\mathbf{L}_{i} \cdot \overline{\mathbf{y}} \geq c_{i} \& \mathbf{L}_{i} \cdot \overline{\mathbf{y}} \leq c_{i}$,
$\mathbf{L}_{i} \cdot \overline{\mathbf{y}}=c_{i}, \quad$ equality constraint of dual.
QED

Sensitivity Analysis

Sensitive analysis concerns the extent to which more of a resource would increase the maximum value of a MLP.

Example. In short run,

in stock	product 1 per item $\$ 40$	product 2 per item $\$ 10$
1020	15	10
400	10	2
420	3	5

$\left[\begin{array}{rr|rrr|r}x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & \\ \hline 15 & 10 & 1 & 0 & 0 & 1020 \\ 10 & 2 & 0 & 1 & 0 & 400 \\ 3 & 5 & 0 & 0 & 1 & 420 \\ \hline-40 & -10 & 0 & 0 & 0 & 0\end{array}\right] \sim\left[\begin{array}{rr|rrr|r}x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & \\ \hline 0 & 7 & 1 & -1.5 & 0 & 420 \\ 1 & .2 & 0 & .1 & 0 & 40 \\ 0 & 4.4 & 0 & -.3 & 1 & 300 \\ \hline 0 & -2 & 0 & 4 & 0 & 1600\end{array}\right]$

Sensitivity Analysis, continued

$\left[\begin{array}{rr|rrr|r}x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & \\ \hline 0 & 7 & 1 & -1.5 & 0 & 420 \\ 1 & .2 & 0 & .1 & 0 & 40 \\ 0 & 4.4 & 0 & -.3 & 1 & 300 \\ \hline 0 & -2 & 0 & 4 & 0 & 1600\end{array}\right] \sim\left[\begin{array}{rr|rrr|r}x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & \\ \hline 0 & 1 & \frac{1}{7} & -\frac{3}{14} & 0 & 60 \\ 1 & 0 & -\frac{1}{35} & \frac{1}{7} & 0 & 28 \\ 0 & 0 & -\frac{22}{35} & \frac{9}{14} & 1 & 36 \\ \hline 0 & 0 & \frac{2}{7} & \frac{25}{7} & 0 & 1720\end{array}\right]$

Optimal solution is

$$
x_{1}=28, \quad x_{2}=60, \quad s_{1}=0, \quad s_{2}=0, \quad s_{3}=36
$$

with optimal profit of 1720 .

Sensitivity Analysis, continued

$$
\left[\begin{array}{rr|rrr|r}
x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & \\
\hline 0 & 1 & \frac{1}{7} & -\frac{3}{14} & 0 & 60 \\
1 & 0 & -\frac{1}{35} & \frac{1}{7} & 0 & 28 \\
0 & 0 & -\frac{22}{35} & \frac{9}{14} & 1 & 36 \\
\hline 0 & 0 & \frac{2}{7} & \frac{25}{7} & 0 & 1720
\end{array}\right]
$$

Values of an increase of constrained quantities are

$$
\begin{aligned}
& y_{1}=\frac{2}{7}, \quad y_{2}=\frac{25}{7} \\
& y_{3}=0 \text { for quantity that is not tight. }
\end{aligned}
$$

Increase is largest for second constraint, limitation on fasteners.
Next consider range that b_{2} can be increased while keeping same basic variables with $s_{1}=s_{2}=0$.

Sensitivity Analysis, continued

Let δ_{2} be change in 2nd resource (fasteners):

$$
10 x_{1}+2 x_{2}+s_{2}=400+\delta_{2} \quad \text { starting form of constraint. }
$$

s_{2} and δ_{2} play similar roles (and have similar units),
so the new final tableau adds
δ_{2} times s_{2}-column to right side of equalities.
Still need $x_{1}, x_{2}, s_{3} \geq 0$,

$$
\begin{array}{lll}
0 \leq x_{2}=60-\frac{3 \delta_{2}}{14} & \text { or } & \delta_{2} \leq 60 \cdot \frac{14}{3}=280 \\
0 \leq x_{1}=28+\frac{\delta_{2}}{7} & \text { or } & \delta_{2} \geq-28 \cdot 7=-196 \\
0 \leq s_{3}=36+\frac{9 \delta_{2}}{14} & \text { or } & \delta_{2} \geq-36 \cdot \frac{14}{9}=-56 \\
-56 \leq \delta_{2} \leq 280 . & &
\end{array}
$$

Sensitivity Analysis, continued

Resource can be incr at most 280 units and decr at most 56 units, or

$$
\begin{aligned}
& -56 \leq \delta_{2} \leq 280 \\
& 344=400-56 \leq b_{2} \leq 400+280=680
\end{aligned}
$$

For this range, x_{1}, x_{2}, and s_{3} are still basic variables.

Sensitivity for Change of Constraint Constants

For $\delta_{2}=280$,
$x_{1}=28+280 \cdot \frac{1}{7}=68$,
$x_{2}=60-280 \cdot \frac{3}{14}=0$,
$s_{3}=36+280 \cdot \frac{9}{14}=216$,
$z=1720+280 \cdot \frac{25}{7}=2720 \quad$ is optimal value.
For $\delta_{2}=-56$,
$x_{1}=28-56 \cdot \frac{1}{7}=20$,
$x_{2}=60+56 \cdot \frac{3}{14}=72$,
$s_{3}=36-56 \cdot \frac{9}{14}=0$,
$z=1720-56 \cdot \frac{25}{7}=1520 \quad$ is optimal value.

General Changes in Tight Constraint

Use optimal (final) tableau that gives maximum
b_{i}^{\prime} entry of $i^{\text {th }}$-row of constants in right hand column
$c_{j}^{\prime} \geq 0$ entry in $j^{\text {th }}$-column of objective row
$a_{i j}^{\prime}$ entry in $i^{\text {th }}$-row and $j^{\text {th }}$-column
exclude right side constants and any artificial variable columns.
$\mathbf{C}_{j}^{\prime} j^{\text {th }}$-column of $\mathbf{A}^{\prime} \quad$ (note capital and bold, not c_{j})
$\mathbf{R}_{i} i^{\text {th }}$-row of \mathbf{A}^{\prime}

General Changes in Constraint, contin.

Change in tight $r^{\text {th }}$ - resource constraint, $b_{r}+\delta_{r}$
Assume that s_{r} is in $k^{\text {th }}$-column
$\left[\begin{array}{l|l|l} & s_{r} & \\ \hline \mathbf{A} & \mathbf{e}^{r} & \mathbf{b}+\delta_{r} \mathbf{e}^{r} \\ \hline-\mathbf{c}^{T} & 0 & 0\end{array}\right] \sim\left[\begin{array}{l|l|l} & s_{r} & \\ \hline \mathbf{A}^{\prime} & \mathbf{C}_{k}^{\prime} & \mathbf{b}^{\prime}+\delta_{r} \mathbf{C}_{k}^{\prime} \\ \hline \mathbf{c}^{\prime T} & c_{k}^{\prime} & M+\delta_{r} c_{k}^{\prime}\end{array}\right]$
z_{i} basic variable with pivot in $i^{\text {th }}$-row, need $0 \leq z_{i}=b_{i}^{\prime}+\delta_{r} a_{i k}^{\prime}$.
For $a_{i k}^{\prime}<0$, need $-\delta_{r} a_{i k}^{\prime} \leq b_{i}^{\prime}$, so
$\delta_{r} \leq \min _{i}\left\{\frac{b_{i}^{\prime}}{-a_{i k}^{\prime}}: a_{i k}^{\prime}<0\right\}, k^{\text {th }}$-column for s_{r}
For $a_{i k}^{\prime}>0$, need $-b_{i}^{\prime} \leq \delta_{r} a_{i k}^{\prime}$, so
$-\min _{i}\left\{\frac{b_{i}^{\prime}}{a_{i k}^{\prime}}: a_{i k}^{\prime}>0\right\} \leq \delta_{r}, \quad k^{\text {th }}$-column for s_{r}.
Change in optimal value for δ_{r} in allowable range: $\delta_{r} c_{k}^{\prime}$

Change in Slack Constraint Constant

Let s_{r} be for a pivot column in optimal tableau for a slack $r^{\text {th }}$-resource.
To keep same basic variables, need changed amount $b_{r}^{\prime}+\delta_{r} \geq 0$

$$
\delta_{r} \geq-b_{r}^{\prime}
$$

b_{r} can be increased by an arbitrary amount.
For δ_{r} is this range, optimal value is unchanged.

Sensitivity Analysis, continued

$\left[\begin{array}{rr|rrr|r}x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & \\ \hline 0 & 1 & \frac{1}{7} & -\frac{3}{14} & 0 & 60 \\ 1 & 0 & -\frac{1}{35} & \frac{1}{7} & 0 & 28 \\ 0 & 0 & -\frac{22}{35} & \frac{9}{14} & 1 & 36 \\ \hline 0 & 0 & \frac{2}{7} & \frac{25}{7} & 0 & 1720\end{array}\right]$

Allowable δ_{1} for first resource,

$$
\begin{aligned}
& \delta_{1} \leq \min \left\{28 \cdot \frac{35}{1}, 36 \cdot \frac{35}{22}\right\}=\min \{980,57.27\}=57.27 \\
& \delta_{1} \geq-\min \left\{60 \cdot \frac{7}{1}\right\}=-420
\end{aligned}
$$

Change of optimal value $1720+\frac{2}{7} \cdot \delta_{1}$
Allowable δ_{3}

$$
\delta_{3} \geq-36
$$

Changes in Objective Function Coefficients

For a change from c_{1} to $c_{1}+\Delta_{1}$, changes in tableaux
$\left[\begin{array}{rr|rrr|r}x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & \\ \hline 15 & 10 & 1 & 0 & 0 & 1020 \\ 10 & 2 & 0 & 1 & 0 & 400 \\ 3 & 5 & 0 & 0 & 1 & 420 \\ \hline-40-\Delta_{1} & -10 & 0 & 0 & 0 & 0\end{array}\right]$
$\sim\left[\begin{array}{rr|rrr|r}x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & \\ \hline 0 & 1 & \frac{1}{7} & -\frac{3}{14} & 0 & 60 \\ 1 & 0 & -\frac{1}{35} & \frac{1}{7} & 0 & 28 \\ 0 & 0 & -\frac{22}{35} & \frac{9}{14} & 1 & 36 \\ \hline-\Delta_{1} & 0 & \frac{2}{7} & \frac{25}{7} & 0 & 1720\end{array}\right]$
$\sim\left[\begin{array}{rr|rrr|r}x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & \\ \hline * & * & * & * & * & * \\ \hline 0 & 0 & \frac{2}{7}-\frac{1}{35} \Delta_{1} & \frac{25}{7}+\frac{1}{7} \Delta_{1} & 0 & 1720+28 \Delta_{1}\end{array}\right]$

Changes in Coefficients, contin.

To keep objective function row ≥ 0, need

$$
\begin{aligned}
& \frac{2}{7}-\frac{1}{35} \Delta_{1} \geq 0 \quad \& \quad \frac{25}{7}+\frac{1}{7} \Delta_{1} \geq 0 \\
& \Delta_{1} \leq \frac{2}{7} \frac{35}{1}=10 \quad \& \quad \Delta_{1} \geq-\frac{25}{7} \cdot \frac{7}{1}=-25 \\
& 15=40-25 \leq c_{1}+\Delta_{1} \leq 40+10=50
\end{aligned}
$$

Corresponding optimal value of objective function is $1720+28 \Delta_{1}$

General Changes in Objective Function Coefficients

Consider change Δ_{k} in coefficient c_{k} of basic x_{k} in obj $f n$, where x_{k} is a basic in optimal solution and its pivot is in $r^{\text {th }}$ row.
$a_{r j}^{\prime}$ denote the entries in $r^{\text {th }}$ row and $j^{\text {th }}$ column, excluding right side constants and any artificial variable columns.
$c_{j}^{\prime} \geq 0$ denote entries in the objective row of optimal tableau
With change, original entry in the Obj Rn row becomes $-c_{k}-\Delta_{k}$.
Entry in optimal tableau changes from 0 to $-\Delta_{k}$
To keep x_{k} basic, need to add $\Delta_{k} \mathbf{R}_{r}^{\prime}$ to Obj Fn row.
Entry in x_{k}-column is now 0 and $j^{\text {th }}$-column is $c_{j}^{\prime}+\Delta_{k} a_{r j}^{\prime}$
For all j, need $c_{j}^{\prime}+\Delta_{k} a_{r j}^{\prime} \geq 0$.

Changes in Coefficients, contin.

$c_{k}+\Delta_{k}$ for basic variable with $r^{\text {th }}$-pivot row, $a_{r k}^{\prime}=1$ pivot.
For $a_{r j}^{\prime}>0$ in $r^{\text {th }}$-pivot row, need $\Delta_{k} a_{r j}^{\prime} \geq-c_{j}^{\prime}$ or $\Delta_{k} \geq-\frac{c_{j}^{\prime}}{a_{r j}^{\prime}}$,

$$
\Delta_{k} \geq-\min _{j}\left\{\frac{c_{j}^{\prime}}{a_{r j}^{\prime}}: a_{r j}^{\prime}>0, j \neq k\right\}, \text { maximal decrease of } c_{k} .
$$

For $a_{r j}^{\prime}<0$ in $r^{\text {th }}$-pivot row, need $c_{j}^{\prime} \geq-a_{r j}^{\prime} \Delta_{k}$ or $\frac{c_{j}^{\prime}}{-a_{r j}^{\prime}} \geq \Delta_{k}$,

$$
\Delta_{k} \leq \min _{j}\left\{\frac{c_{j}^{\prime}}{-a_{r j}^{\prime}}: a_{r j}^{\prime}<0\right\}, \text { maximal increase of } c_{k} .
$$

If $c_{j}^{\prime}=0$ for $a_{r j}^{\prime}<0$, then need $\Delta_{k} \leq 0$.

$$
\text { If } c_{j}^{\prime}=0 \text { for } a_{r j}^{\prime}>0 \& j \neq k, \text { then need } \Delta_{k} \geq 0
$$

Change in optimal value is $\Delta_{k} b_{r}^{\prime}$

Sensitivity Analysis for Non-basic Variable

Our example does not have any non-basic variables, x_{k}.
If x_{k} were a non-basic variable in optimal solution, $x_{k}=0$, then $c_{k}^{\prime}+\Delta_{k} \geq 0$ insures that x_{r} is a non-basic variable,

$$
\Delta_{k} \geq-c_{k}^{\prime}
$$

i.e., $-c_{k}^{\prime} \leq 0$ is \min decrease needed to make x_{k} a basic variable and a positive contribution to optimal solution.

Theory: Convex Combinations

Weighted averages in \mathbb{R}^{n} :
For three vectors $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3},

$$
\frac{\mathbf{a}_{1}+\mathbf{a}_{2}+\mathbf{a}_{3}}{3}
$$

is average of each component, average of these vectors.

$$
\begin{aligned}
\frac{\mathbf{a}_{1}+\mathbf{a}_{2}+\mathbf{a}_{2}+\mathbf{a}_{3}+\mathbf{a}_{3}+\mathbf{a}_{3}}{6} & =\frac{\mathbf{a}_{1}+2 \mathbf{a}_{2}+3 \mathbf{a}_{3}}{6} \\
& =\frac{1}{6} \mathbf{a}_{1}+\frac{2}{6} \mathbf{a}_{2}+\frac{3}{6} \mathbf{a}_{3}
\end{aligned}
$$

is a weighted average of these vectors with weights $\frac{1}{6}, \frac{2}{6}$, and $\frac{3}{6}$.
For vectors $\left\{\mathbf{a}_{i}\right\}_{i=1}^{k}$ and numbers $\sum_{i=1}^{k} t_{i}=1$ with $t_{i} \geq 0$

$$
\sum_{i=1}^{k} t_{i} \mathbf{a}_{i}
$$

is a weighted average, and is called a convex combination of $\left\{\mathbf{a}_{i}\right\}$.

Convex Sets

Definition

A set $\mathbf{S} \subset \mathbb{R}^{n}$ is convex provided that
if \mathbf{x}_{0} and \mathbf{x}_{1} are any two points in \mathbf{S} then convex combination $\mathbf{x}_{t}=(1-t) \mathbf{x}_{0}+t \mathbf{x}_{1}$ is also in \mathbf{S} for all $0 \leq t \leq 1$, i.e., line segment from x_{0} to x_{1} in S.

convex

not convex

convex

not convex

convex

Convex Sets, contin.

Each constraint, $a_{i 1} x_{1}+\cdots+a_{i n} x_{n} \leq b_{i}$ or $\geq b_{i}$, or $x_{i} \geq 0$, defines a closed half-space in \mathbb{R}^{n}. $a_{i 1} x_{1}+\cdots+a_{i n} x_{n}=b_{i}$ is a hyperplane ($n-1$ dimensional).

Definition

Any intersection of a finite number of closed half-spaces and possibly some hyperplanes is called a polyhedron.

Convex Sets, contin.

Theorem

a. Intersection of convex sets, $\bigcap_{j} \mathbf{S}_{j}$, is convex.
b. A polyhedron is convex. So feasible set of any LP is convex.

Proof.

(a) If $\mathbf{x}_{0}, \mathbf{x}_{1} \in \mathbf{S}_{j} \& 0 \leq t \leq 1$,
then $(1-t) \mathbf{x}_{0}+t \mathbf{x}_{1} \in \mathbf{S}_{j} \forall j$, and
$(1-t) \mathbf{x}_{0}+t \mathbf{x}_{1} \in \bigcap_{j} \mathbf{S}_{j}$.
(b) Each closed half space \& hyperplane is convex, so intersection is convex.

Convex Sets, contin.

Theorem

If \mathbf{S} is a convex set, and $\mathbf{p}_{i} \in \mathbf{S}$ for $1 \leq i \leq k$, then any convex combination $\sum_{i=1}^{k} t_{i} \mathbf{p}_{i} \in \mathbf{S}$.

Proof.

Proof is by induction.
For $k=2$, it follows from the def' n of convex set.
Assume true for $k-1 \geq 2$.
If $t_{k}=1 \& t_{j}=0$ for $1 \leq j<k$, then clear.
If $t_{k}<1$, then $\sum_{i=1}^{k-1} t_{i}=1-t_{k}>0, \& \sum_{i=1}^{k-1} \frac{t_{i}}{1-t_{k}}=1$.
$\sum_{i=1}^{k-1} \frac{t_{i}}{1-t_{k}} \mathbf{p}_{i} \in \mathbf{S}$ by induction hypothesis
So, $\sum_{i=1}^{k} t_{i} \mathbf{p}_{i}=\left(1-t_{k}\right) \sum_{i=1}^{k-1} \frac{t_{i}}{1-t_{k}} \mathbf{p}_{i}+t_{k} \mathbf{p}_{k} \in \mathbf{S}$.

Extreme Points and Vertices

Definition

A point \mathbf{p} in a nonempty convex set \mathbf{S} is called an extreme point p.t. if $\mathbf{p}=(1-t) \mathbf{x}_{0}+t \mathbf{x}_{1}$ with $\mathbf{x}_{0}, \mathbf{x}_{1}$ in \mathbf{S} and $0<t<1$, then $\mathbf{p}=\mathbf{x}_{0}=\mathbf{x}_{1}$.
An extreme point in a polyhedron is called a vertex.
An extreme point of \mathbf{S} must be a boundary point of \mathbf{S}.
Disk $\mathbf{D}=\left\{\mathbf{x} \in \mathbb{R}^{2}:\|\mathbf{x}\| \leq 1\right\}$ is convex.
Each point on its boundary is an extreme point.
For next few theorems, consider feasible set

$$
\mathscr{F}=\left\{\mathbf{x} \in \mathbb{R}_{+}^{n+m}: \mathbf{A} \mathbf{x}=\mathbf{b}\right\}
$$

with slack and surplus variables included in \mathbf{x} 's and constraints.

Vertices

Theorem

Let $\mathscr{F}=\left\{\mathbf{x} \in \mathbb{R}_{+}^{n+m}: \mathbf{A x}=\mathbf{b}\right\}$.
$\mathbf{x} \in \mathscr{F}$ is a vertex of \mathscr{F} if and only if basic feasible solution, i.e., columns of \mathbf{A} with $x_{j}>0$ linearly independent set of vectors.

Proof:

By reindexing columns and variables, can assume that

$$
x_{1}>0, \ldots, x_{r}>0 \quad x_{r+1}=\cdots=x_{n+m}=0 .
$$

(a) Assume $\left\{\mathbf{A}_{j}\right\}_{j=1}^{r}$ linearly dependent: $\exists\left(\beta_{1}, \ldots, \beta_{r}\right) \neq \mathbf{0}$ $\beta_{1} \mathbf{A}_{1}+\cdots+\beta_{r} \mathbf{A}_{r}=\mathbf{0}$.
For $\boldsymbol{\beta}^{\top}=\left(\beta_{1}, \ldots, \beta_{r}, 0, \ldots, 0\right), \quad \mathbf{A} \boldsymbol{\beta}=\mathbf{0}$,
For small $\lambda, \mathbf{w}_{1}=\mathbf{x}+\lambda \boldsymbol{\beta} \geq \mathbf{0}, \& \mathbf{w}_{2}=\mathbf{x}-\lambda \boldsymbol{\beta} \geq \mathbf{0}, \quad \mathbf{A} \mathbf{w}_{i}=\mathbf{A x}=\mathbf{b}$.
so $\mathbf{w}_{1}, \mathbf{w}_{2} \in \mathscr{F} \& \mathbf{x}=\frac{1}{2} \mathbf{w}_{1}+\frac{1}{2} \mathbf{w}_{2}$, so not vertex.

Proof

(b) Conversely, assume that $\mathbf{x} \in \mathscr{F}$ is not vertex,

$$
\mathbf{x}=t \mathbf{y}+(1-t) \mathbf{z} \quad \text { for } 0<t<1
$$

with $\mathbf{y} \neq \mathbf{z}$ in \mathscr{F}.
For $r<j$,

$$
0=x_{j}=t y_{j}+(1-t) z_{j}
$$

Since both $y_{j} \geq 0$ and $z_{j} \geq 0$, both must be zero for $j>r$.
Because $\mathbf{y} \neq \mathbf{z}$ are both in \mathscr{F},

$$
\begin{aligned}
& \mathbf{b}=\mathbf{A} \mathbf{y}=y_{1} \mathbf{A}_{1}+\cdots+y_{r} \mathbf{A}_{r} \\
& \mathbf{b}=\mathbf{A} \mathbf{z}=z_{1} \mathbf{A}_{1}+\cdots+z_{r} \mathbf{A}_{r} \\
& \mathbf{0}=\left(y_{1}-z_{1}\right) \mathbf{A}_{1}+\cdots+\left(y_{r}-z_{r}\right) \mathbf{A}_{r},
\end{aligned}
$$

and columns $\left\{\mathbf{A}_{j}\right\}_{j=1}^{r}$ are linearly dependent.

Some Vertex is an Optimal Solution

For any convex combination

$$
f\left(\sum t_{j} \mathbf{x}_{j}\right)=\mathbf{c} \cdot \sum t_{j} \mathbf{x}_{j}=\sum t_{j} \mathbf{c} \cdot \mathbf{x}_{j}=\sum t_{j} f\left(\mathbf{x}_{j}\right)
$$

Theorem

Assume that $\mathscr{F}=\left\{\mathbf{x} \in \mathbb{R}_{+}^{n+m}: \mathbf{A x}=\mathbf{b}\right\} \neq \emptyset$ for bounded MLP. Then following hold.
a. If $\mathbf{x}^{0} \in \mathscr{F}$, then there exists a basic feasible $\mathbf{x}^{b} \in \mathscr{F}$ s.t.

$$
f\left(\mathbf{x}^{b}\right)=\mathbf{c} \cdot \mathbf{x}^{b} \geq \mathbf{c} \cdot \mathbf{x}^{0}=f\left(\mathbf{x}^{0}\right)
$$

b. There is at least one optimal basic solution.
c. If two or more basic solutions are optimal, then any convex combination of them is also an optimal solution.

Proof a.

If \mathbf{x}^{0} is already a basic feasible sol' n then done.
Otherwise, columns \mathbf{A} for $x_{i}^{0}>0$ are lin. depen.
Let \mathbf{A}^{\prime} be matrix with only these columns.
$\exists \mathbf{y}^{\prime} \neq \mathbf{0}$ such that $\mathbf{A}^{\prime} \mathbf{y}^{\prime}=\mathbf{0}$.
Adding 0 in other entries, get $\mathbf{y} \neq \mathbf{0}$ s.t. $\mathbf{A y}=\mathbf{0}$.

$$
\mathbf{A}(-\mathbf{y})=\mathbf{0}, \text { so can assume that } \mathbf{c} \cdot \mathbf{y} \geq 0
$$

$\mathbf{A}\left[\mathbf{x}^{0}+t \mathbf{y}\right]=\mathbf{A} \mathbf{x}^{0}=\mathbf{b}$,
If $y_{i} \neq 0$, then $x_{i}^{0}>0$, so $\mathbf{x}^{0}+t \mathbf{y} \geq 0$ for small t is in \mathscr{F}.

Proof a, contin.

Case 1. Assume that $\mathbf{c} \cdot \mathbf{y}>0$ and some component $y_{i}<0$.
$x_{i}^{0}>0$ and $x_{i}^{0}+t y_{i}=0$ for $t_{i}=-\frac{x_{i}^{0}}{y_{i}}>0$.
As t increases from 0 to t_{i}, objective function increases from

$$
\mathbf{c} \cdot \mathbf{x}^{0} \text { to } \mathbf{c} \cdot\left[\mathbf{x}^{0}+t_{i} \mathbf{y}\right]
$$

If more than one $y_{i}<0$, then select one with smallest t_{i}.
Have constructed point in \mathscr{F} with one more zero component of \mathbf{x}^{0}, fewer components $y_{i}<0$, and a greater value of objective function.
Can continue until either columns are linearly independent or

$$
\text { all } y_{i} \geq 0
$$

Proof a, continued

Case 2. If $\mathbf{c} \cdot \mathbf{y}>0$ and $\mathbf{y} \geq \mathbf{0}$,
then $\mathbf{x}^{0}+t \mathbf{y} \in \mathscr{F}$ for all $t>0$,

$$
\mathbf{c} \cdot\left[\mathbf{x}^{0}+t \mathbf{y}\right]=\mathbf{c} \cdot \mathbf{x}^{0}+t \mathbf{c} \cdot \mathbf{y} \quad \text { is arbitrarily large. }
$$

MLP is unbounded and has no maximum, contradiction.
Case 3. If $\mathbf{c} \cdot \mathbf{y}=0: \quad f\left(\mathbf{x}^{0}+t \mathbf{y}\right)=\mathbf{c} \cdot \mathbf{x}^{0}$ unchanged
Some $y_{i} \neq 0$. Considering $\mathbf{y} \&-\mathbf{y}$ can assume some $y_{i}<0$.
\exists first $t_{i}>0$, to make another $x_{i}^{0}+t_{i} y_{i}=0$.
Eventually, get corresponding columns linearly independent, and a basic solution as claimed in part (a).

Proof b,c

(b) Only finitely many basic feasible solutions, $\left\{\mathbf{p}_{j}\right\}_{j=1}^{N}$.
$f(\mathbf{x}) \leq \max _{1 \leq j \leq N} f\left(\mathbf{p}_{j}\right) \quad$ for $\mathbf{x} \in \mathscr{F} \quad$ by part (a)
Maximum can be found among $f\left(\mathbf{p}_{j}\right)$.
(c) Assume $f\left(\mathbf{p}_{j_{i}}\right)=M=\max \{f(\mathbf{x}): \mathbf{x} \in \mathscr{F}\}$ for $i=1, \ldots, \ell>1$.

$$
\begin{aligned}
& \sum_{i=1}^{\ell} t_{j_{i}} \mathbf{p}_{j_{i}} \in \mathscr{F} \\
& f\left(\sum_{i=1}^{\ell} t_{j_{i}} \mathbf{p}_{j_{i}}\right)=\sum_{i=1}^{\ell} t_{j_{i}} f\left(\mathbf{p}_{j_{i}}\right)=\sum_{i=1}^{\ell} t_{j_{i}} M=M . \quad \text { optimal }
\end{aligned}
$$

Validation of Simplex Method

If \exists degen. basic feasible sol'ns with fewer than m positive basic var, then simplex method can cycle by row reduction to matrices with same positive basic variables but different sets of pivots: interchange one zero basic variable with zero free variable.
Same vertex of feasible set
Need to insure don't repeat same set of basic variables at a vertex (cycle)

Theorem

If a maximum solution exists for a linear programming problem and simplex algorithm does not cycle among degen basic feasible sol'ns, then simplex algorithm locates a maximum solution in finitely many steps.

Sketch of Proof of Theorem

Assume never reach a degenerate basic solution.
Then reach \mathbf{p}_{0} with all pivoting to $\mathbf{p}_{1}, \ldots, \mathbf{p}_{k}$ have $f\left(\mathbf{p}_{j}\right) \leq f\left(\mathbf{p}_{0}\right)$
Complete to set of all basic feasible sol'ns (vertices) $\mathbf{p}_{0}, \mathbf{p}_{1}, \ldots, \mathbf{p}_{\ell}$
Set of all convex combinations, convex hull, is bounded polyhedron

$$
\mathbf{H}=\left\{\sum_{i=0}^{\ell} t_{i} \mathbf{p}_{i}: t_{i} \geq 0, \sum_{i=0}^{\ell} t_{i}=1\right\} \subset \mathscr{F} .
$$

Edge of \mathbf{H} from \mathbf{p}_{i} to \mathbf{p}_{j} corresponds to pivoting (as in proof of Theorem 3.4.2(a)) where one constraint becomes $\neq b_{i}$ and another become $=b_{j}$,
Positive cone out from \mathbf{p}_{0} determined by $\left\{\mathbf{p}_{i}-\mathbf{p}_{0}\right\}_{i=1}^{k}$

$$
\mathbf{C}=\left\{\mathbf{p}_{0}+\sum_{i=1}^{k} y_{i}\left(\mathbf{p}_{i}-\mathbf{p}_{0}\right): y_{i} \geq 0\right\} \supset \mathbf{H} . \quad \text { (geometrically) }
$$

Let \mathbf{q} be any vertex of \mathbf{H} (basic solution), $\mathbf{q} \in \mathbf{H} \subset \mathbf{C}$.

$$
\begin{aligned}
& \mathbf{q}-\mathbf{p}_{0}=\sum_{i=1}^{k} y_{i}\left(\mathbf{p}_{i}-\mathbf{p}_{0}\right) \text { with all } y_{i} \geq 0 \\
& f(\mathbf{q})-f(\mathbf{p})=\sum_{i=1}^{k} y_{i}\left[f\left(\mathbf{p}_{i}\right)-f\left(\mathbf{p}^{*}\right)\right] \leq 0
\end{aligned}
$$

Degenerate Basic Solutions

Homework Prob gives example of a degenerate basic solution.
A basic variable is $=0$ in addition to free (non-pivot) variables.
When leaving, variable which is becomes >0 must be free (non-pivot) variable and not a basic (pivot) variable $=0$

First pivoting at the degenerate solution interchanges a basic variable $=0$ and a free variable,
so new free variable can be made >0 with next pivoting when the value of objection function is increased; all same values of variables, so the same point in \mathscr{F}.

Matter of how row reduction relates to movement on feasible set.

